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Abstract

This paper develops an efficient direct integration method for pricing of the variable annuity (VA)

with guarantees in the case of stochastic interest rate. In particular, we focus on pricing VA with

Guaranteed Minimum Withdrawal Benefit (GMWB) that promises to return the entire initial in-

vestment through withdrawals and the remaining account balance at maturity. Under the optimal

(dynamic) withdrawal strategy of a policyholder, GMWB pricing becomes an optimal stochastic

control problem that can be solved using backward recursion Bellman equation. Optimal decision

becomes a function of not only the underlying asset but also interest rate. Presently our method is

applied to the Vasicek interest rate model, but it is applicable to any model when transition density

of the underlying asset and interest rate is known in closed-form or can be evaluated efficiently.

Using bond price as a numéraire the required expectations in the backward recursion are reduced

to two-dimensional integrals calculated through a high order Gauss-Hermite quadrature applied on

a two-dimensional cubic spline interpolation. The quadrature is applied after a rotational transfor-

mation to the variables corresponding to the principal axes of the bivariate transition density, which

empirically was observed to be more accurate than the use of Cholesky transformation. Numerical

comparison demonstrates that the new algorithm is significantly faster than the partial differential

equation or Monte Carlo methods. For pricing of GMWB with dynamic withdrawal strategy, we

found that for positive correlation between the underlying asset and interest rate, the GMWB

price under the stochastic interest rate is significantly higher compared to the case of deterministic

interest rate, while for negative correlation the difference is less but still significant. In the case

of GMWB with predefined (static) withdrawal strategy, for negative correlation, the difference in

prices between stochastic and deterministic interest rate cases is not material while for positive

correlation the difference is still significant. The algorithm can be easily adapted to solve similar

stochastic control problems with two stochastic variables possibly affected by control. Application

to numerical pricing of Asian, barrier and other financial derivatives with a single risky asset under

stochastic interest rate is also straightforward.

Keywords: Variable annuity, living and death benefits, stochastic interest rate, optimal stochastic

control, Guaranteed Minimum Withdrawal Benefit, Gauss-Hermite quadrature.
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1 Introduction

The world population is getting older fast with life expectancy raising to above 90 years in some coun-

tries. Longevity risk (the risk of outliving one’s savings) became critical for retirees. Variable annuity

(VA) with living and death benefit guarantees is one the products that can help to manage this risk.

It takes advantage of market growth and at the same time provides protection of the savings. VA

guarantees are typically classified as guaranteed minimum withdrawal benefit (GMWB), guaranteed

minimum accumulation benefit (GMAB), guaranteed minimum income benefit (GMIB), and guar-

anteed minimum death benefit (GMDB). A good overview of VA products and the development of

their market can be found in Bauer et al. (2008), Ledlie et al. (2008) and Kalberer and Ravindran

(2009). Insurers started to sell these types of products from the 1990s in United States. Later, these

products became popular in Europe, UK and Japan. The market of VAs is very large, for example,

sales of these contracts in United States between 2011 and 2013 averaged about $160 billion per year

according to the LIMRA (Life Insurance and Market Research Association) fact sheets.

For clarity and simplicity of presentation, in this paper we consider a VA contract with a very basic

GMWB guarantee that promises to return the entire initial investment through cash withdrawals

during the policy life plus the remaining account balance at maturity, regardless of the portfolio

performance. Thus even when the account of the policyholder falls to zero before maturity, GMWB

feature will continue to provide the guaranteed cashflows. GMWB allows the policyholder to withdraw

funds below or at the contractual rate without penalty and above the contractual rate with some

penalty. If the policyholder behaves passively and makes withdrawals at the contractual rate defined

at the beginning of the contract, then the behavior of the policyholder is called static. In this case the

paths of the wealth account can be simulated and a standard Monte Carlo (MC) simulation method

can be used for GMWB pricing. On the other hand if the policyholder optimally decides the amount

to withdraw at each withdrawal date, then the behavior of the policyholder is called dynamic. Under

the optimal withdrawal strategy, the pricing of variable annuities with GMWB becomes an optimal

stochastic control problem. This problem cannot be solved by a standard simulation-based method

such as the well known Least-Squares MC method introduced in Longstaff and Schwartz (2001). This

is because the paths of the underlying wealth process are altered by the optimal cash withdrawals

that should be found from the backward in time solution and the underlying wealth process cannot

be simulated forward in time. However, it should be possible to apply control randomization methods

extending Least-Square MC to handle optimal stochastic control problems with controlled Markov

processes recently developed in Kharroubi et al. (2014); though the accuracy and robustness of this

method for GMWB pricing has not been studied yet.

It is important to note that the fair fee for the VA guarantee obtained under the assumption

that the policyholders behave optimally to maximise the value of the guarantee is an important

benchmark because it is a worst case scenario for the contract writer. That is, under the no-arbitrage
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assumption, if the guarantee is perfectly hedged then the issuer will receive a guaranteed profit if the

policyholder deviates from the optimal strategy. Pricing under any other strategy will lead to smaller

fair fee. Of course, the strategy optimal in this sense may not be optimal to the policyholder under

his circumstances and preferences. On the other hand, secondary markets for equity linked insurance

products are growing and financial third parties can potentially generate guaranteed profit through

hedging strategies from VA guarantees which are not priced according to the worst case assumption

about the optimal strategies. There are a number of studies considering these aspects and we refer

the reader to Shevchenko and Luo (2016) for discussion of this topic and references therein.

Pricing of VA with a GMWB feature assuming constant interest rate has been considered in many

papers over the last decade. For example, Milevsky and Salisbury (2006) developed a variety of

methods for pricing GMWB products. In their static withdrawal approach the GMWB product is

decomposed into a Quanto Asian put option plus a generic term-certain annuity. They also considered

pricing when the policyholder can terminate (surrender) the contract at the optimal time, which leads

to an optimal stopping problem akin to pricing an American put option. Bauer et al. (2008) presents

valuation of variable annuities with multiple guarantees via a multidimensional discretization approach

in which the Black-Scholes partial differential equation (PDE) is transformed to a one-dimensional

heat equation and a quasi-analytic solution is obtained through a simple piecewise summation with

a linear interpolation on a mesh. Dai et al. (2008) developed an efficient finite difference algorithm

using the penalty approximation to solve the singular stochastic control problem for a continuous

time withdrawal model under the optimal withdrawal strategy and also finite difference algorithm

for discrete time withdrawal. Their results show that the GMWB values from the discrete time

model converge fast to those of the continuous time model. Huang and Forsyth (2012) did a rigorous

convergence study of this penalty method for GMWB, and Huang and Kwok (2014) deduce various

asymptotes for the free boundaries that separate different withdrawal regions in the domain of the

GMWB pricing model. Chen and Forsyth (2008) present an impulse stochastic control formulation

for pricing variable annuities with GMWB under the optimal policyholder behavior, and develop a

numerical scheme for solving the Hamilton-Jacobi-Bellman variational inequality for the continuous

withdrawal model as well as for pricing the discrete withdrawal contracts.

More recently, Azimzadeh and Forsyth (2014) prove the existence of an optimal bang-bang control

for a Guaranteed Lifelong Withdrawal Benefits (GLWB) contract. In particular, they find that the

holder of a GLWB can maximize the contract writer’s losses by only performing non-withdrawal,

withdrawal at exactly the contract rate or full surrender. This dramatically reduces the optimal

strategy space. However, they also demonstrate that the related GMWB contract is not convexity

preserving, and hence does not satisfy the bang-bang principle other than in certain degenerate cases.

GMWB pricing under bang-bang strategy was studied in Luo and Shevchenko (2015c), and Huang and

Kwok (2015) have developed a regression-based MC method for pricing GLWB. For GMWB under the

optimal withdrawal strategy, the numerical evaluations have been developed by Dai et al. (2008) and
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Chen and Forsyth (2008) using finite difference PDE methods and by Luo and Shevchenko (2015a)

using direct integration method. Pricing of VAs with both GMWB and death benefit (both under

static and dynamic regimes) has been developed in Luo and Shevchenko (2015b).

Some withdrawals from the VA type contracts can also attract country specific government ad-

ditional tax and penalty. Recently, Moenig and Bauer (2015) demonstrated that including taxes

significantly affects the value of withdrawal guarantees in variable annuities producing results in line

with empirical market prices. These matters are not considered in our paper but can be handled by

the numerical methodology developed here.

In the literature on pricing GWMB, interest rate is typically assumed to be constant. Few papers

considered the case of stochastic interest rate. In particular, Peng et al. (2012) considered pricing

GMWB under the Vasicek stochastic interest rate in the case of static withdrawal strategy; they

derived the lower and upper bounds for the price because closed-form solution is not available due

to withdrawals from the underlying wealth account during its stochastic evolution. Bacinello et al.

(2011) considered stochastic interest rate and stochastic volatility models under the Cox-Ingersoll-Ross

(CIR) models. They developed pricing in the case of static policyholder behavior via the ordinary MC

method and mixed valuation (where the policyholder is semiactive and can decide to surrender the

contract at any time before the maturity) is performed by the Least-Squares MC. Forsyth and Vetzal

(2014) considered modelling stochasticity in the interest rate and volatility via the Markov regime

switching models and developed pricing under the static and dynamic withdrawal strategies. Under

this approach, the interest rate and volatility are assumed to have the finite number of possible values

and their evolution in time is driven by the finite state Markov chain variable representing possible

regimes of the economy.

In this paper, we develop direct integration method for pricing of VAs with guarantees under the

dynamic and static withdrawal strategies when the interest rate follows the Vasicek stochastic interest

rate model. In the case of general stochastic processes for the underlying asset and interest rate,

numerical pricing can be accomplished by PDE methods that become slow and difficult to implement

in the case of two and more underlying stochastic variables. Our method is developed for the case

when the bivariate transition density of the underlying asset and interest rate are known in closed-form

or can be evaluated efficiently. That is, it should be possible to apply this method to the case of, for

example, CIR stochastic interest rate model. Using change of numéraire technique with bond price as

a numéraire, the required expectations in the backward recursion of the stochastic control solution are

reduced to the two-dimensional integrals calculated through a high order Gauss-Hermite quadrature

applied on a two-dimensional cubic spline interpolation. The quadrature is applied after rotational

transformation to the variables corresponding to the principal axes of the bivariate transition density

which appeared to be more efficient than the use of the standard Cholesky transformation to the

independent variables. For convenience, hereafter we refer this new algorithm as GHQC (Gauss-

Hermite quadrature on cubic spline). This allows us to get very fast and accurate results for prices

4



of a typical GMWB contract on the standard desktop computer. Previously, in a similar spirit, we

developed algorithm for the case of one underlying stochastic risky asset and non-stochastic interest

rate for pricing exotic options in Luo and Shevchenko (2014) and optimal stochastic control problems

for pricing GMWB in Luo and Shevchenko (2015a).

