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Treatment Effect Dynamics in Panel Data

• Panel settings with “repeated endogenous treatments” and “time-varying
external instruments” are popular in applied literature

• Card (2009): the impact of immigration on the wage gap b/w natives with
different skill

• Autor, Dorn and Hansen (2013; ADH): the impact of Chinese import
exposure on the labor market structure

• Acemoglu and Restrepo (2022), Bourchardi et al. (2019, 2020)

• The current paper concerns the dynamic treatment effect, represented by
carryover effect & contemporaneous effect, in a short panel setting.
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Treatment Effect Dynamics in Panel Data

Treatment 1

Outcome 1

Treatment 2

Outcome 2

Time 1

Time 2

• The previous literature studies the treatment
effect separately for each time t.

• Ignore a dynamic effect of the treatment at
time 1 to the treatment effect at time 2.

• Initial treatment period is not informative.

• The effects in time 1 and 2 are often assumed
to be identical.

• The following has been often employed:

∆Yit = β0 + β1∆Xit + {explanatory variables} + eit

• E.g., Autor, Dorn and Hansen (2013, AER)
- ∆Yit : the decadal change in the manufacturing employment share of the

working-age population.
- ∆Xit : the decadal change in Chinese import exposure.
- Time: 1990-2000, 2000-2007
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Treatment Effect Dynamics in Panel Data

• Repeated treatments but the same effect?
- Estimating the model separately for each t ignores a possible dynamic

structure of the treatment effect.
- Need to distinguish the contemporaneous effect from the total effect.

Instrument Xit to Zit ;

∆Yit = β0 + β1∆Xit + {explanatory variables} + eit

• A possible effect of an initial treatment on a later period treatment effect
- The initial treatment may change the labor mkt. situation at a later period.
- E.g., in immigration literature, the dependent variable is native labor market

outcome and the treatment variable is the local share of immigrants (see,
e.g., Card, 2009).

- Immigrants tend to settle down to regions known to favorable to them
→ possible impact of the contemporaneous treatment effect at t = 2
→ possible carryover effect at t = 2.

• Theoretically, ignoring the dynamic treatment effect will end up with the
omitted variable bias.

Yi1 = β0
1Xi1 + ϵi1

Yi2 = β0
2Xi2 + β1

1Xi1 + εi2 = β0
2Xi2 + ui2

• Estimate β0
2 by instrumenting Xi2 to Zi2?
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Treatment 2

Outcome 2

Time 2

Treatment 1 Contemporaneous Effect

Carryover Effect

• Suppose that the initial treatment Ti1 is either 1 or 0.
• β(Ti1): contemporaneous effect at t = 2

- |β(1)| > |β(0)|: accelerated treatment effects
- β(1) = β(0): no effect of initial treatment
- |β(1)| < |β(0)|: decelerated treatment effects

• In ADH’s example, if β(1) < β(0);
a large increase in Chinese import exposure at t = 1
→ ↓ in the share of manufacturing industry in that area
→ an industrial structure change
→ makes the region be robust to the change in Chinese import exposure
at a later period
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Treatment Effect Dynamics in Panel Data

• Our benchmark model is given by

Yit = β1
t−1(Xit−1) + β0

t (Xit−1)Xit + H̃ ′
itγt + εit (1)

- Xit : (possibly endogenous) treatment at time t
- H̃it : exogenous variables with constant coefficients
- β1

t−1(.): carryover effect
- β0

t (.): contemporaneous treatment effect

• E.g., binary treatment with T = 2:

Yi1 = β0
1Xi1 + εi1,

Yi2 = β1
1Xi1 + β0,0

2 Xi21{Xi1 = 0} + β0,1
2 Xi21{Xi1 = 1} + εi2

• The stacked two period model is a special case of our benchmark model.
• Econometric Literature on the dynamic treatment effects

• Heckman and Navarro (2007); Heckman et al. (2016)
• Hsu and Shen (2023) Cellini et al. (2010)
• Sun and Abraham (2021), Callaway et al. (2021)
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Back to the benchmark model:

Yit = β1
t−1(Xit−1) + β0

t (Xit−1)Xit + H̃ ′
itγt + εit (2)

From a potential outcome framework:

• Yi1(x1), Yi2(x1, x2): potential outcomes given the treatments x1 and x2.
• Yi1(Xi1), Yi2(Xi1, Xi2): observed outcomes
• H̃it : exogenous variable with coefficient of time-varying but constant

across i .

