PloGO: An R package for plotting Gene Ontology annotation
and abundance

D. Pascovici and T. Keighley

October 27, 2011

Abstract

This R package contains tools for plotting gene ontology information in a similar fashion
to the WEGO web gene ontology plotting tool [Ye et al.| (2006]). However it was designed
to incorporate information about abundance in addition to the gene ontology annotation,
as well as handle multiple files and allow for a small selection of gene ontology categories
of interest. It arose out of the need to easily produce text and graphical summaries of
functional annotation with incorporated abundance for multiple files simultaneously. It
builds on the functionality provided by the GOstats [Falcon and Gentleman| (2007) package
for handling the GO graph structure, and on the functionality provided by the biomaRt
Durinck et al| package for accessing available Biomart repositories. The package includes
sample data from [Mirzaei et al., which motivated several aspects of this work. NB: While
the [Mirzaei et al.| article is under review the actual experimental data has been replaced
with randomly generated values.

1 Introduction

The Gene Ontology hierarchy as developed by the GO consortium is widely used to provide
some first-glance insight into the function, biological process or cellular location of collections
of genes or proteins. The GO data is organized as a directed acyclic graph starting from one
parent node, which means that particular ontology categories can have multiple parents as well
as multiple children. Given the complexity of the graph, multiple tools have been designed to
navigate it and summarize GO information.

One simple and useful such tool is Wego [Ye et al.| (2006)), a web-based gene ontology
plotter, which is readily available over the web and plots gene ontology summaries as well as
comparing percentages of GO annotation in different samples. While working in the context
of proteomics label free experiments, we found it useful to reproduce and extend some of
the WEGO functionality, and generate the PloGO gene ontology annotation and abundance
plotter.

Why generate a new package instead of a readily available web tool?

e We needed an easy way to extract particular GO categories of interest and generate
summaries in text or excel format for publication for a large number of files

e We found that often researchers wanted to concentrate on particular categories of interest
for an experiment (e.g. stress response) across many annotation files, instead of working
with a particular level of the GO hierarchy.

e We needed to add protein abundance information such as NSAF values where available
to the annotation provided by WEGO

e We needed to be able to analyze multiple files at once (often many more than three which
is the Wego limit)

e We wanted to script against the GO plotter and integrate it with our other R analyses
as opposed to just access via the web interface

e We preferred to take advantage of and build on existing R packages for GO handling
(Falcon and Gentleman (2007))) and annotation (Durinck et al.)

e We planned to include other information available from Biomart such as pathway details
and summarize and plot in a similar fashion.

2 Package contents

The R project |R Development Core Team (2008) website contains all the needed information
for installing R or other packages as needed. The PloGO package can then be installed from
the zip file provided.

The package itself contains several subfolders as below, in the standard format of any R
package.

e R: The subfolder containing the R code for all the implemented functions
e man: The subfolder containing the help pages for each function

e doc: The subfolder containing the documentation, including the file that you are reading
right now, and the dynamic document used to generate it.

e files: The subfolders containing some sample gene ontology files from [Mirzaei et al, and
a protein abundance file.

3 Package use

First load up PloGO; most of the required packages such as biomaRt and lattice will be loaded
up automatically; we are also loading up the xtable packages so we can display some tables
nicely in this document. And we’ll keep track of the time so we can say how long it all takes.

> library(P1loGO)
> library(xtable)
> ptm <- proc.time()

4 Generate some gene ontology files from scratch

The starting point of a gene ontology analysis is always a collection of identifiers with all their
available gene ontology annotation. The GO annotation can be obtained from biomaRt. At
this point, only Ensembl human or Uniprot identifiers are accepted, though this can be easily
extended. The Uniprot access via biomaRt has been very poor lately, so we switched the
examples over to Ensembl human.

The code fragment below generates a very small such file in the local folder where R is
running from. Keep in mind that this will require online accesing of the Ensembl biomart
repository and as such can take a while (or can fail if the repository is not available for

whatever reason).

> v <= c¢("ENSP00000003100",
+ "ENSP00000172229",

"ENSP00000075120",
"ENSP00000184956")

> genWegoFile(v, fname = "F1.txt")

"ENSP00000160262",

Now a quick look at the files generated: the format is very simple, with the identifier in
the first column followed by space separated GO identifiers.