For clarity of presentation, we focus on pricing of a VA with a very basic GMWB structure. How-

ever, the developed methodology can be easily applied to pricing other VA guarantees, see Shevchenko

and Luo (2016) for general formulation of these contracts as the optimal stochastic control problem.

Finally we would like to mention that the presented algorithm can be easily adapted to solve similar

stochastic control problems with two state variables possibly affected by control. Also, applications to

pricing Asian, barrier and other financial derivatives with a single underlying asset under stochastic

interest rate are straightforward.

In the next section we present the underlying stochastic model and describe the GMWB contract.

Solution as an optimal stochastic control is presented in Section 3. Section 4 gives a short descrip-

tion of the well known PDE approaches that can be used for pricing. Section 5 presents our direct

integration GHQC algorithm for pricing of GMWB contracts under both static and dynamic policy-

holder behaviors. In Section 6, numerical results for the fair prices and fair fees under a series GMWB

contract conditions are presented, in comparison with the results from the finite difference method

solving corresponding two-dimensional PDEs. The comparison demonstrates that the new algorithm

produces results very close to those of the finite difference PDE method, but at the same time it is

significantly faster. Also, the results demonstrate that stochastic interest rate has significant impact

on price analysed in Section 6. Concluding remarks are given in Section 7. Useful closed-form formulas

for the required transition densities, bond and vanilla prices are derived in Appendix A.

2 Model

Following the existing literature, we assume no-arbitrage market with respect to the financial risk

and thus the price of the VA with GMWB can be expressed as an expectation with respect to the

risk-neutral probability measure for the underlying risky asset. Also, there is no mortality risk – in

the event of policyholder death, the contract is maintained by the beneficiary. Death benefit feature

commonly offered to the policyholders in addition to GMWB can be easily included into pricing

methodology as described in Luo and Shevchenko (2015b).

Let (Ω,F ,Q) be a probability space with sample space Ω, filtration F = {Ft : t ≥ 0} (sequence

of σ-algebras Ft increasing with time t on Ω) and risk-neutral probability measure Q such that all

discounted asset price processes are Q-martingales, i.e. payment streams can be valuated as expected

discounted values. Existence of measure Q implies that the financial market is arbitrage-free and

uniqueness of such measure implies that the market is complete. This means that the cost of a

portfolio replicating VA contract with guarantee is given by its expected discounted value under Q.
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This is a typical set up for pricing of financial derivatives, for a good textbook in this area we refer

the reader to e.g. Björk (2009).

Consider the joint dynamics for the reference portfolio of assets S(t), e.g. a mutual fund, under-

lying the contract and the stochastic interest rate r(t), under the risk-neutral probability measure Q,

governed by

dS(t)

S(t)
= r(t)dt+ σS

(
ρdB1(t) +

√
1− ρ2dB2(t)

)
,

dr(t) = κ(θ − r(t))dt+ σrdB1(t).

(1)

Here, B1(t) and B2(t) are independent standard Wiener processes, ρ is the correlation coefficient

between S(t) and r(t) processes, and σS is the asset volatility parameter. The process for the interest

rate r(t) is the well known Vasicek model with constant parameters κ, θ and σr. For simplicity of

notation we assume that model parameters are constant in time though the results can be generalized

to the case of time dependent parameters. We consider time discretization 0 = t0 < t1 < · · · < tN = T

corresponding to the contract withdrawal dates, where t0 = 0 is today and T is the contract maturity.

For this stochastic interest rate model, the price of a zero coupon bond P (t, T ) at time t with

maturity T , can be found in closed-form

P (t, T ) := EQ
t

[
e−

∫ T
t r(u)du

]
= eAt,T−r(t)Bt,T , (2)

Bt,T =
1

κ

(
1− e−κ(T−t)

)
, At,T =

(
θ − σ2

r

2κ2

)
(Bt,T + t− T )− σ2

r

4κ
B2
t,T ,

where EQ
t [·] denotes expectation with respect to the probability measure Q conditional on the infor-

mation available at time t. Corresponding stochastic dynamics is easily obtained from (2) using Itô’s

calculus to be
dP (t, T )

P (t, T )
= r(t)dt− σrBt,TdB1(t). (3)

Solution for the process (1), which is a bivariate Normal distribution for (lnS(t), r(t)) given (S(0), r(0)),

and the bond price formula are derived in Appendix A.

Consider the following VA contract with a basic GMWB often used in research studies which is

convenient for benchmarking. The actual products may have extra features but these can be easily

incorporated in the model and numerical algorithm developed in this paper.

• The premium paid by the policyholder upfront at t0 is invested into the reference portfolio/risky

asset S(t). The value of this portfolio (hereafter referred to as wealth account) at time t is

denoted as W (t), so that the upfront premium paid by the policyholder is W (0). GMWB guaran-

tees the return of the premium via the withdrawals γn ≥ 0 allowed at times tn, n = 1, 2, . . . , N .

Let Nw denote the number of withdrawals per annum. The total of withdrawals cannot ex-

ceed the guarantee W (0) and withdrawals can be different from the contractual (guaranteed)

6



withdrawal Gn = W (0)(tn − tn−1)/T , with penalties imposed if γn > Gn. Denote the annual

contractual rate as g := 1/T . Then the wealth account W (t) evolves as

W (t−n ) =
W (t+n−1)

S(tn−1)
S(tn)e−α∆n ,

W (t+n ) = max
(
W (t−n )− γn, 0

)
, n = 1, 2, . . . , N,

(4)

where ∆n = tn − tn−1 and α is the annual fee continuously charged by the contract issuer. If

the account balance becomes zero or negative, then it will stay zero till maturity. The process

for W (t) within (tn−1, tn) is the same as the process for the underlying asset S(t) in (1) except

that the drift term r(t) is replaced by r(t)− α.

• Denote the value of the contract guarantee at time t as A(t), hereafter referred to as guarantee

account, with A(0) = W (0). Hereafter, denote the time immediately before tn (i.e. before

withdrawal) as t−n , and immediately after tn (i.e. after withdrawal) as t+n and let all functions

discontinuous at tn be right-continuous with finite left limit. The guarantee balance evolves as

A(t+n ) = A(t−n )− γn = A(t+n−1)− γn, n = 1, 2, . . . , N (5)

with A(T+) = 0, i.e. W (0) = A(0) ≥ γ1 + · · · + γN and A(t+n−1) ≥
∑N

k=n γk. The account

balance A(t) remains unchanged within the interval (tn−1, tn), n = 1, 2, . . . , N .

• The cashflow received by the policyholder at the withdrawal time tn is given by

Cn(γn) =

{
γn, if 0 ≤ γn ≤ Gn,
Gn + (1− β)(γn −Gn), if γn > Gn,

(6)

where Gn is the contractual withdrawal and β ∈ [0, 1] is the penalty coefficient applied to the

portion of withdrawal above Gn.

• Let Qt(W, r,A) be a price of the VA contract with GMWB at time t, when W (t) = W , r(t) = r,

A(t) = A. At maturity, the policyholder takes the maximum between the remaining guarantee

account net of penalty charge and the remaining balance of the wealth account, i.e. the final

payoff is

Qt−N
(W, r,A) = max (W,CN (A)) . (7)

During the contract, the policyholder receives cashflows Cn(γn), n = 1, 2, . . . , N − 1 and the final

payoff at maturity. Denote the Markov state vector at time t as Vt = (W (t), r(t), A(t)) and V =

(Vt)0≤t≤T . Given the withdrawal strategy γ = (γ1, . . . , γN−1), the present value of the total contract

payoff is

H0(V ,γ) = e−
∫ T
0 r(τ)dτ max

(
W (T−), CN (A(T−))

)
+

N−1∑
n=1

e−
∫ tn
0 r(τ)dτCn(γn). (8)
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Under the above assumptions/conditions, the fair no-arbitrage value of the contract for the pre-defined

(static) withdrawal strategy γ can be calculated as

Q0 (V0) = EQ
t0

[H0(V ,γ)] . (9)

Under the optimal (dynamic) withdrawal strategy, where the decision on withdrawal amount γn

is based upon the information Ftn available at time tn, the fair contract value is

Q0 (V0) = sup
γ

EQ
t0

[H0(V ,γ)] , (10)

where γ1, . . . , γN−1 are the control variables (withdrawals) chosen to maximize the expected value of

discounted cashflows and supremum is taken over all admissible strategies. Note that the withdrawal

γn := γn(Vt−n ) at time tn is a function of the state variable Vt−n , i.e. it can be different for different

realizations of Vt−n . Moreover the control variable γn affects the transition law of the underlying wealth

process from t−n to t−n+1. Any strategy different from optimal is sub-optimal and leads to a smaller

price.

The today’s value of the contract Q0(V0) is a function of a fee α charged by the issuer for GMWB

guarantee. The fair fee value of α to be charged for providing GMWB feature corresponds to Q0(V0) =

W (0). That is, once a pricing of Q0(V0) for a given value of α is developed, then a numerical root

search algorithm is required to find the fair fee.

It is important to note that the fair fee for the VA guarantee obtained under the assumption that

the policyholders behave optimally to maximise the value of the guarantee is a worst case scenario for

the contract writer. If the guarantee is perfectly hedged then the issuer will receive a guaranteed profit

if the policyholder deviates from the optimal strategy. Pricing under any other strategy will lead to

smaller fair fee. Of course, the strategy optimal in this sense may not be optimal to the policyholder

under his circumstances and preferences but it is an important benchmark.