Suppose that Yi1(x1) = Yi1(0) + β0
1(x1)

Yi2(x1, x2) = Yi2(x1, 0) + (Yi2(x1, x2) − Yi2(x1, 0))

where Yi1(0) = H̃ ′
i1γH

1 + εi1,

Yi2(x1, 0) = ρYi1(x1) + η(x1) + H̃ ′
i2γH

2 + εi2

Yi2(x1, x2) − Yi2(x1, 0) = β0
2(x1)x2

Hence, the model converts to the benchmark model if

β1
1(.) = ρβ0

1(.) + η(.) and γ2 = γH
1 ρ + γH

2 .
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Extensions

A. Yit = β0
t (Xit−1)Xit + H ′

itγt + εit

- The constant term is soaked into γt .

B. Yit = β1
t−1(Yit−1) + β0

t (Yit−1)Xit + H̃ ′
itγt + εit

- More likely to be relevant in empirical setup; in ADH’s example, a changed
industrial structure affects the treatment effect at a later period.

- If there’s no path dependency, the model reduces to the dynamic model in
Andrews and Lu (2001).

C. Yit = β1
t−1(Xit−2)Xit−1 + β0

t (Xit−1)Xit + H̃ ′
itγt + εit

- At t = 3, Yi3 = β1
2(Xi1)Xi2 + β0

3(Xi2)Xi3 + H̃′
i3γ3 + εi3
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Parametric Estimation

• Standard IV approach may be (asymptotically) fine if the parametric form
of the dynamic effect is known.

• Example 1, Yi2 = β1
1Xi1 + β0,1

2 Xi1Xi2 + β0,2
2 Xi2 + εi2

• Example 1, Yi2 = β1,1
1 1{Xi1 ≥ 0} + β1,2

1 1{Xi1 < 0} + β0
2Xi2 + εi2

• With a proper instrument, e.g, (Zi1, Zi2, Zi1Zi2), we can show the
consistency of the IV estimator

• This parametric specification, of course, is not always correct and its
correctness should be checked by researchers.

• Inconsistency when a parametric function of β0
2(.) is misspecified.

⇒ Semi or Non-parametric approach?
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Highlights

• Challenges in estimating the benchmark model:
• Possible endogeneity of Xit and Xit−1

• Unknown structure of the the functional coefficients.

• Alongside our paper titled “Path-dependent Effects in the Repeated
Treatment Setting: Theory and the China Syndrome Application”, we
study identification conditions for the dynamic treatment effects.

• Illustrate a practical pitfall of parametric approaches
• Answer to the question on testing the existence of path-dependent carryover

or contemporaneous effect.

• This paper discusses identification and semi-parametric estimation
procedures based on the control function approach.

• Establishes the asymptotic properties of the semi-parametric estimator.

• Application to Acemouglu et al. (2016)
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Identification and Estimation



Identification

Back to the benchmark model:

Yi2 = β1
1(Xi1) + β0

2(Xi1)Xi2 + H̃ ′
i2γ2 + εit (3)

• Approach 1: projecting Xi2 on {Zi2, H̃i2} and replace it by the projected
values conditional on Xi1

• Requires the sequential exogeneity condition, i.e., E[εi2|Zi2, H̃i2, Xi1] = 0→
Not easy to verify

• ϵi2: technology shock & Xi1: changes in import exposure
• Approach 2: the conditional mean independence assumption such that

E[εi2|Zi2, H̃i2, Xi1] = E[εi2|Xi1] (4)