> print(xtable(read.annot.file("F1.txt"), align =

"rp{4cm}p{10cm}"))

IDS V1

1 ENSP00000003100 GO:0006695 GO:0006805 GO:0005783 GO:0005789
GO:0005792 GO:0016020 GO:0016021 GO:0004497
GO0:0008398 GO:0009055 GO:0016705 GO:0020037
GO:0046872

2 ENSP00000075120 GO:0005975 GO:0006766 GO:0006767 GO:0008643
GO:0008645 GO:0015758 GO:0055085 GO:0005886
G0:0016020 GO:0016021 GO:0005355 GO:0022891

3 ENSP00000160262 GO:0016337 GO:0050776 GO:0005886 GO:0005887
G0:0005102 GO:0005178 GO:0005515

4 ENSP00000172229 GO:0006915 GO:0006916 GO:0006917 GO:0007165
GO:0007275 GO:0007411 GO:0007417 GO:0008624
GO:0009611 GO:0010468 GO:0016048 GO:0021675
GO:0030154 GO:0031069 GO:0031293 GO:0040037
GO:0042488 GO:0043588 GO:0045786 GO:0048011
GO:0048146 GO:0048635 GO:0050770 GO:0050771
GO0:0050772 GO:0051799 GO:0005576 GO:0005634
GO:0005654 GO:0005737 GO:0005768 GO:0005829
GO:0005886 GO:0005887 GO:0009986 GO:0004871
GO:0004872 GO:0004888 GO:0005035 GO:0005488

5 ENSP00000184956

GO0:0005515 GO:0048406

GO:0005488

Alternatively, one can obtain some gene ontology files in ”long” format, namely identifier
followed by GO annotation separated by white space (spaces or tabs). One online program
that generates such files is GORetriever (part of the McCarthy et al.| (2006) set of tools); other
options for obtaining similar output are a direct download of ID and GO information only from
places such as Biomart or Uniprot. Only the first two columns of the files will be processed,
the rest (if any) will be discarded. Two such sample files, one from GoRetriever and another
a Biomart download are included in the package, and we show the first few lines below.

> path <- system.file("files", package = "PloGO")
> goRet <- file.path(path, "goRetOutput.txt")
> print(xtable(read.annot.file(goRet) [1:10, 1))

IDS V1

P00359 GO:0001950 C
P00359 GO:0003824 F
P00359 GO:0004365 F
P00359 GO:0005488 F
P00359 GO:0005515 F
P00359 GO:0005737 C
P00359 GO:0005739 C
P00359 GO:0005811 C
P00359 GO:0006006 P
P00359 GO:0006094 P

O © 00 O Uik Wi -

—_

> bioMt <- file.path(path, "mart_export.txt")
> print (xtable(read.annot.file(bioMt) [1:10, 1))

IDS V1

Ensembl Gene ID GO Term Accession (bp) Ensembl Protein ID
ENSG00000072786 GO:0006468 ENSP00000176763
ENSGO00000072786 GO:0000166 ENSP00000176763
ENSG00000072786 GO:0004674 ENSP00000176763
ENSG00000072786 GO:0005524 ENSP00000176763
ENSG00000072786 GO:0016740 ENSP00000176763
ENSG00000072786 GO:0004672 ENSP00000176763
ENSG00000075415 ENSP00000188376
ENSGO00000072110 GO:0002576 ENSP00000193403
ENSGO00000072110 GO:0007596 ENSP00000193403

O © 00O Ui Wi+

—_

5 Process existing gene ontology files

From now on we assume we have several gene ontology files, whether generated with PloGO
or obtained elsewhere. For a realistic example, there are 5 sample gene ontology files in-
cluded in the package; they are a subset of all those analyzed for the paper by [Mirzaei et al.
and correspond to various presence-absence categories in which the total number of proteins
were partitioned. The same package also contains a protein abundance file which has protein
abundance values for each identifier, as well as protein names.

> file.names <- file.path(path, c("00100.txt", "01111.txt", "10000.txt",
+ "11111.txt", "Control.txt"))
> datafile <- file.path(path, "NSAFDesc.csv")

As a next step we could either look at a few categories of interest, or extract all categories
at a particular level of the gene ontology graph.