In practice, there will be a residual risk due to discrete in time hedging and incompletenesses

of financial market that can be handled by adding extra loading on the price under the actuarial

approach or adjusting risk premium under the no-arbitrage financial mathematics approach so that

the risk of hedging error loss will not exceed the required level. These adjustments depend on the risk

management strategy for the product and will not be considered here; for discussion and references,

see e.g. Shevchenko and Luo (2016).

Remark 2.1 Note that we started our modelling with assumption of the stochastic model (1) under

the risk-neutral probability measure Q. For risk management purposes, one might be interested to start

with the process under the real (physical) probability measure P,

dS(t)

S(t)
= µ∗(t)dt+ σS

(
ρdB∗1(t) +

√
1− ρ2dB∗2(t)

)
,

dr(t) = u∗(r, t)dt+ σrdB∗1(t),
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with independent standard Wiener processes B∗1(t) and B∗2(t), and derive corresponding risk-neutral

process (1) for the VA guarantee and bond price valuation. This can be done in the usual way by

forming a portfolio Πt = −Ut(W, r,A) + ∆S×S+ ∆P ×P (t, T ), where Ut(W, r,A) := Qt(W, r,A)−W
is the value of VA guarantee, ∆S is the number of units of S(t) and ∆P is the number of units of bond

P (t, T ). Then calculate the change of portfolio dΠt using Ito’s lemma, and set

∆S =
W

S

∂Ut(W, r,A)

∂W
and ∆P =

∂Ut(W, r,A)/∂r

∂P (t, T )/∂r

to eliminate random terms so that the portfolio earns risk free interest rate dΠt = rΠtdt. This leads

to a PDE (18) for Qt(W, r,A) and using Feynman-Kac theorem one can establish that the process

corresponding to this PDE is the risk-neutral process (1). For details, see e.g. (Shevchenko and Luo,

2016, section 6.5) and textbook (Wilmott, 2006, sections 30.3 and 33.6). It is important to note that

this procedure will also introduce the market price of interest rate risk λ(r, t) such that the drift of

the interest rate risk-neutral process is u∗(r, t)− λ(r, t)σr; then under the assumption that λ(r, t) and

u∗(r, t) are linear functions of r one can write the risk-neutral process for r as in (1).

3 Pricing GMWB as optimal stochastic control

Given that the discrete in time state vector Vt−n = (W (t−n ), r(t−n ), A(t−n )), n = 0, 1, . . . , N is a Markov

process, it is easy to recognize that the contract valuation under the optimal withdrawal strategy (10)

is the optimal stochastic control problem for controlled Markov process that can be solved recursively

to find the contract value Qt−n (·) at t−n , n = N − 1, . . . , 0 via the well known backward induction

Bellman equation

Qt−n (W (t−n ), r(tn), A(t−n )) = sup
0≤γn≤A(t−n )

(
Cn(γn)

+EQ
t+n

[
e−

∫ tn+1
tn

r(τ)dτQt−n+1

(
W (t−n+1), r(tn+1), A(t−n+1)

) ∣∣∣∣W (t+n ), r(tn), A(t+n )

])
(11)

starting from the final condition Qt−N
(W, r,A) = max (W,CN (A)). For a good textbook treatment

of stochastic control problem in finance, see Bäuerle and Rieder (2011). Static pricing (9) under the

predefined strategy γ can be also done using the above backward induction with supremum removed.

For each tn, n = 1, . . . , N − 1, this backward recursion (11) involves calculation of the expectation

Qt+n (W, r,A) = EQ
t+n

[
e−

∫ tn+1
tn

r(τ)dτQt−n+1

(
W (t−n+1), r(tn+1), A(t−n+1)

)
|W, r,A

]
(12)

and application of the jump condition across tn

Qt−n (W, r,A) = max
0≤γn≤A

[Cn(γn) +Qt+n (max(W − γn, 0), r, A− γn)]. (13)

Calculating expectation (12) is difficult as it would require three-dimensional integration with re-

spect to the joint distribution of three random variables W (t−n+1), r(tn+1) and Y (tn+1) =
∫ tn+1

tn
r(u)du

9



conditional on W (t+n ) and r(tn); note that variable A(t) does not change within (tn, tn+1). Actually

the required 3d distribution can be found in closed-form in the case of stochastic process (1) considered

here, see Appendix A, which is useful for validation of calculations in the case of static withdrawals

via direct simulation of process (1). However if we change numéraire from the money market account

M(t) = e
∫ t
0 r(τ)dτ to the bond P (tn, tn+1) with maturity tn+1, i.e. change probability measure with

Radon-Nikodym derivative

Zt =
dQ̃
dQ

∣∣∣∣∣
Ft

=
M(tn)

M(t)

P (t, tn+1)

P (tn, tn+1)
, t ∈ [tn, tn+1], (14)

then the expectation (12) simplifies to the two-dimensional integration

EQ
t+n

[
e−

∫ tn+1
tn

r(u)duQt−n+1

(
W (t−n+1), r(tn+1), ·

) ∣∣∣∣ · ]
= P (tn, tn+1)EQ̃

t+n

[
Qt−n+1

(
W (t−n+1), r(tn+1), ·

) ∣∣∣∣ · ] , (15)

where EQ̃
tn [·] is expectation under the new probability measure Q̃. The process for Zt is easily obtained

from the process (3) for the bond price P (t, tn+1) as

dZt = φ(t)ZtdB1, φ(t) = −σrBt,tn+1 .

Then, using Girsanov theorem the required transformation to the Wiener process is B1(t) = φ(t)dt+

dB̃1(t), and the processes under the new measure Q̃ for t ∈ (tn, tn+1) are

dS(t)/S(t) = (r(t) + σSρφ(t))dt+ σS

(
ρdB̃1(t) +

√
1− ρ2dB̃2(t)

)
,

dr(t) = κ
(
θ̃(t)− r(t)

)
dt+ σrdB̃1(t); θ̃(t) = θ +

σr
κ
φ(t)

(16)

with B̃1(t) and B̃2(t) independent Wiener processes. Note that φ(t) is volatility of the bond P (t, tn+1),

see (3). Solution for this process, which is a bivariate Normal distribution for (lnS(t), r(t)) given

(S(0), r(0)), is derived in Appendix A. For a good textbook treatment of change of numéraire tech-

nique, see (Björk, 2009, chapter 26). It is important to note that for different time steps, the change

of measure is based on bonds of different maturities.

Assuming the probability density function ofW (t−n+1) and r(tn+1) atW (t−n+1) = w′ and r(tn+1) = r′

conditional on W (t+n ) = w and r(tn) = r under the new probability measure Q̃ is known in closed-form

pn+1(w′, r′|w, r), the required expectation (15) can be evaluated as

Qt+n (w, r,A) = P (tn, tn+1)

∫ ∫
pn+1

(
w′, r′|w, r

)
Qt−n+1

(w′, r′, A)dw′dr′. (17)

In the case of underlying stochastic process (1) the transition density pn+1(w′, r′|w, r) is known in

closed-form and we will use the Gauss-Hermite quadrature for evaluation of the above integration

over an infinite domain. The required continuous function Qt(W, r,A) will be approximated by a

10



two-dimensional cubic spline interpolation on a discretized grid in the (W, r) space. Note, in general,

a three-dimensional interpolation in the (W, r,A) space is required, but one can manage to avoid

interpolation in A by “smart” numerical manipulation setting the jump amounts in A spaced in such

a way that the A reduced after jump is always on a grid point. Below we discuss details of the algorithm

of the numerical integration of (17) using Gauss-Hermite quadrature on a cubic spline interpolation,

followed by the application of jump condition (13).

Note, for simple options/contracts where payoff depends on the underlying asset only and is received

at the contract maturity, a change of numéraire can remove stochastic interest rate dimension from

pricing, effectively reducing numerical problem to the deterministic interest rate case. However, for

pricing GMWB either static or dynamic cases, the additional dimension in the interest rate r cannot

be avoided due to withdrawals (jump conditions) during the contract life.

4 Numerical valuation of GMWB via PDE

In the case of continuous in time withdrawal, following the procedure of deriving the Hamilton-Jacobi-

Bellman (HJB) equations in stochastic control problems, the value of the VA contract with guarantee

under the optimal withdrawal is found to be governed by a two-dimensional PDE in the case of

deterministic interest rate; see Milevsky and Salisbury (2006), Dai et al. (2008) and Chen and Forsyth

(2008), that will become three-dimensional PDE in the case of stochastic interest rate. For discrete

withdrawals, the governing PDE in the period between withdrawal dates is one dimension less than the

continuous case because the guarantee account balance A(t) remains unchanged between withdrawals,

similar to the Black-Scholes equation, with jump conditions at each withdrawal date to link the prices

at the adjacent periods. In particular, the contract value Qt(W, r,A) at t ∈ (tn−1, tn) satisfies

∂Qt
∂t

+
σ2
S

2
W 2∂

2Qt
∂W 2

+ (r − α)W
∂Qt
∂W

+
σ2
r

2

∂2Qt
∂r2

+ (θ − r)∂Qt
∂r

+ ρσSσrW
∂2Qt
∂W∂r

− rQt = 0, (18)

that can be solved numerically using e.g. Crank-Nicholson finite difference scheme for each A back-

ward in time with jump condition (13) applied at withdrawal dates tn. A more efficient and very

popular class of algorithms is the alternating direction implicit (ADI) method, among which a stand-

out variation is the so called hopscotch method, introduced by Gourlay (1970) by a reformulation of an

idea of Gordon (1965). It was shown that hopscotch method was an ADI process with a novel way of

decomposing the problem into simpler parts. The general idea is to solve alternative points explicitly

and then employ an implicit scheme to solve for the remaining points explicitly. The original hop-

scotch method cannot be applied readily to equations with mixed derivatives without introducing a

certain amount of implicitness. Gourlay and McKee (1977) suggested two techniques for dealing with

the mixed derivative – ordered odd-even hopscotch and line hopscotch. Numerical tests in Gourlay

and McKee (1977) showed that the line hopscotch performed best for both constant and variable

coefficient parabolic equation cases, in comparison with the ordered odd-even hopscotch and a locally

11



one dimensional (LOD) methods.