For Gi2 = (Zi2, H̃i2) and g2(x) = β1
1(x) + E[εi2|Xi1 = x ],

E
[
Gi2
(
Yi2 −

(
g2(x) + β0

2(x)Xi2 + H̃ ′
i2γ2
))

|Xi1 = x
]

=E [Gi2 (εi2 − E[εi2|Xi1 = x ]) |Xi1 = x ]
=E
[
Gi2
(
E
[
εi2|Zi2, H̃i2, Xi1 = x

]
− E [εi2|Xi1 = x ]

)
|Xi1 = x

]
=0. (5)

⇒ Cannot identify the carryover effect 10



Identification

• Approach 3: Control function restriction

E[εi2|Zi2, H̃i2, ei2, Xi1] = E[εi2|ei2, Xi1] (6)

where ei2 = Xi2 − LGi2 (Xi2|Xi1)
LGi2 (A) = E[AG ′

i2|Xi1](E[Gi2G ′
i2|Xi1])−1Git for a random variable A.

• If we let (αZ
2 (x) αH

2 (x))′ = (E[Gi2G ′
i2|Xi1 = x ])−1E[Gi2Xi2|Xi1 = x ], the

first stage reduced form equation can be written as follows:

Xi2 = Zi2αZ
t (Xi1) + H ′

i2αH
2 (Xi1) + ei2, (7)

with satisfying E[Giteit |Xi(t−1)] = 0
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Identification

• The function E[εi2|ei2, Xi1] = βe
2(Xi1)ei2

E[Yi2|Xi2, Zi2, ei2, H̃i2, Xi1]

= E[Yi2|LGi2 (Xi2|Xi1) + ei2, Zi2, ei2, H̃i2, Xi1]

= β1
1(Xi1) + β0

2(Xi1)Xi2 + H̃ ′
i2γ2 + E[εi2|ei2, Xi1]

= β1
1(Xi1) + β0

2(Xi1)Xi2 + H̃ ′
i2γ2 + βe

2(Xi1)ei2,

• Can identify both the carryover effect and the contemporaneous effect ⇒
Back out the total effect

• In the first stage, Xi1 needs not to be exogenous.
→ wider applicability in practice.

• Differentiate this paper from the functional coefficient models, e.g., Fan
and Huang (2005), Cai et al (2019), etc.
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Partial Effect of the past treatment on the outcome

The benchmark model can be rewritten as

Yi2 = β1
1(Xi1) + β0

2(Xi1)Xi2 + H̃ ′
i2γ2 + βe

2(Xi1)ei2 + vi2, (8)

where E[vi2|Xi1, Xi2, Zi2, H̃i2, ei2] = 0 and ei2 = ei2(Xi1) satisfying E[ei2|Xi1] = 0.

The model can be extended to general t ≥ 2.

In the special case where βe
2(Xi1) = βe

2 , the partial effect of Xi1 on Yi2:

∂Yi2

∂Xi1
= ∂β1

1(Xi1)
∂Xi1

+ ∂β0
2(Xi1)
∂Xi1

Xi2 + β0
2(Xi1)∂Xi2

∂Xi1
+ βe

2
∂ei2(Xi1)

∂Xi1
.

If Xi2 = ρ(Xi1) + Zi2π + ei2,

E
[

∂Yi2
∂Xi1

|Xi1 = x
]

=
∂β1

1(Xi1)
∂Xi1

∣∣∣∣
Xi1=x

+
∂β0

2(Xi1)
∂Xi1

∣∣∣∣
Xi1=x

E[Xi2|Xi1 = x ] + β0
2(x)

∂ρ(Xi1)
∂Xi1

∣∣∣
Xi1=x

.

If Xi2 = ρ + Zi2π + ei2,

E
[

∂Yi2

∂Xi1
|Xi1 = x

]
= ∂β1

1(Xi1)
∂Xi1

∣∣∣∣
Xi1=x

+ ∂β0
2(Xi1)
∂Xi1

∣∣∣∣
Xi1=x

E[Xi2|Xi1 = x ].
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Estimation Procedure

• Three-step procedure: (i) estimate the control function (ii) estimate the
constant coefficients and (iii) estimate the functional coefficients

• Start with the local constant estimator.

