Department of Molecular Science

Department of Molecular Science

Department of Molecular Science

Slideshow presentation

The following slideshow can be cycled through 4 displays. Depending on screen reader and browser combination, they may present one at a time or all at once. The screen reader may also present the number of the current slide and a button to play or pause the slideshow. Additionally, when the slideshow has keyboard focus, the left and right arrow keys can be used to navigate through the slides.

End of slideshow

The Department of Molecular Science is a research intensive department of academics and students who study and teach chemistry and molecular cell sciences. The focus of our academics is at the exciting molecular science interfaces with chemistry, biology and materials. Our students gain cross-disciplinary perspectives while developing discipline specific skills in chemistry and biomolecular science.

We apply this philosophy of studying “molecules to cells” to achieve a sustainable environment, understand health and disease, develop materials and advance new molecular technologies.

Research and teaching strength in molecular science includes analytical chemistry, biochemistry, biotechnology, cellular biology, medicinal chemistry, microbiology, molecular biology and genomics, synthetic biology, organic/inorganic synthesis, proteomics, protein chemistry, physical chemistry.

Department of Molecular Science success stories

The Department of Molecular Science has a proud history of success. From pioneering the science of proteomics, the breeding ground for burgeoning biotechnology companies, through to being a leading PhD industrial training centre molecular technologies for the food industry.

Synthetic Biology and the Global Yeast 2.0 consortium

The Macquarie University Synthetic Biology group are building chromosomes and they have passed the half way mark for Chromosome XIV. It is a great accomplishment to have overcome the many obstacles along the way.

Chromosomes are the strings of DNA in cells containing the instructions for all of the complex, highly interactive pathways and components of a cell that enable life. People have 46 chromosomes and yeast has 16. Laureate Fellow Prof. Ian Paulsen is leading the Australian contingent in the Global Yeast 2.0 consortium aspiring to synthesise a customisable version of the entire yeast genome.

The bespoke genetic code will open a proliferation of industrial and medical applications and enhance our understanding of basic biology on how the genome is organised.

You are already familiar with the use of yeast for the brewing of alcoholic beverages and baking, but you may not know that yeast is a brilliant factory for the manufacturing of biological compounds. These include the manufacture of pharmaceuticals, such as the antimalarial drug Artemisinin, the production of biofuels from agricultural waste and other enzymes and metabolites important to industrial processes. The synthetic genome allows versatility for expansion of industrial capability capability and increased efficiencies. With our rapid progress to date, Macquarie is actively exploring how our synthetic biology technological platforms and optimised yeast strains can innovate Australian industry and make a difference to society and the environment.

For information on other projects by the Synthetic Biology Group contact Natalie Curach.

Pioneering the science of proteomics - from concept to practice

In 1994, Macquarie University PhD student biochemist Marc Wilkins coined the term “proteome” to describe the protein complement of the genome. This term is now recognised in contemporary biochemistry and fields beyond. Of the back of this a new science was born, with Macquarie University researchers having significant influence in propelling the field forward. The Australian Proteome Analysis Facility was established in 1995 as a Commonwealth Major National Research Facility and has been conducting collaborative proteomic research and services for the past 20 years. During this time thousands of researchers in academia and industry have utilised APAF to investigate aspects of the proteome. A spin-out company of the University, Proteome Systems Ltd helped with the industrialisation of proteomics for applied research.

See Williams, K.L., Gooley, A.A., Wilkins, M.R., Packer, N.H.(2014) A Sydney proteome story. Journal of Proteomics 107:13-23. Review.

“This is the story of the experience of a multidisciplinary group at Macquarie University in Sydney as we participated in, and impacted upon, major currents that washed through protein science as the field of Proteomics emerged. The large scale analysis of proteins became possible. This is not a history of the field. Instead we have tried to encapsulate the stimulating personal ride we had transiting from conventional academe, to a Major National Research Facility, to the formation of Proteomics company Proteome Systems Ltd. There were lots of blind alleys, wrong directions, but we also got some things right and our efforts, along with those of many other groups around the world, did change the face of protein science. While the transformation is by no means yet complete, protein science is very different from the field in the 1990s.”

The NISEP story

“Can you help us help our youth?” This was the request made by Aboriginal Elders of northern NSW in October 2014 of Macquarie University scientists as a result of their concern over the youth in their communities not completing their High School studies. This simple request is what led to the establishment of the National Indigenous Science Education Program (NISEP) in CBMS in partnership with these Elders. Using science as an engagement tool, NISEP aims to give youth from low SES regions, especially Indigenous youth, the motivation, confidence and skills to complete their secondary education, and initiate positive career and higher education pathways. Key aspects of NISEP include the long-term commitment and mentoring by university scientists of the students over their high school studies, providing role models at the secondary and tertiary level and promoting science study and career opportunities. Starting from a small northern NSW-centred Macquarie University program, NISEP has steadily grown into a unique consortium of university, school, Aboriginal community, science and Indigenous outreach partners that places around 100 Indigenous secondary students in leadership roles each year and engages with around 2000 secondary students annually. Independent focus group interviews of Aboriginal Elders, school staff, parents, carers and the students have consistently suggested that there have been transformative processes within the schools and community. The innovation and value of NISEP has been recognised by various awards and distinctions including (but not limited to) the 2007 Macquarie University Innovation in Partnership Award, and a 2008 Macquarie University Community Engagement Award.

Fruit Fly Biosecurity

Department of Molecular Sciencec staff are members of a large collaborative group engaged in research on controlling and monitoring fruit fly populations. The main aim of the project is to strengthen Australia’s biosecurity through the management of Queensland fruit fly (Qfly) through the sterile insect technique (SIT), but other fruit fly species and other control mechanisms are also being investigated. Australia has been heavily reliant on synthetic, primarily organophosphate, insecticides to protect crops, but these are now banned for many uses. Environmentally benign alternatives are needed urgently. CBMS chemists are developing new, more effective, lure compounds that can be used to draw the flies away from the fruit and trap, and kill them. They are also investigating the pheromone profile of fruit flies to better understand the relationships between pheromones of different species and differences in pheromone profiles of wild and cultured fruit flies. 

Substantial funding has come through an agreement between Horticulture Innovation Australia (HIA) and Macquarie University, to the value of $20.5m over five years, which is in addition to other HIA grants worth in the order of $3m. Other funding has come through the establishment of an Industrial Transformation Training Centre for Fruit Fly Biosecurity Innovation ($3.7m). Other partners include the New Zealand Institute for Plant & Food Research (NZ PFR), the New South Wales Department of Primary Industries (NSW DPI), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Queensland University of Technology, Western Sydney University, the Queensland Department of Agriculture Fisheries and Forestry (QDAFF), and Ecogrow Environmental Pty Ltd.

Back to the top of this page