In this work, for numerical validation of our GHQC algorithm, we have implemented the line

hopscotch method. In brief, assuming the parabolic equation is discretized with the finite difference

grid points (xi, yj , tn), the line hopscotch method first explicitly evaluates the solution at those points

which have (n+ j) even, and then solves implicitly for those points with (n+ j) odd. The alternative

value of j for a given time step n gives a tri-diagonal set of equations, provided the finite difference

operators are chosen in a certain manner. For details, see Gourlay and McKee (1977).

5 GHQC direct integration method

In this section we present details of the algorithm for numerical integration (17) using the Gauss-

Hermite quadrature on a cubic spline interpolation, followed by the application of jump condition

(13), referred to as GHQC.

5.1 Algorithm structure

Our approach relies on computing expectations (17) in a backward time-stepping between withdrawal

dates through a high order Gauss-Hermite integration quadrature applied on a cubic spline interpola-

tion. It is easier to implement and computationally faster than PDE method in the case of transition

density of underlying stochastic variables known in closed-form. For a given guarantee account vari-

able A within (tn, tn+1), the price Qt+n (W, r,A) can be numerically evaluated using (17). For now we

leave details of computing (17) to the next section and assume it can be done with sufficient accuracy

and efficiency. Starting from a final condition at t = t−N (just immediately before the final withdrawal),

a backward time stepping using (17) gives solution at t = t+N−1. Applying jump condition (13) to the

solution at t = t+N−1 we obtain the solution at t = t−N−1 from which further backward time stepping

gives us solution at t0 to find Q0(W (0), r(0),W (0)). In order to apply the jump condition at each

withdrawal date, the solution has to be found for many different levels of A. The numerical algorithm

takes the following key steps.

• Step 1. Generate an auxiliary finite grid 0 = A1 < A2 < · · · < AJ = W (0) to track solutions

for different values of the guarantee account A. Discretize the wealth account W space as

W0,W1, . . . ,WM and the interest rate r space as r0, r1, . . . , rK .

• Step 2. At t = t−N , initialize Qt−N
(W, r,A) with a given continuous payoff function at maturity

(7) required by the following step of integration.

• Step 3. For t = t+N−1, evaluate integration (17) for each node point (Wm, rk, Aj) and using a one-

dimensional cubic spline interpolation in W to obtain the continuous function Qt+N−1
(W, rk, Aj)

required by the following step of applying the jump condition.

12



• Step 4. Apply the jump condition (13) for all possible withdrawals γN−1 and find the withdrawal

maximizing Qt−N−1
(Wm, rk, Aj) for all grid points j = 1, . . . , J , k = 0, . . . ,K and m = 0, . . . ,M .

Use two-dimensional cubic spline interpolation to obtain continuous function Qt−N−1
(W, r,Aj)

required by the next step of integration.

• Step 5. Repeat Step 3 and Step 4 for t = tN−2, tN−3, . . . , t1.

• Step 6. Evaluate integration (17) for the backward time step from t−1 to t0 for the single point

(W (0), r(0), A(0)) to obtain solution Q0(W (0), r(0), A(0)) for the contract price at t = t0.

5.2 Numerical evaluation of the expectation

Similar to a finite difference scheme, we discretize the wealth space domain [Wmin,Wmax] as Wmin =

W0 < W1 < · · · < WM = Wmax , where Wmin and Wmax are the lower and upper boundary respectively.

Similarly, the interest rate space is discretized as rmin = r0 < r1 < . . . < rK = rmax , where rmin and

rmax are the bounds for the interest rate.

For pricing GMWB, due to the finite reduction of W at each withdrawal date, we have to consider

the possibility of zero W , thus the lower bound Wmin = 0. The upper bound is set sufficiently far from

the initial value at time zero W (0). In general for both W and r dimensions, the proper choice of the

lower and upper bounds is guided by the joint distribution of lnS(T ) and r(T ), derived in Appendix

A, to ensure that the probability for the random process to go beyond the bounds is immaterial.

The idea is to find the contract values at all grid points at each time step (t+n−1, t
−
n ) through

integration (17), starting at maturity t = t−N . At each time step we evaluate the integration (17) for

every grid point by a high accuracy numerical quadrature.

Under the new probability measure Q̃, the process for lnW (t) and r(t) between the withdrawal

dates is a simple Gaussian process given by (4) and (16), where the conditional joint density of

(lnW (t−n ), r(tn)) given lnW (t+n−1) = x∗, r(tn−1) = r∗ is a bivariate Normal density function, as shown

in Appendix A, with the mean, variance and covariance given by

µr(r
∗) : = mean(r(tn)) = r∗e−κ∆n +

(
θ − σ2

r

κ2

)
bn +

σ2
r

2κ2
an; (19a)

τ2
r : = var(r(tn)) =

σ2
r

2κ
an; (19b)

µx(x∗, r∗) : = mean(lnW (t−n )) = x∗ +
bn
κ

(
r∗ +

bnσ
2
r

2κ2

)
+

(
θ − σ2

r

κ2

)(
∆n −

bn
κ

)
(19c)

− ρσSσr
κ2

(κ∆n − bn)−
(
α+

1

2
σ2
S

)
∆n; (19d)

τ2
x : = var(lnW (t−n )) = σ2

S∆n +
σ2
r

2κ3
(2κ∆n − 4bn + an) +

2ρσSσr
κ2

(κ∆n − bn) ; (19e)

ρxr : =
cov(lnW (t−n ), r(tn))

τxτr
, cov(lnW (t−n ), r(tn)) =

ρσSσrbn
κ

+
σ2
r

2κ2
(2bn − an), (19f)
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where bn = 1 − e−κ∆n , an = 1 − e−2κ∆n and ∆n = tn − tn−1. For simplicity, here we omit time step

index n in notation for the means and covariances.

Thus the density of Y1 = (lnW (t−n ) − µx)/τx and Y2 = (r(tn) − µr)/τr is the standard bivariate

Normal with zero means, unit variances, and correlation ρxr. If we apply the change of variables

Z1 =
Y1√

2(1− ρ2
xr)

, Z2 =
Y2√

2(1− ρ2
xr)

(20)

the integration (17) becomes

Qt+n−1
(W, r,A)

= P (tn−1, tn)

√
1− ρ2

xr

π

∫ +∞

−∞

∫ +∞

−∞
e−z

2
1−z22−2ρxrz1z2Q

(Z)

t−n
(z1, z2, A)dz1dz2

(21)

which has the form suitable for integration using the Gauss-Hermite quadrature. Here, Q
(Z)
t (·) denotes

Qt(·) as a function of Z1 and Z2 after transformation from W and r.

For an arbitrary one-dimensional function f(x), the Gauss-Hermite quadrature is applied as∫ +∞

−∞
e−x

2
f(x)dx ≈

q∑
i=1

λ
(q)
i f(ξ

(q)
i ), (22)

where q is the order of the Hermite polynomial, ξ
(q)
i , i = 1, 2, . . . , q are the roots of the Hermite

polynomial Hq(x), and the associated weights λ
(q)
i are given by

λ
(q)
i =

2q−1q!
√
π

q2
(
Hq−1(ξ

(q)
i )
)2 .

This approximation is exact when f(x) can be represented as polynomial of the order up to 2q − 1.

In general, the abscissas ξ
(q)
i and the weights λ

(q)
i for the Gauss-Hermite quadrature for a given order

q can be readily computed, e.g. using functions in Press et al. (1992), or available in precalculated

tables.

Decomposing the two-dimensional integration in (21) into nested one-dimensional integration and

applying the one-dimensional Gauss-Hermite quadrature to each of the variable, we obtain∫ +∞

−∞

∫ +∞

−∞
e−z

2
1−z22−2ρxrz1z2Q

(Z)

t−n
(z1, z2, A)dz1dz2

≈
q1,q2∑

i=1,j=1

λ
(q1)
i λ

(q2)
j e−2ρxrξ

(q1)
i ξ

(q2)
j Q

(Z)

t−n
(ξ

(q1)
i , ξ

(q2)
j , A).

(23)

Note, in general, different orders q1 and q2 can be used. For example we might let q1 > q2 to take into

consideration that the value function Q
(Z)
t (z1, z2, ·) changes more rapidly with z1 than with z2, thus

making the quadrature points more efficiently assigned to the variables.

Unfortunately, the numerical integration (23) is not efficient due to presence of the factor e−2ρxrz1z2 ,

when there is a non-zero correlation between stock market and the interest rate. This can be improved
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by transformation to independent random variables (Z1,Z2) using the standard Cholesky transforma-

tion

Y1 =
√

2Z1, Y2 =
√

2(ρxrZ1 +
√

1− ρ2
xrZ2). (24)

However, we observed that more accurate results are obtained by a transformation to independent

variables (Z1, Z2) corresponding to the principal axis of the joint density, which can be done using a

matrix spectral decomposition

Y1 =
√

2(aZ1 + bZ2), Y2 =
√

2(bZ1 + aZ2), (25)

where

a =
1

2
(
√

1 + ρxr +
√

1− ρxr), b =
1

2
(
√

1 + ρxr −
√

1− ρxr).

Using transformation (25), not only the cross term in the density disappears, but also it is standard-

ized for applying the Gauss-Hermite quadrature. Now, in terms of the new variables (Z1, Z2), the

integration (23) changes to a simpler but more accurate approximation∫ +∞

−∞

∫ +∞

−∞
e−z

2
1−z22Q

(Z)

t−n
(z1, z2, A)dz1dz2 ≈

q1∑
i=1

q2∑
j=1

λ
(q1)
i λ

(q2)
j Q

(Z)

t−n

(
ξ

(q1)
i , ξ

(q2)
j , A

)
. (26)

If we apply the change of variable and the Gauss-Hermite quadrature (26) as described above

to every grid point (Wm, rk, Aj), m = 0, 1, . . . ,M , k = 0, 1, . . . ,K and j = 0, 1, . . . , J , i.e. let

W (t+n−1) = Wm, r(t+n−1) = rk and A = Aj , then the contract values at time t = t+n−1 for all the grid

points can be evaluated.