• β(x) = (β1
1(x), β0

2(x), βe
2(x)) ≈ β(x0) for x in a neighborhood of x0.

• Y ∗
i2 = Yi2 − H̃ ′

i2γ2

• κh(.) = κ(./h)/h is a kernel function κ(.) and bandwidth h

Solve
β̃(x) = arg min

β(x)

∑
i

(Y ∗
i2 − ((1 Xi2 ei2)β(x)))2κh(Xi1 − x), (9)
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Estimation Procedure

• If the control function is available,

β̃(x) =
(
D′(x)K(x)D(x)

)−1 D′(x)K(x)(Y2 − H̃2γ̃2), (10)

where D(x) is a matrix whose i row is (1, Xi2, ei2) and K(x) is a diagonal
matrix consisting of {κh(Xi1 − x)}N

i=1.
• Given the estimates, the estimator of γ2 is

γ̃ = (H̃′
2(I − S)′(I − S)H̃2)−1H̃′

2(I − S)′(I − S)Y2, (11)

• S is a N × N matrix whose ith row is

(1 Xi2 ei2)
(
D′(Xi1)K(Xi1)D(Xi1)

)−1 D′(Xi1)K(Xi1).

• In practice, the control function ei2 should be replaced by its estimates
such that

êx
i2 = Xi2 − G ′

i2(
∑

i

Gi2G ′
i2κh(Xi1 − x))−1(

∑
i

Gi2X ′
i2κh(Xi1 − x)). (12)

• Feasible estimators: β̂(.) and γ̂2. 15



Asymptotic properties of the estimator

Under the mild conditions, Assumptions we have

• The infeasible estimator γ̃ and the first two rows of β̃(.), denoted [β̃(.)]1:2,
satisfy the asymptotic properties that

•
√

N(γ̃ − γ) →d N (0, Σ̃−1Ψ̃Σ̃−1),

•
√

Nh([β̃(x)]1:2 − [β(x)]1:2) →d N (0, Ω−1(x)Φ̃(x)Ω−1(x)).

• The feasible estimator γ̂ and the first two rows of β̂(.), denoted [β̂(.)]1:2,
satisfy the asymptotic properties of the infeasible estimators.

• Here, Σ̃ = E[H̃i2H̃ ′
i2] − E[E[Ẍi2H̃ ′

i2|Xi1](E[H̃i2H̃ ′
i2|Xi1])−1E[Ẍi2H̃ ′

i2]], and
Φ̃(x) can be written by∫

κ2(u)dufX1 (x)A′(x)E[(ϵ2
i2 + e2

i2(βe
2(Xi1))2)Gi2G ′

i2|Xi1 = x ]A(x).

for a matrix A(x).
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Simulation Study



Simulation Study

• Consider the following DGP:

Yi = H̃i + β1(Xi1) + β2(Xi1)Xi2 + ei2 + 0.6ϵi ,

Xi2 = H̃i + π(Xi1)Zi + ei2,

ei2 = 0.4Xi1ei1.

(13)

• Xi1 ∼iid U[−1, 1]

• ei1, ϵi , Zi and H̃i ∼iid N(0, 1)
• For {dj}2

j=1 ∼ Unif[0, 3] and {cj}4
j=1 ∼ Unif[0, 1], we let

β2,1(x) = d1ϕ(x) + d2, (14)

where ϕ(.) is the standard normal density function, and

β2(x) = (2c1 + c2x) exp(−2c3(x − c4)2). (15)

• π(.) is the logistic distribution pdf multiplied by 2.
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Table 1: RMSE estimates for β(.)