The following code fragment would extract all nodes at the Level 2 (3 or 4) of the GO
hierarchy:

> GOIDlist <- GOTermList("BP", level = 2)

While perhaps restrictive, the list at level 2 could be quite informative; at levels 3 or 4 it
is very long. By some manual input or processing you can choose to enter for instance a GO
slim of interest; for instance below we selected the cellular component part of the generic GO
slim developed by the GO consortium.

> G0S1imCC <- c("G0:0000228", "GO:0000229", "GO:0005575",
+ "GO:0006576", "GO:0005578", "GO:0005615",
+ "GO:0005618", "GO:0005622", "GO:0005623",
+ "GO:0005634", "GO:0005635", "GO:0005654",
+ "GO:0005694", "GO:0005730", "GO:0005737",
+ "GO:0005739", "GO:0005764", "GO:0005768",
+ "GO:0005773", "GO:0005777", "GO:0005783",
+ "GO:0005794", "GO:0005811", "GO:0005815",
+ "GO:00056829", "GO:0005840", "GO:0005856",
+ "GO:0005886", "GO:0005929", "GO:0009536",
+ "GO:0009579", "GO:0016023", "GO:0030312",
+ "GO:0043226", "GO:0043234")

For the purpose of this analysis, a more targeted fixed list of categories of interest was
preferred by Mirzaei et al., as below.

> termList <- c("response to stimulus", "transport",

+ "protein folding", "protein metabolic process",

+ "carbohydrate metabolic process'", "oxidation reduction",

+ "photosynthesis", "lipid metabolic process",

+ "cell redox homeostasis", "cellular amino acid and derivative metabolic process",
+ "nucleobase, nucleoside and nucleotide metabolic process",

+ "vitamin metabolic process', '"generation of precursor metabolites and energy",
+ "metabolic process", "signaling")

> GOIDmap <- getGoID(termList)

> GOIDlist <- names(GOIDmap)

Once you have the files and the GO categories, you need to process the files one by one
to extract summaries of the categories of interest. The file by file processing is done by the
processWegoFile function.

> processGoFile("F1.txt", GOIDlist)

The bulk of processing a set of annotation files is done by the processAnnotation file,
which can print annotation listings for each file, and merge with abundance information if any
is available.

> res.list <- processAnnotation(file.names, GOIDlist,
+ printFiles = TRUE)

After processing the files, the annotationPlot function produces some visual summaries and
generates the counts and percentages.

> annot.res <- annotationPlot(res.list)

Below are the summaries generated for the protein annotation files considered.

> print(xtable(annot.res$counts, align = "rp{1.2cm}p{1.2cm}p{1.2cm}p{1.2cm}p{1.2cm}"))

00100.txt01111.txt10000.txt 11111.txt Control.txt

response to stimulus 11 1 4 31 49
transport 17 6 4 54 88
protein folding 3 0 1 15 28
protein metabolic process 23 25 13 89 167
carbohydrate metabolic process 8 5 9 71 123
photosynthesis 1 3 1 30 38
lipid metabolic process 2 0 7 15 36
cell redox homeostasis 2 3 1 7 13
nucleobase, nucleoside and nucleotide metabolic process 5 1 2 21 38
vitamin metabolic process 2 1 0 2 4
generation of precursor metabolites and energy 3 4 3 55 71
metabolic process 71 49 45 330 605
signaling 6 0 0 3 3

> print(xtable(annot.res$percentages, align = "rp{1.2cm}p{1.2cm}p{1.2cm}p{1.2cm}p{1.2cm}"))

00100.txt01111.txt10000.txt 11111.txt Control.txt

response to stimulus

transport

protein folding

protein metabolic process

carbohydrate metabolic process

photosynthesis

lipid metabolic process

cell redox homeostasis

nucleobase, nucleoside and nucleotide metabolic process
vitamin metabolic process

generation of precursor metabolites and energy
metabolic process

signaling

7.97
12.32
2.17
16.67
5.80
0.72
1.45
1.45
3.62
1.45
2.17
51.45
4.35

1.15
6.90
0.00
28.74
5.75
3.45
0.00
3.45
1.15
1.15
4.60
56.32
0.00

4.17
4.17
1.04
13.54
9.38
1.04
7.29
1.04
2.08
0.00
3.12
46.88
0.00

6.03
10.51
2.92
17.32
13.81
5.84
2.92
1.36
4.09
0.39
10.70
64.20
0.58

4.99
8.96
2.85
17.01
12.53
3.87
3.67
1.32
3.87
0.41
7.23
61.61
0.31

Figure 1: Annotation plot: a barplot of the percentage of identification in each selected category
and for each selected file, on a log scale