As is commonly practiced, we select the working domain in the asset space to be in terms of

X = ln(W/W (0)), i.e. we set Xmin = ln(Wmin/W (0)) and Xmax = ln(Wmax/W (0)). The domain

[Xmin, Xmax] is uniformly discretised with step δX = (Xmax−Xmin)/M to yield the grid Xm = Xmin +

mδX, m = 0, . . . ,M . The grid points Wm, m = 0, 1, . . . ,M , are then given by Wm = W (0) exp(Xm).

The domain [rmin, rmax] is also uniformly discretised with step δr = (rmax − rmin)/K to yield the grid

rk = rmin + kδr, k = 0, . . . ,K.

For each grid point (Xm, rk), the contract value at time t+n−1 can be expressed as the weighted sum

of some contract values at time t−n . Specifically, from (17), (25) and (26) we have

Qt+n−1
(Wm, rk, A) ≈ P (tn−1, tn)

π

q1,q2∑
i=1,j=1

λ
(q1)
i λ

(q2)
j Qt−n (wijkm, rijk, A), (27)

wijkm = exp
(√

2τx

(
aξ

(q1)
i + bξ

(q2)
j

)
+ µx(Xm + lnW (0), rk)

)
,

rijk =
√

2τr

(
bξ

(q1)
i + aξ

(q2)
j

)
+ µr(rk).

(28)

We found that it is more efficient to let q1 > q2. This is because a > |b|, i.e. Z1 contributes to W

more than Z2, and thus assigning a larger number of quadrature points to Z1 is more efficient.
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5.3 Cubic spline interpolations for integration and jump condition

At time step (t+n−1, t
−
n ), the contract value at t = t−n for any given A is known only at the grid points

(Wm, rk), m = 0, . . . ,M , k = 0, . . . ,K. In order to approximate the continuous function Qt−n (W, r, ·)
required for the integration, we propose to use the bi-cubic spline interpolation over the grid points,

which is smooth in the first derivative and continuous in the second derivative. The error of cubic

spline is O(h4), where h is the size for the spacing of the interpolating variable, assuming a uniform

spacing. The cubic spline interpolation involves solving a tri-diagonal system of linear equations for

the second derivatives at all grid points. For a fixed grid and constant in time model parameters, the

tri-diagonal matrix can be inverted once and at each time step only the back-substitution in the cubic

spline procedure is required. For uniform grids, the bi-cubic spline is about five times as expensive in

terms of computing time as the one-dimensional cubic spline, as explained below.

Let Q
(X)
t (·) denote Qt(·) as a function of X = ln(W/W (0)). Suppose the integration requires the

value Q
(X)

t−n
(X, r, ·) at the point (X, r) located inside a grid: Xm ≤ X ≤ Xm+1 and rk ≤ r ≤ rk+1. Be-

cause the grid is uniform in both X and r, the second derivatives ∂2Q(X)/∂X2 and ∂2Q(X)/∂r2 can be

accurately approximated by the three-point central difference, and consequently the one-dimensional

cubic spline on a uniform grid involves only four neighboring grid points for any single interpola-

tion. In our bi-cubic spline case, we can first obtain Q(X) at four points (X, rk−1), (X, rk), (X, rk+1),

(X, rk+2) by applying the one-dimensional cubic spline on the dimension X for each point and then

we use these four values to obtain Q(X)(X, r, ·) through a one-dimensional cubic spline in r. Thus five

one-dimensional cubic spline interpolations are required for a single point, which involves sixteen grid

points neighboring the point of interest (X, r). Needless to say, this alone will make the pricing of

GMWB under stochastic interest rate much more time consuming than GMWB under deterministic

interest rate. Not only the evaluation per grid point is more involved but also evaluation has to be

performed for larger number of points.

To apply the jump conditions, only one-dimensional cubic spline interpolation is involved, as the

points before and after each jump fall on grid points in r and A, only interpolation in X is required. Let

us introduce an auxiliary finite grid 0 = A1 < A2 < · · · < AJ = W (0) to track the remaining guarantee

balance A, where J is the total number of nodes in the guarantee balance amount coordinate. The

upper limit W (0) is needed because the remaining guarantee balance cannot exceed the target initial

account value W (0). For each Aj , we associate a continuous solution Qt(W, r,A) defined by the values

at node points (Wm, rk) and a two-dimensional cubic spline interpolation over these node points.

At every jump we let A to be one of the grid points Aj , 1 ≤ j ≤ J . Among the infinite number of

possible jumps, a most efficient choice (though not necessary) is to only allow the guarantee balance

to be equal to one of the grid points 0 = A1 < A2 < · · · < AJ = W (0). This implies that, for a given

balance Aj at time t−n , the possible value after the withdraw at t+n has to be one of the grid points

equal to or less than Aj , i.e. A+
j = Ai, 1 ≤ i ≤ j. In other words, the withdrawal amount γ takes j
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possible values: γ = Aj −Ai, i = 1, . . . , j.

Note the above restriction that γ = Aj −Ai, i = 1, . . . , j is not necessary. The only real restriction

is γ ≤ Aj . However, without the restriction, the value of A+
j after the jump falls between the grid

points (not exactly on a grid point Ak) and a costly two-dimensional interpolation is required. The

error due to this discretisation restriction can be easily reduced to acceptable level by increasing J .

For any node (Wm, rk, Aj), m = 0, 1, . . . ,M , k = 0, 1, . . . ,K, j = 1, . . . , J , given that withdrawal

amount can only take the pre-defined values γ = Aj − Ai, i = 1, 2, . . . , j, irrespective of time tn and

account value Wm, the jump condition (13) takes the following discrete form

Qt−n (Wm, rk, Aj) = max
1≤i≤j

[
Qt+n (max(Wm −Aj +Ai, 0), rk, Ai) + Cn(Aj −Ai)

]
. (29)

For optimal strategy, we chose a value for 1 ≤ i ≤ j maximizing Qt−n (Wm, rk, Aj). The above jump

has to be performed for every node point (Wm, rk, Aj), 0 ≤ m ≤ M , k = 0, 1, . . . ,K, 1 ≤ j ≤ J at

every withdrawal date. Obviously for every node point (Wm, rk, Aj) we have to attempt j jumps to

find the maximum value for Qt−n (Wm, rk, Aj). Figure 1 illustrates application of the jump condition.
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Figure 1: Illustration of the jump conditions applied on the finite difference grids.

When Wm−Aj+Ai > 0, the value Qt+n (Wm−Aj+Ai, rk, Ai) can be obtained by a one-dimensional

cubic spline interpolation from the values at the M discrete grid points. Interpolation scheme is im-

portant, as shown for example in a convergence study by Forsyth et al. (2002), it is possible for a PDE
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based numerical algorithm for discretely sampled path-dependent option pricing to be non-convergent

(or convergent to an incorrect answer) if the interpolation scheme is selected inappropriately.

6 Numerical Results

In this section we first show results for a benchmark test where closed-form solution exists. We then

present numerical results for pricing GMWB under the static and optimal policyholder strategies using

GHQC algorithm and compare these with the MC and PDE finite difference results when appropriate.

6.1 Vanilla European options

In the case of stochastic dynamics (1) for the underlying asset and interest rate, there is a closed-

form solution for European vanilla options, thus providing a valuable benchmark test for numerical

algorithms. In particular, the formulas for prices of vanilla call and vanilla put with strike KT and

maturity T , given S(0) and r(0) at time t0 = 0 are derived in Appendix A.5.

For this test we set the input as follows: asset volatility σS = 20%, asset spot value S(0) = 1,

interest rate spot value r(0) = 5%, maturity T = 1, strike KT = 0.95, and the Vasicek interest rate

model parameters κ = 0.0349, θ = 5%, σr = 1%, 3% and ρ = −0.2, 0.0, 0.2.

We calculated the vanilla prices using the finite difference ADI method solving two-dimensional

PDE (18) and our GHQC method developed in the previous sections and compared with the closed-

form solution (37). Of course in the case of vanilla options, using change of numéraire to the bond

P (0, T ), the interest rate dimensionality can be removed from numerical pricing and the required

PDE can be reduced to the one-dimensional PDE similar to deterministic interest rate case. Here, we

implement ADI for the original two-dimensional PDE (18) for testing and comparison purposes.

For GHQC, we used q1 = 12 and q2 = 3 quadrature, i.e. the total number of quadrature points

for each integration is 36. The mesh for GHQC calculations was fixed at M = 100 for X dimension

and K = 20 for the interest rate r dimension, and the total number of time steps N = 5. Comparing

with typical finite difference calculations, the above mesh and time steps are quite coarse. Indeed,

for ADI calculations, in order to have a roughly compatible accuracy with GHQC, we had to set

M = 200, K = 40 and N = 300. Table 1 and Table 2 show results for vanilla call and put prices for

different values of σr and ρ. The percentage numbers in the parentheses in both tables are the relative

numerical errors of the price compared with the closed-form solution. On average, for σr = 1% the

relative error is about 0.033% for ADI and 0.042% for GHQC, while for σr = 3% the relative error

is about 0.077% for ADI and 0.040% for GHQC. Significantly, the average relative error for ADI is

more than doubled when the volatility of interest rate is increased from σr = 1% to σr = 3%, while

the error for GHQC remains more or less the same.

Both ADI and GHQC took a fraction of a second CPU to calculate one of the options in Table 1

and Table 2. Averaging over 200 calculations for call and put options with the same inputs as given
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Table 1: Vanilla call option price for different values of σr and ρ.

The other input parameters are σ = 20%, S(0) = 1.0, r(0) = 5%,

T = 1.0, KT = 0.95, κ = 0.0349 and θ = 5%.

σr ρ Closed-form ADI GHQC

0.01 -0.2 0.119063 0.119096 (0.027%) 0.119035 (0.024%)

0.01 0.0 0.119404 0.119461 (0.027%) 0.119392 (0.010%)

0.01 0.2 0.119743 0.119775 (0.026%) 0.119700 (0.036%)

0.03 -0.2 0.118531 0.118604 (0.062%) 0.118528 (0.003%)

0.03 0.0 0.119554 0.119626 (0.060%) 0.119512 (0.035%)

0.03 0.2 0.120565 0.120634 (0.057%) 0.120525 (0.033%)

Table 2: Vanilla put option price for different values of σr and ρ.