N = 250 N = 500

ch Mean MED MAD IQR Mean MED MAD IQR

2.5

β1(.) LC 0.095 0.094 0.017 0.035 0.073 0.072 0.011 0.023
LL 0.105 0.103 0.018 0.036 0.079 0.078 0.013 0.025

β2(.) LC 0.123 0.117 0.026 0.053 0.09 0.085 0.017 0.035
LL 0.125 0.117 0.026 0.054 0.092 0.087 0.017 0.035

5

β1(.) LC 0.071 0.068 0.017 0.036 0.054 0.051 0.012 0.024
LL 0.076 0.073 0.018 0.037 0.058 0.057 0.013 0.026

β2(.) LC 0.195 0.192 0.03 0.06 0.134 0.133 0.019 0.039
LL 0.112 0.104 0.028 0.057 0.083 0.078 0.018 0.038

• Bandwidth: chN−0.3

• RMSE is computed as

RMSE =

(
1
N

N∑
i=1

(β̄s(Xi1) − βs(Xi1))

)1/2

,
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Figure 1: Estimates of β1(.) Figure 2: Estimates of β2(.)

Functional coefficient estimates computed with the LC (black) and LL (green).
The true coefficients are in blue solid line.
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Extension:
Linear First Stage without nonlinearity w.r.t. Xit−1



Extension: Semi-parametric estimation without dynamic structure of Xit

• So far, it has been assumed that Xi2 = LGi2 (Xi2|Xi1) + ei2(Xi1).

• The endogeneity of Xi2 comes from the endogenous adjustment to the
initial treatment Xi1.
e.g., Chinese import exposure at time 1 → endogenous change in
industries → induces technical shock at time 2.

• In practice, technology shocks are often driven by unobservable factors
that are not included in the model and those are often “persistent”.

• For example, suppose that

εi1 = ρ0
1ei1 + ηi1 and εi2 = ρ1εi1 + ρ0

2ei2 + ηi2 (16)

where eit = Xit − LGit (Xit).

• Having only ei2 as a control function is not enough and the above
approach needs a slight modification.
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Extension: Semi-parametric estimation without dynamic structure of Xit

• Information on instruments for time t = 1 is needed.

• fit : collection of instruments at time t, e.g., fi1 = Zi1, fi2 = (Zi1 Zi2).

• Assume the standard linear first stage: for t = 1, 2,

Xit = f ′
itαt + H ′

itρt + eit

where E[eit |fit , H̃it ] = 0 and the matrix E[(f ′
it H ′

it)′(f ′
it H ′

it)] is of full rank.

• Modified control function assumption:

E[εi2|fi2, H̃i2, ei1, ei2] = E[εi2|ei1, ei2] (17)

• Identification from the above:

E[εi2|Xi1, Xi2, Zi1, Zi2, H̃i2, ei1, ei2]
=E[εi2|Zi1, Zi2, H̃i2, ei1, ei2] = E[εi2|ei1, ei2]

• Assume E[εi2|ei1, ei2] is linear in ei1 and ei2.
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Extension: Estimation procedure

• β(.) = (β1
1(.), β0

2(.))′ and γ−1 = (γ′
2, γ′

e)′

• Ẍi2 = (1 Xi2)′ and Ḧi2 = (H̃ ′
i2 ei1 ei2)′.

• D(x) be N × 4 matrix whose ith row is (Ẍ ′
i2

Xi1−x
h Ẍi2).

γ̃ =
(
Ḧ′

2(I − S)′(I − S)Ḧ2
)−1 Ḧ′

2(I − S)′(I − S)Y2,

β̃(x) =
[
(D′(x)K(x)D(x))−1D′(x)K(x)

(
Y2 − Ḧ2γ̃

)]
[1:2]

, for all x ∈ X1,

where S is a N × N smoothing matrix defined by

S =

 (Ẍ ′
12 0′

2)(D′(X11)K(X11)D(X11))−1D′(X11)K(X11)
...

(Ẍ ′
N2 0′

2)(D′(XN1)K(XN1)D(XN1))−1D′(XN1)K(XN1)

 .

