Precision Astrophysics with JWST and TOLIMAN space telescopes

> Prof Peter Tuthill University of Sydney

natureastronomy

The fingerprints of mass-loss

Lau et al NatAst 2022

nature

A PUSH FROM LIGHT

Expansion of dust shell harvests momentum from starlight.

Han, Tuthill et al Nature 2022

G

62

61

12

Firstly, start with leading edge, physically principled approaches...

Sparse Aperture Interferometry

Long Baseline Interferometry

2.20 μm (K_S)

... and this can take you places.

ASGARD beam combiner at VLTI

VAMPIRES and GLINT at Subaru telescope

Subaru Telescope 8.2m diameter optical/infrared National Astronomical Observatory of Japan Maunakea, Hawaii, 4139m elevation

VAMPIRES (USyd) Vis Imager

NIRISS AMI: THE JWST INTERFEROMETER

Thanks @ MMSM

The state

NIRISS AMI: RAW DATA

SPHERICAL (HOLY?) COW IN VACUO ...

THERE'S MANY A SLIP TWIXT THE CUP AND THE LIP ...

25h GTO program: charge bleeds out of the central pixel

Louis Desdoigts Be

DIFFERENTIABLE PHYSICS + STATISTICS

Webb James Physics Model

Simulate Data

Write simulation in Jax (/PyTorch/Julia), get exact gradients by automatic differentiation

Train deterministic physics models in conjunction with NNs, use HMC, variational inference, diffusion models...

FORWARD MODELING JWST/AMI

Pupil

Simulated PSF

PHASE RETRIEVAL WITH **J**LUX

Desdoigts, Pope, Dennis & Tuthill, 2023 •

JWST has a whole hardware wavefront sensor used every two days to measure & correct the mirror alignment

With *∂***Lux it is straightforward to** do phase retrieval and detector calibration simultaneously

NOISE FLOORS ALL THE WAY DOWN....

MAJOR NOISE FLOORS (All now modelled in ∂ Lux by Louis)

- The STSCI Pipeline adds noise
- Incorrect optical data in pipeline
- Fine tuning of optical figure
- **Brighter Fatter Effect**
- Other nonlinear effects lacksquare
- THIS ???

Some kind of periodic jitter as you read the detector out up the ramp?

304

Slope Index

Pixel ramp: 39, 45

Pixel ra

ELECTRONIC BUG

Periodic model with a few harmonics of 1024 fits beautifully

Finally now at the photon noise limit for AMI!

Residuals vs. Input

20

BOTTOM OF THE RABBIT HOLE? PDS 70!

Dori Blakely (UVic), priv comm – unpublished! •

ALMA (Benisty et al, 2021)

VLT/SPHERE (Haffert et al, 2019)

- 0.00

Max Charles et al, unpublished •

Max Charles, PhD student

IMAGING IO

Ephemeris

Getting to know the neighbours: Earth analogues in Alpha Centauri with the TOLIMAN space telescope

Peter Tuthill **Chris Betters** Connor Langford Karel Valenta Fred Crous Louis Desdoigts Max Charles Grace Piroscia Conaire Deagan Redyan Ahmed

Pete Worden Olivier Guyon Pete Klupar Kyran Grattan

Ben Montet

Kieran Larkin Gautam Vashisht Frans Snik David Doelman

Universiteit Leiden

BREAKTHROUGH

Ben Pope

Is there an Earth Analog in Alpha Cen? I Earth Mass, 0.5-2yr orbit, A or B Secondary Target: 61 Cygni (+others?) 12.5cm pathfinder for a 30cm space telescope Technology demonstrator for Astrometry

Telescope for Orbit Locus Interferometric Monitoring of our Astronomical Neighborhood

Habitable zones of Alpha Cen A (left) and B (right) in green, along with dynamical stability boundary (red dashed line)

Alpha Cen AB (= Rigel Kent + Toliman)

- Componets A, B (+ distant Proxima)
- Bright: 0 Mag + 1.3 Mag
- Nearest sun-like stars (more than factor 2!)
- Apparent 4" close approach: RV problematic
- I Earth Mass 2.4 µAs for A; 1.2 µAs for B
- With .3m area needs ~hours of integration (compared) to ~months for 12th mag ref star)
- Binary is near-equal (no contrast problem!)
- Unusual and Unique to have this system so close!

10cm Telescope fundamental (photon noise) limit: integration time required to obtain a given astrometric noise

The scale of the Instrumental Challenge

Hardware

VERY unorthodox optical system Stable, high performance telescope

- Excellent pointing (low jitter better than 1" per second image drift)
- Extreme mechanical and thermal stability required
- Challenges also for on-board data processing, downlink.
- Everything must fit within a cubesat form factor

HOW CAN WE MAKE THIS MEASUREMENT? (WITHIN A CUBESAT FORM FACTOR)

VERY unorthodox data handling Extreme performance Statistically principled

Software

• Data handling to extract signal from and tease out (many) systematics.

Optical distortions don't matter if they bend both your ruler and your object...

0

AN

Posteriors: Separation, field angle, flux ratio

POSTERIORS: ADDING WAVELENGTH, PLATE SCALE,

Program: TinyTol, Toliman, ...

TinyTol flew aboard CUAVA1

- 3U cubesat. ISS resupply deployed 2020
- 20mm aperture, f=15cm, 1 deg FoV
- Consumer-grade electronics
- Built, deployed, flown. No data.

TT instrument / Ray Trace

Aperture Optical Sciences

SiC Telescope

- Design has space heritage
- 130cm Primary Mirror
- F/10 custom prescription to match detector
- Pure Silicon Carbide structure
 - Low CTE, ideal for Toliman
- Deliver Q4 2024
- USYD developing mounting interface with piezo based tiptilt system for fine pointing

MECHANICAL INTERFACE & TIP TILT

Aperture Optical Sciences

- 16U spacecraft
 - X-Band downlink
 - Plenty of power
 - Advanced ADCS system*
 - Full CubeSat as a service model, to be integrated with Saber systems
- Contract signed Dec 22
- Biggest challenges
- are pointing and thermal control

Mission: basic parameters & status

This program aims for Flagship ultra-high precision science outcomes on a CubeSat budget. Despite innovative design, specifications are demanding. Mission Specs (all in LEO): (1) Launch 2026, 16 U cubesat SSO orbit in 2-3 year mission (2) Target astrometry (narrow-angle) is <1 micro-arcsec (3) Simultaneous Photmetry (10hz) and Spectroscopy (R~200) (4) All hardware components fabricated or in process (5) Integration into Bus in Sofia 2025

University of Sydney TOLIMAN team

Peter Tuthill

Fred Crous

Chris Betters

Louis Desdoigts

Connor Langford

Max Charles

Karel Valenta

Grace Piroscia

THE UNIVERSITY OF DNEY

THE UNIVERSITY OF QUEENSLAND AUSTRALIA

C

D

HA