The other input parameters are σ = 20%, S(0) = 1.0, r(0) = 5%,

T = 1.0, KT = 0.95, κ = 0.0349 and θ = 5%.

σr ρ Closed-form ADI GHQC

0.01 -0.2 0.042547 0.042565 (0.041%) 0.042522 (0.059%)

0.01 0.0 0.042888 0.042905 (0.039%) 0.042878 (0.024%)

0.01 0.2 0.043227 0.043243 (0.037%) 0.043187 (0.093%)

0.03 -0.2 0.042132 0.042175 (0.101%) 0.042133 (0.002%)

0.03 0.0 0.043156 0.043197 (0.095%) 0.043117 (0.091%)

0.03 0.2 0.044167 0.044205 (0.087%) 0.044133 (0.077%)

above, we found the CPU time for each call or put calculation is 0.055 second for ADI and 0.011

second for GHQC, i.e. GHQC is about five times faster than ADI in these tests. All the calculations

shown in this study were performed on a desktop with an Intel Core i5-4590 CPU@3.30GHz with a

4.00GB RAM.

It is worth commenting that for the vanilla call and put options the final payoff function is only

piecewise linear, i.e. it is not a polynomial function and it is not smooth at the strike KT (first

derivative discontinuous at W = KT ). If we apply the Gauss-Hermite quadrature only to the half

domain (W ≥ KT for call and W ≤ KT for put), then the payoff function at the maturity is a simple

linear function needing no interpolation anywhere and we found the GHQC calculations can be made

as accurate as desired, virtually limited only by the machine accuracy. In the above tests we did not

take advantage of this specific feature because it is not generally applicable.
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6.2 GMWB pricing results

In the case of the static policyholder behavior, the withdrawal amounts are predetermined at the

beginning of the contract. In this case the paths of the wealth account W (t) can be simulated and a

standard MC simulation method can be used to calculate the price of VA contract with GMWB. Below

we show results for both static and optimal withdrawal cases. The static case allows a comparison

between MC and GHQC, further validating the new algorithm. We have also implemented an efficient

finite difference ADI algorithm for pricing of VA with GMWB under the static policyholder behavior

solving corresponding two-dimensional PDE. In what follows, results from the GHQC method will be

compared with the MC and ADI methods when applicable.

6.2.1 GMWB with static policyholder behavior

In a static case the withdrawal amount is pre-determined for each withdrawal date. In this case at

each payment date the jump condition applies to the single solution (therefore no need for a grid in

the guarantee account A dimension). Since the withdrawal amount is known at every payment date,

the stochastic paths of the underlying W can be simulated by MC method. Here we compare GHQC

results with those of MC and ADI methods.

Table 3 shows the prices of the VA with GMWB under the static withdrawal strategy as a function

of the correlation ρ, comparing results between MC, ADI and GHQC. The model input parameters

are σS = 20%, σr = 2%, S(0) = W (0) = 1.0, r(0) = 5%, g = 10%, T = 1/g = 10.0, Nw = 4 (quarterly

withdraw frequency), α = 0.006, κ = 0.0349 and θ = 5%. In Peng et al. (2012), results for static

GMWB pricing using similar parameters were presented for the lower and upper bound estimates

of the price comparing with the MC simulation results. However, those results are for a continuous

in time withdrawal case, while our results are for the discrete in time withdrawals at a quarterly

frequency.

For the MC method, we have used one million sample paths simulated from the closed-form transi-

tion density under the new measure Q̃, so that there is no time discretization error. For both ADI and

GHQC we have used two meshes, one coarser and one finer, with the finer mesh doubles the number

of node points in both r and X dimensions. Let MA denote the coarser mesh for ADI with M = 200

for X dimension, K = 50 for r dimension, and M?
A denote finer mesh for ADI with M = 400 and

K = 100. In addition, the number of time steps for each period (between consecutive withdrawal

dates) was set N∆t = 100 for ADI when using the coarser mesh, and it was doubled to N∆t = 200

when using the finer mesh M?
A. For GHQC, the coarser mesh, denoted as MG, has M = 50 and

K = 30, and the finer mesh for GHQC, denoted as M?
G, has M = 100 and K = 60. For both MG

and M?
G meshes, we have used a single time step between withdrawal dates, i.e. N∆t = 1. For the

quadrature points, we used q1 = 5 and q2 = 3 for the coarser mesh, and q1 = 9 and q2 = 5 for the finer

mesh. Note the finer mesh M?
G for GHQC is overall much coarser than the coarser mesh MA for ADI.
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Comparing with typical finite difference PDE calculations required for pricing financial derivatives,

the finer mesh M?
G is actually very coarse.

In Table 3, the numbers in the parentheses next to the MC results are the standard errors due to

the finite number of simulations, while for ADI and GHQC the numbers in the parentheses are the

relative difference from MC results. On average, the relative standard error for MC (standard error

divided by the estimated mean) is 4.6E-4, sufficiently small for the MC results to serve as a basis to

compare among different results1.

If a set of numerical results have the same or better accuracy than the MC results, then the relative

difference between this set of results and MC results should be in the same order of magnitude as

the relative standard error of the MC. Results in Table 3 show that, the average relative difference

between ADI and MC is about 9.2E-4 for the coarser mesh MA, and it is about 6.9E-4 for the finer

mesh M?
A. In comparison, the average relative difference between GHQC and MC is about 5.6E-4

for the coarser mesh MG, and it is about 3.7E-4 for the finer mesh M?
G. These relative differences

are indicative that the GHQC calculations are perhaps more accurate than the ADI, even comparing

GHQC results of coarser mesh MG with ADI results of the finer mesh M?
A.

Table 3: Price of VA with GMWB under static withdrawal strategy for different values ρ.

Other parameters: σ = 20%, σr = 2%, S(0) = 1.0, r(0) = 5%, g = 10% (T = 1/g), Nw = 4, α = 0.006,

κ = 0.0349, θ = 5%.

ρ MC ADI (MA) ADI (M?
A) GHQC (MG) GHQC (M?

G)

-0.6 1.004826 (3.1E-4) 1.00616 (1.3E-3) 1.00532 (4.9E-4) 1.00557 (7.4E-4) 1.00484 (1.4E-5)

-0.4 1.011952 (4.5E-4) 1.01338 (1.4E-3) 1.01255 (5.9E-4) 1.01295 (9.8E-4) 1.01236 (4.0E-4)

-0.2 1.019002 (4.8E-4) 1.02024 (1.2E-3) 1.01942 (4.1E-4) 1.01982 (8.0E-4) 1.01945 (4.4E-4)

0.0 1.026177 (4.8E-4) 1.02675 (5.6E-4) 1.02592 (2.5E-4) 1.02625 (7.9E-5) 1.02613 (4.6E-5)

0.2 1.032256 (4.8E-4) 1.03289 (6.1E-4) 1.03206 (1.9E-4) 1.03279 (5.2E-4) 1.03249 (2.3E-4)

0.4 1.038966 (5.3E-4) 1.03867 (2.8E-4) 1.03784 (1.1E-3) 1.03886 (1.0E-4) 1.03849 (4.6E-4)

0.6 1.045171 (5.8E-4) 1.04407 (1.1E-3) 1.04325 (1.8E-3) 1.04445 (6.9E-4) 1.04413 (9.9E-4)

Not only the GHQC may have better accuracy than the ADI, the CPU time comparison is even

more impressive: for ADI calculations, the CPU time per price is 1.0 second and 7.6 second for the

coarser and finer mesh, respectively; while for GHQC calculations, the CPU time per price is 0.02

second and 0.24 second for the coarser and finer mesh, respectively. In other words, comparing the

coarser mesh calculations, the GHQC is about 50 times as fast as ADI, and comparing the finer mesh

calculations the GHQC is about 30 times as fast as ADI, while achieving better accuracy. Only the

GHQC results with the finer mesh has an average relative difference (relative to MC results) smaller

than the average relative standard error of MC with one million simulations.

1Hereafter, aE-b denotes a× 10−b.
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Table 4: Prices of VA with GMWB under static withdrawal strategy for different

fees α and positive correlation ρ = 0.3. Other parameters: σ = 20%, σr = 2%,

S(0) = 1.0, r(0) = 5%, g = 10% (i.e. T = 1/g), Nw = 4, κ = 0.0349 and θ = 5%.

α MC ADI (M?
A) GHQC (M?

G)

0 1.064589 (5.2E-4) 1.06389 (6.6E-4) 1.06434 (2.3E-4)

25 1.052354 (5.0E-4) 1.05154 (7.7E-4) 1.05202 (3.2E-4)

50 1.040172 (4.9E-4) 1.03963 (5.2E-4) 1.04015 (2.2E-5)

75 1.029112 (4.9E-4) 1.02817 (9.2E-4) 1.02873 (3.7E-4)

100 1.018198 (4.7E-4) 1.01714 (1.0E-3) 1.01773 (4.6E-4)

125 1.007269 (4.7E-4) 1.00653 (7.3E-4) 1.00716 (1.1E-4)

150 0.997382 (4.5E-4) 0.996316 (1.1E-3) 0.996993 (3.9E-4)

175 0.987463 (4.4E-4) 0.986501 (9.7E-4) 0.987222 (2.4E-4)

200 0.977950 (4.3E-4) 0.977069 (9.0E-4) 0.977835 (1.2E-4)

Table 5: Prices of VA with GMWB under static withdrawal strategy for different

fees α and negative correlation ρ = −0.3. Other parameters: σ = 20%, σr = 2%,

S(0) = 1.0, r(0) = 5%, g = 10% (i.e. T = 1/g), Nw = 4, κ = 0.0349 and θ = 5%.

α MC ADI (M?
A) GHQC (M?