00100.txt
01111.txt
10000.txt
11111 txt
Control.txt
4 - _-__' -
—
n _
o
+ 37 Al B
1% h H _
0] - _
o = ~ L
g 2 1 _ 1 o
c M -
[} i
o
o}
o 1 =
(@]
Q
>
S 0+ -
. &
&% {09\@ Q}QA & & &L e"\&) é‘@ & && \\Qq & &
N $ < N NS (S D R &
O 2 & O O O & O QO & § & QO
<R @ Q> R N S N N 9 > LR
& & & & ¢ @ e &
S AN o S S S O $§ S & S
<& ~a @ & <O <& <] <2 N <&
2 X S & Q) e ¢ o ¢
& &) & N & <& R <&
@ » X O 2 5 & &
> ¢ & K 5§ @ S
: Q S S &
S ¥ Q K
@ N
SO S
& &
{ &
\Q <
o &K
S $
Q"
& ¢
p . S
&
O
é@
(\\)

6 Compare annotation to a given reference

One can choose to compare the percentages of annotation in various subsets to a selected
reference, to check whether there is an association between the presence in a particular gene
ontology category and presence in the particular subset (e.g. are there more carbohydrate
metabolism proteins in the subset X than expected by chance considering the whole popula-
tion?) . This is done by means of applying Fisher’s exact test for each gene ontology category
and for each subset as compared to the selected reference. The test returns a p-value, which
is only recorded if the counts for the respective category are not too small (n > 5).

> res <- compareAnnot(res.list, "Control")
> print(xtable(res))

00100.txt 01111.txt 10000.txt 11111.txt Cont

response to stimulus 0.16 0.40

transport 0.21 0.69 0.35

protein folding 1.00

protein metabolic process 1.00 0.01 0.47 0.89

carbohydrate metabolic process 0.02 0.08 0.42 0.52

photosynthesis 0.09

lipid metabolic process 0.10 0.55

cell redox homeostasis 1.00

nucleobase, nucleoside and nucleotide metabolic process 1.00 0.89
vitamin metabolic process

generation of precursor metabolites and energy 0.02

metabolic process 0.03 0.36 0.01 0.34
signaling

Given the large number of tests, and the fact that multiple testing corrections are not
applied, such a table should be regarded as a suggestion for selecting further categories and
protein subsets for further consideration. In the example at hand for instance, there is a clear
indication that there are more signalling proteins in the "00100” subset (Protein present at
extreme stress conditions only) than expected by chance.

7 Add abundance data

For a last analysis, we now consider the protein abundance data. We process the annotation
again, this time indicating that we have an abundance datafile. Note that the abundance file
has two descriptive columns (a protein ID and a protein description), so we indicate that by
setting the datafile.ignore.cols.

> res.list <- processAnnotation(file.names, GOIDlist,
+ datafile = datafile, printFiles = TRUE, datafile.ignore.cols = 2)

If the printFiles parameter is set to TRUE, a tab separated annotation file will be printed
in the current directory for each of the GO files processed. The format can be changed to a
CSV matrix containing identifiers as rows and GO categories as columns. You can inspect for
instance the "Annot 11111.csv” and "Annot 11111.txt” to see the different formats. The matrix
one might be preferred if one wishes to see combinations of GO identifiers ("Which of my ID’s
were involved in both transport and signaling?”).

> writeAnnotation(res.list, datafile = datafile,
+ format = "matrix")

After processing the abundance files, some graphs can be generated by abundancePlot and
are included below. The graphs are of two kinds, one levelplot for each file, and one barchart
for each GO category, provided there was a small number of GO categories being considered.

Figure 2: Abundance levelplot for File 1, showing the total abundance for each GO category
in each file. One such image is generated for each file under consideration.