G)

0 1.044794 (5.3E-4) 1.04526 (4.5E-4) 1.04495 (1.5E-4)

25 1.032550 (5.1E-4) 1.03274 (1.8E-4) 1.03253 (2.0E-5)

50 1.020225 (5.0E-4) 1.02071 (4.7E-4) 1.02059 (3.6E-4)

75 1.009109 (5.0E-4) 1.00915 (4.1E-5) 1.00912 (1.1E-5)

100 0.9978363 (4.8E-4) 0.998039 (2.0E-4) 0.998104 (2.7E-4)

125 0.9871583 (4.8E-4) 0.987377 (2.2E-4) 0.987531 (3.8E-4)

150 0.9770732 (4.6E-4) 0.977148 (7.7E-5) 0.977387 (3.2E-4)

175 0.9673112 (4.4E-4) 0.967338 (2.8E-5) 0.967662 (3.6E-4)

200 0.9581683 (4.4E-4) 0.957938 (2.4E-4) 0.958343 (1.8E-4)

Table 4 shows the price of the VA with GMWB under the static withdrawal strategy as a function

of the fee α in the unit of basis point (a basis point is 0.01% ). The correlation ρ is fixed at ρ = 0.3

and all the other inputs are the same as for the calculations for Table 3. For ADI and GHQC, only

results of the finer meshes M?
A and M?

G are shown. The number of simulations for MC and the number

of time steps for ADI and GHQC were unchanged. In this case the average relative standard error for

MC is 4.7E-4. The average relative difference between ADI and MC is 8.4E-4, somewhat larger than

the MC standard error. The average relative difference between GHQC and MC is 2.5E-4, which is

about half of the MC standard error.

Table 5 shows the same results as Table 4 except the correlation is negative at ρ = −0.3. In this

case the average relative standard error for MC is 4.8E-4. The average relative difference between
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ADI and MC is 2.1E-4, and the average relative difference between GHQC and MC is 2.3E-4, both

are about half of the MC standard error.

It is interesting to compare the results of Vasicek model with the case of deterministic interest rate

set to be r(0) during the contract life. We found that, for the test cases shown in Table 4 where the

correlation is positive at ρ = 0.3, the static withdrawal strategy GMWB prices under the stochastic

interest rate are about 2% larger than the deterministic counterpart, i.e. the ratio in prices is about

1.02. However, a small difference in the price for a given fee does not not mean a small difference

in the fair fees given the premium. A fair fee α is the fee making the initial premium equal to the

contract price, i.e. Q(W (0), r(0),W (0)) = W (0). For the inputs given for Table 4, we found the fair

fee for GMWB under the stochastic interest rate is 143 basis points, which is 49% higher than the

deterministic case of 95.8 basis points.

On the other hand, for the cases in Table 5 where the correlation is negative at ρ = −0.3, the prices

of VA with the static withdrawal GMWB under the stochastic interest rate are virtually the same as

the deterministic interest rate counterpart – on average the relative difference in prices is about 3.5E-4,

which has the same magnitude as the average relative errors. The corresponding relative difference in

the fair fees of GMWB between the stochastic interest rate and deterministic rate cases is only about

0.2%, which could be in the same order of magnitude as numerical errors in the fees.

6.2.2 GMWB under optimal withdrawals

Having numerically validated the implementation of GHQC algorithm, we then proceed to perform

calculations for pricing of GMWB under the dynamic withdrawal strategy. Note that for the dynamic

strategy GMWB pricing, exactly the same numerical functions are used as for the static strategy

GMWB case. The only extra step required for the dynamic case is simply finding the optimal amount

among possible withdrawal values, while in the static case only the fixed withdrawal amount is con-

sidered. In particular, the integration and jump condition application all use identical functions in

the dynamic and static cases.

Table 6 is the dynamic strategy counterpart of Table 4, i.e. all the inputs (model parameters,

contract details, mesh, quadrature points and time step settings) are the same, but the calculations

are for the dynamic withdrawals. In this example the number of grid points in the guarantee account

A is J = 100. An extra input needed for the dynamic case is the penalty coefficient β, which is fixed

at β = 10% in all the following calculations. A simple extra validation for the dynamic calculations is

to set the penalty coefficient β very high, say β = 50%, then the price under the optimal withdrawals

should be the same as under the static withdrawals, which was indeed confirmed by our numerical

tests.

We also show comparison of the prices for the cases of deterministic and stochastic interest rates in

Figure 2. Similar to the static withdrawal case, with a positive correlation between asset and interest

rate ρ = 0.3, prices of the VA with dynamic withdrawal GMWB under the stochastic interest rate are
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Table 6: Prices of VA with GMWB under dynamic withdrawal strategy for different

fees α in the case of negative and positive correlation ρ. Other parameters: σS = 20%,

σr = 2%, S(0) = 1.0, r(0) = 5%, g = 10% (T = 1/g), β = 10%, Nw = 4, κ = 0.0349, θ = 5%.

α GHQC (ρ = −0.3) GHQC (ρ = 0.3)

0 1.08348 1.10173

25 1.06651 1.08367

50 1.05107 1.06707

75 1.03719 1.05184

100 1.02484 1.03804

125 1.01389 1.02558

150 1.00408 1.01446

175 0.995356 1.00463

200 0.987673 0.996057

about 2% larger than in the case of deterministic constant interest rate set to r(0), i.e. the ratio in

prices is about 1.02. Again, a small difference in the price for a given fee does not not mean a small

difference in the fair fees given the premium. For the inputs given for Table 6, we found the fair fee

for GMWB under the stochastic interest rate is 188 basis points, which is 38% higher than the fair

fee 136 basis points in the case of deterministic interest rate.

Similar to the static withdrawal case, in the case of negative correlation between asset and interest

rate ρ = −0.3, the differences of prices between cases under the stochastic interest rate and cases under

a deterministic interest rate r(0) are relatively small, compared with the case of positive correlation.

Now, at ρ = −0.3, these differences are only about 0.9% on average, much smaller than 2% when the

correlation is at ρ = 0.3. However, unlike the static withdrawal case where for ρ = −0.3 the difference

of prices between stochastic rate and deterministic rate is negligible (as small as the numerical errors),

the difference of 0.9% is still significant (the estimated relative numerical error is in the order of

0.01%), leading to a significant difference in the fair fees. We found for this case at ρ = −0.3, the fair

fee under the stochastic rate is 161 basis points, which is about 19% higher than the deterministic

interest rate counterpart (136 basis points).

As expected, the CPU time for these calculations of dynamic withdrawal cases is much longer than

the static withdrawal counterpart with the same mesh and time steps. The average CPU time for

calculating the prices in Table 6 is about 39 seconds per price, comparing with 0.24 second per price

for the static withdrawal case with the same mesh and time steps. The ratio of these CPUs is about

160, which is reasonable because instead of tracking a single two dimensional solution in (X, r) for the

static withdrawal case, for the dynamic withdrawal case we have to track J = 100 such solutions for

all the nodes in A. In addition, on each withdrawal date all the possible jumps have to be performed

in order to find the optimal withdrawal amount for each grid point in (X, r,A) space, as compared to
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Figure 2: Prices of VA with GMWB under optimal withdrawals and stochastic

interest rate with ρ = 0.3 and ρ = −0.3. The other parameters are the same as for

Table 6.

the static withdrawal case where only one jump is needed for each single grid point in (X, r) space.

7 Conclusion

In this paper we developed a new direct integration method for pricing of the VA with guarantees

under the both static and dynamic (optimal) policyholder behaviors in the case of stochastic interest

rate. Using bond price as a numéraire, we have derived the closed-form bivariate transition density for

the correlated state variables lnS(t) and r(t). Under the new measure the required expectations are

reduced to the two-dimensional integrals which can be readily calculated through the two-dimensional

numerical integration using Gauss-Hermite quadrature, allowing an efficient backward time stepping

for solving recursive Bellman equation. A spectral rotation scheme preserves the symmetry with

respect to the principal axes of the bivariate random field, yielding a robust and accurate quadrature

application. A two-dimensional cubic spline interpolation on the finite grids for (X(t), r(t)) is utilized

to provide the continuous function required by the quadratures. The proper jump conditions are

applied at each withdrawal date that allows the optimal withdrawal decision to be made.

The algorithm is convincingly validated by comparing to the European option pricing where closed-

form analytical solution exists, and by static withdrawal GMWB pricing where MC and PDE ADI

methods can provide good benchmark solutions. Numerical tests show the accuracy of the presented

GHQC method is at least compatible to a typical ADI finite difference scheme, but it is more robust

and significantly faster.

For dynamic withdrawal GMWB pricing, using the new algorithm we found some interesting results
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which we believe are new to the literature. When the correlation between the underlying risky asset

and interest rate is positive, the GMWB price or equivalently the fee under the stochastic interest rate

is significantly higher than in the case of deterministic interest rate. In the particular test problem,

the fee in the case of stochastic interest rate is about 40% higher than the deterministic case when

ρ = 0.3. When the correlation is negative, the differences are still significant but much less than in the

case of positive correlation. The fee in the case of stochastic interest rate is about 20% higher than

the deterministic case when correlation is negative at ρ = −0.3. On the other hand, the situation in

the static withdrawal pricing is remarkably different: at negative correlation, the differences in prices

and fees of GMWB between stochastic and deterministic settings are virtually negligible.

In this paper we focused on pricing of a very basic GMWB structure. However, presented algorithm

can be easily adapted to pricing other VA guarantees and solving similar stochastic control problems

with two state variables possibly affected by control. Applications to pricing Asian, barrier and other

financial derivatives with a single underlying risky and stochastic interest rate are straightforward.

Also, it should be possible to extend the algorithm to situations when the underlying bivariate tran-

sition density is not known in closed-form but its moments are known, similarly as developed in Luo

and Shevchenko (2014) for one-dimensional problems; this is a subject of future research.
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A Joint Distribution of S(t), r(t) and Y (t) =
∫ t

0 r(u)du

Consider the probability measure Q with corresponding stochastic processes for S(t) and r(t) given

by (1), and the new probability measure Q̃ obtained via the Radon-Nikodym derivative

Zt =
dQ̃
dQ

∣∣∣∣∣
Ft

=
M(0)

M(t)

P (t, T )

P (0, T )
, t ∈ [0, T ]. (30)

Here, M(t) = e
∫ t
0 r(τ)dτ is the money market account and P (t, T ) = EQ

0 [e−
∫ T
t r(τ)dτ ] is the T -maturity

bond. In particular, it is easy to see that ZT > 0 and EQ
0 [ZT ] = 1 and this change of measure leads to

the following formula for an arbitrary function f(S(T ), r(T ))

EQ
0

[
e−

∫ T
0 r(u)duf(S(T ), r(T ))

]
= P (0, T )EQ̃

0 [f(S(T ), r(T )] ,
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assuming that these expectations exist. One can say that we changed numéraire from the money

market account M(t) to the T -maturity bond P (t, T ). Using Itô’s formula, the process for Zt is easily

obtained from the process (3) for the bond price P (t, T ) to be

dZt = φ(t)ZtdB1, φ(t) = −σrBt,T ,

where Bt,T = (1− e−κ(T−t))/κ, and Girsanov theorem gives the corresponding transformation to the

Wiener process B1(t) = φ(t)dt+ dB̃1(t). Thus the processes for S(t) and r(t) under the new measure

Q̃ for t ∈ [0, T ] are

dS(t)/S(t) = (r(t) + σSρφ(t))dt+ σS

(
ρdB̃1(t) +

√
1− ρ2dB̃2(t)

)
,

dr(t) = κ
(
θ̃(t)− r(t)

)
dt+ σrdB̃1(t); θ̃(t) = θ +

σr
κ
φ(t)

(31)

with B̃1(t) and B̃2(t) independent Wiener processes.

In this section we derive the joint Normal distribution of lnS(t) and r(t) for given S(0) and r(0)

under the new probability measure Q̃. We also derive the bond price, European vanilla price formulas,

and 3d joint Normal distribution of lnS(t), r(t) and Y (t) =
∫ t

0 r(u)du conditional on S(0) and r(0)

under the measure Q. The last is useful for validation tests to simulate and calculate the contract

payoff without time discretization error. Some of these formulas can be found in the literature, e.g.

see (Cairns, 2004, appendix B1 and section 4.5) for bond price and distribution of (r(t), Y (t)) under

the Vasicek model, but are presented here for completeness and notational consistency.

The formulas derived below for the mean and covariances can be used for simulation of (S(tn), r(tn))

given (S(tn−1), r(tn−1)). One has to just set t → tn − tn−1, T → T − tn−1, and r(t0) → r(tn−1),

S(0) → S(tn−1) in these formulas. To obtain the mean and covariance formulas (19) required to

calculate expectation (15) over (tn−1, tn) one has to set t = T → tn− tn−1 and subtract α× (tn− tn−1)

from the mean of lnS(tn) to get the mean of lnW (tn).

A.1 Distribution for r(t)

The solution for the interest rate r(t) given r(0), with the process in (16) under Q̃, is

r(t) = r(0)e−κt + e−κtκ

∫ t

0
θ̃(τ)eκτdτ + σre

−κt
∫ t

0
eκτdB̃1(τ) (32)

that can be checked directly by denoting Ht =
∫ t

0 e
κτdB̃1(τ), r(t) := g(t,Ht) and then calculating

dr(t) = dg(t,Ht) using Itô formula to obtain the process dr(t) in (16). Thus, r(t) conditional on r(0)

is from Normal distribution with

µr(t) := mean(r(t)) = r(0)e−κt + e−κtκ

∫ t

0
θ̃(τ)eκτdτ,

var(r(t)) =
σ2
r

2κ

(
1− e−2κt

)
.

(33)
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In the case of constant in time parameter θ, simple integration yields

µr(t) = r(0)e−κt + θ
(
1− e−κt

)
+

σ2
r

2κ2

(
(1− e−2κt)e−κ(T−t) − 2(1− e−κt)

)
.

In the case of risk-neutral process (1) under the measure Q, the last term with factor σ2
r in the above

formula for µr(t) should be set to zero and no change to the variance is required.

A.2 Distribution for Y (t) =
∫ t

0
r(u)du

Using solution (32) for r(t), direct calculation of Y (t) under the probability measure Q̃ gives

Y (t) =

∫ t

0
r(τ)dτ =

∫ t

0
µr(τ)dτ + σr

∫ t

0
e−κτdτ

∫ τ

0
eκsdB̃1(s)ds

=

∫ t

0
µr(τ)dτ + σr

∫ t

0
dB̃1(s)

∫ t

s
e−κ(τ−s)dτ

=

∫ t

0
µr(τ)dτ +

σr
κ

∫ t

0
(1− e−κ(t−s))dB̃1(s), (34)

where the 2d integral involving B̃1(t) was simplified by changing order of the integrations. Thus the

distribution of Y (t) is Normal with the mean and variance calculated via the standard integrations

I1(t) := mean(Y (t)) =

∫ t

0
µr(τ)dτ,

var(Y (t)) =
σ2
r

κ2

∫ t

0

(
1− e−κ(t−s)

)2
ds

=
σ2
r

κ2

(
t− 2

κ
(1− e−κt) +

1

2κ
(1− e−2κt)

)
,

where I1(t) in the case of constant in time parameter θ can be found in closed-form

I1(t) =
1

κ
(1− e−κt)

(
r0 − θ +

σ2
r

2κ2

(
2− e−κT + e−κ(T−t)

))
+

(
θ − σ2

r

κ2

)
t.

In the case of the risk-neutral process (1) under the measure Q, σr in the above formula for I1(t)

should be set to zero and no change to the variance is required.

A.3 Distribution for lnS(t)

The solution for lnS(t) given lnS(0), with the process in (16) under Q̃, is given by

lnS(t) = lnS(0) +

∫ t

0
r(τ)dτ + ρσS

∫ t

0
φ(τ)dτ − 1

2
σ2
St

+ ρσS

∫ t

0
dB̃1(τ) + σS

√
1− ρ2

∫ t

0
dB̃2(τ).

(35)
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Substituting (34) it is easy to see that lnS(t) is from Normal distribution and performing simple

integrations obtain

mean(lnS(t)) = lnS(0) + I1(t)− 1

2
σ2
St−

ρσSσr
κ2

(
κt− e−κT (eκt − 1)

)
,

var(lnS(t)) = σ2
St+

σ2
r

2κ3

(
2κt− 3 + 4e−κt − e−2κt

)
+

2ρσSσr
κ2

(
κt− 1 + e−κt

)
.

In the case of risk-neutral process (1) under the measure Q, the last term proprotional to ρ in the

above formula for mean(lnS(t)) should be set to zero and no change to the variance is required.

A.4 Covariances between lnS(t), r(t) and Y (t) =
∫ t

0
r(u)du

Direct calculations using solutions (35), (32) and (34) for lnS(t), r(t) and Y (t) conditional on lnS(0)

and r(0), under the probability measure Q̃, yield

cov(lnS(t), r(t)) = σr

∫ t

0

(
σSρ+

σr
κ

(
1− e−κ(t−s)

))
e−κ(t−s)ds

=
ρσSσr
κ

(
1− e−κt

)
+

σ2
r

2κ2

(
1− 2e−κt + e−2κt

)
,

cov(Y (t), r(t)) =
σ2
r

κ
e−κt

∫ t

0
eκs
(

1− e−κ(t−s)
)
ds

=
σ2
r

2κ2

(
1− 2e−κt + e−2κt

)
,

cov(lnS(t), Y (t)) =
σr
κ

∫ t

0
(1− e−κ(t−s))

(
σSρ+

σr
κ

(
1− e−κ(t−s)

))
ds

=
ρσSσr
κ2

(
κt− 1 + e−κt

)
+

σ2
r

2κ3

(
2κt− 3 + 4e−κt − e−2κt

)
.

These formulas for covariances are the same in the case of the risk-neutral process (1) under the

probability measure Q.

A.5 Bond and Vanilla prices

Zero coupon bond price P (t, T ) = EQ
t

[
e−

∫ T
t r(u)du

]
in the case of Vasicek interest rate model (1) can

be calculated directly using distribution of random variable Y =
∫ T
t r(u)du which is Normal with the

mean and variance derived in Appendix A.2. This gives

P (t, T ) = e−mean(Y )+ 1
2

var(Y ) = eAt,T−r(t)Bt,T ,

Bt,T =
1

κ

(
1− e−κ(T−t)

)
,

At,T = −κ
∫ T

t
θBs,Tds+

σ2
r

4κ3

(
2κ(T − t) + 4e−κ(T−t) − e−2κ(T−t) − 3

)
.

(36)

Allowing θ := θ(t) to be time dependent parameter, one can find θ(t) yielding bond prices observed

at t = 0. In the case of constant θ, the above formula for At,T simplifies to

At,T =

(
θ − σ2

r

2κ2

)
(Bt,T − (T − t))− σ2

r

4κ
B2
t,T .
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In the case of the risk-neutral process (1) for S(t) and r(t) under the measure Q, the closed-form

formulas for prices of vanilla call Qcall
t0 and vanilla put Qput

t0
with strike KT at maturity T , given S(0)

and r(0), at time t0 = 0 can be easily found. Changing measure Q to Q̃ and using formulas for the

mean and variance of Normally distributed lnS(T ) under Q̃ derived in Appendix A.3, obtain after

simple calculus

Qcall
t0 = EQ

t0

[
e−

∫ T
0 r(u)du max(S(T )−KT , 0)

]
= P (0, T )EQ̃

t0
[max(S(T )−KT , 0)]

= S(0)N(d1)−KTP (0, T )N(d2),

Qput
t0

= EQ
t0

[
e−

∫ T
0 r(u)du max(S(T )−KT , 0)

]
= P (0, T )EQ̃

t0
[max(S(T )−KT , 0)]

= KTP (0, T )N(−d2)− S(0)N(−d1).

(37)

Here, N(x) is the standard Normal distribution function, P (0, T ) is the bond price given by (2),

d1 = (ln(S(0)/KT )− lnP (0, T ) + 1
2σ

2
eff)/σeff , d2 = d1 − σeff and

σ2
eff = σ2

ST +
σ2
r

2κ3

(
2κT − 3 + 4e−κT − e−2κT

)
+

2ρσSσr
κ2

(
κT − 1 + e−κT

)
. (38)

Note, the derived formulas are the same as the well known Black-Scholes formulas for call and put

under the constant interest rate r and volatility σ if rT is replaced by − lnP (0, T ) and σ2T is replaced

by σ2
eff .
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