Abundance levelplot 00100.txt

metabolic process 71 - r 0,016
protein metabolic process 23 - r '

transport 17 \ r 0.014
response to stimulus 11 r 0.012

carbohydrate metabolic process 8 r
signaling 6 - + 0.010
nucleobase, nucleoside and nucleotide metabolic process 5 - r 0.008
generation of precursor metabolites and energy 3 - r 0,006

protein folding 3 r
vitamin metabolic process 2 = 0.004
cell redox homeostasis 2 r 0.002

lipid metabolic process 2 r
photosynthesis 1 - B 0.000

T T T T T T T T T T T T T T T
S8 S S S S S S SSS S S S S
AP N VD DN Y N Y NV
OO @@ @ A S A A A
P AN N R R RCR R
PPN L L LSOO
ARRNRTITT L LT @ @ @@ @@
R RRIR eRiie} ’b OO & 6‘*9‘
L RN
A 0y Yo
b 00"

> tp <- abundancePlot(res.list)
> proc.time() - ptm

user system elapsed
91.58 2.42 112.20

10

Figure 3: Abundance totals for one GO category, in this particular case "signaling”, showing
the overall abundance in each sample and replicate separately for each file. One such image is
generated for each GO category under consideration. In this case, note the abundance peak at
Extreme temperatures, file ”00100”. This abundance view complements the annotation view

which showed more signaling proteins at Extreme temperatures only.

signaling

...1.Control.1.csv
...1.Control.2.csv
...1.Control.3.csv
...2.Moderate.1.csv
...2.Moderate.2.csv
...2.Moderate.3.csv
...3.Extreme.1.csv
...3.Extreme.2.csv

3.Extreme.3.csv
3.Days.recovery.1.csv
3.Days.recovery.2.csv
...4.3.days.recovery.3.csv
...5.6.Days.recovery.1.csv
...5.6.Days.recovery.2.csv
...5.6.days.recovery.3.csv

TINInmnm

11111t Control.txt
= ~ 0.003
- ~ 0.002
b m - 0.001
] W ﬂ_hﬂ [0000
]
g 00100.txt 01111.txt 10000.txt
0.003 4 -
0.002 4 -
0.001 4 -
0000 7 WTH [TTTTTTITTTITIT [T TITIT i
& <& S
) <§'Z}) q@\ q@
B E) &

11

8 Conclusions

The PloGO package is a simple gene annotation summarizing and plotting tool, building on
existing R packages such as biomaRt and GOstats. It provides for integration of abundance
information where such information is present, and allows easy selection of multiple categories
of interest as well as allowing for many files to be analyzed at the same time. In future work
we plan to extend it to summarize pathway information in a similar manner.

References

Steffen Durinck, Wolfgang Huber, and Sean Davis. biomaRt: Interface to BioMart databases
(e.g. Ensembl, Wormbase and Gramene). R package version 2.2.0.

S Falcon and R Gentleman. Using GOstats to test gene lists for GO term association. Bioin-
formatics, 23(2):257-8, 2007.

F. McCarthy, N. Wang, G. B. Magee, B. Nanduri, M. Lawrence, E. Camon, D. Barrell,
D. Hill, M. Dolan, W. P. Williams, D. Luthe, S. Bridges, and S. Burgess. Agbase:
a functional genomics resource for agriculture. BMC Genomics, 7(1):229, 2006. doi:
10.1186/1471-2164-7-229. URL http://www.biomedcentral.com/1471-2164/7/229.

M Mirzaei, D Pascovici, B Atwell, and P Haynes. Differential regulation of aqualporins and
small gtpases proteins in rice leaves subjected to drought stress and recovery. Under review.

R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2008. URL http://www.R-project.
org. ISBN 3-900051-07-0.

Jia Ye, Lin Fang, Hongkun Zheng, Yong Zhang, Jie Chen, Zengjin Zhang, Jing Wang, Shengting
Li, Ruigiang Li, Lars Bolund, and Jun Wang. Wego: a web tool for plotting go annotations.
Nucleic Acids Research, 34:W293-W297, 2006. Web Server Issue.

12

http://www.biomedcentral.com/1471-2164/7/229
http://www.R-project.org
http://www.R-project.org

	Introduction
	Package contents
	Package use
	Generate some gene ontology files from scratch
	Process existing gene ontology files
	Compare annotation to a given reference
	Add abundance data
	Conclusions