• γ̂ and β̂(.) are the feasible version of γ̃ and β̃(.) obtained using the
estimated control functions.
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Extension: Asymptotic Properties

• The infeasible estimators γ̃ and β̃(.) with known first-stage control
functions satisfy that

•
√

N(γ̃ − γ) →d N (0dh2+1, Σ−1
1 Ψ2Σ−1

1 ),

•
√

Nh(β̃(x) − β(x)) →d N (02, Q−1(x)Φ(x)Q−1(x)), for all x ∈ X1.

• The feasible estimators with unknown first-stage control functions satisfy
that

•
√

N(γ̂ − γ) →d N (0dh2+1, Σ−1
1 (Ψ1 + Ψ2)Σ−1

1 ),

•
√

Nh(β̂(x) − β(x)) →d N (02, Q−1(x)Φ(x)Q−1(x)), for all x ∈ X1.

• Note that Ψ2 = E[ϵ2
i2Ḧ⊥

i2 (Xi)Ḧ⊥
i2 (Xi)′] and Ψ1 = E[ϖjγeγ′

eϖ′
j ] where

ϖjt = E[(Ḧi2 − P′(Xi1)Q−1(Xi1)Ẍi2)G ′
it ](E[GitG ′

it ])−1Gjtejt ,

• In contrast with the previous case, the estimation error comes into the
variance of the functional coefficients.
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Simulation Study

Yi2 = 0.5 + β2(Xi1)Xi2 + e′
i,1:2γe

2 + π2ϵ2t ,

Xi1 = Zi1ρ0
1 + ei1,

Xi2 = Zi1ρ1
1 + Zi2ρ0

2 + ei2,

eit , Zit are randomly drawn from Unif[-0.5,0.5] and Unif[-1,1]

ϵi2 ∼iid N(0, 1), γe
2 = (0.3, 0.4, 0.4)

• CMI: estimator computed with conditional mean independence assumption
• CF: estimator computed with the control function approach

Table 2: RMSE estimates for β2(.)

N = 250 N = 500

ch Mean MED MAD IQR Mean MED MAD IQR

2.5 CF 0.087 0.081 0.017 0.035 0.069 0.066 0.011 0.022
CMI 0.447 0.427 0.070 0.142 0.367 0.359 0.044 0.089

5 CF 0.076 0.068 0.015 0.034 0.051 0.047 0.011 0.023
CMI 0.218 0.214 0.039 0.078 0.186 0.184 0.028 0.055
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Figure 3: Estimated functional coefficient β2(.)

(a) ch = 2.5 (b) ch = 5
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Figure 5: Estimation results at different λ

(a) Average Bias of γ2,1 Estimates (b) Box plots of RMSEs

Notes: Figure 6a reports the average bias of the constant coefficient computed with our approach

(sqaure) and the approach based on the CMI assumption (circle) is reported. Figure 6b reports the

boxplots of the RMSEs of the CF estimates (red) and the CMI estimates (blue).

γe2
21E[e2

i,1]
γe

2E[ei,1:2e′
i,1:2]γe

2
= λ and

λγe′
2 E[ei,1:2e′

i,1:2]γe
2

λγe′
2 E[ei,1:2e′

i,1:2]γe
2 + π2

2
= 0.6,

for λ ∈ {0, 0.2, . . . , 1}.
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When the carryover effect is also path dependent:

Figure 7: Estimated functional coefficients

(a) β1(.) (b) β2(.)
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Empirical Application



Application to Acemoglu et al. (2016)

• ∆Yit = β1
1(∆Xit−1) + β0

2(∆Xit−1)Xit + H̃ ′
itγt + ϵit

• Using the industry-level data of Acemoglu et al. (2016)

• 392 four-digit manufacturing industries over 2 time periods

• Yt : log employment change over 1991-1999 (t = 1) and over 1999-2011
(t = 2).

• Xt : change in U.S. exposure to Chinese import over the same two periods.

• Zt : change in exposure to Chinese import in a set of comparable countries
over the same two periods.

• H̃it includes computer investment, high-tech investment, changes in log
real wage, production employment share and so on.

• The exogeneous variables are standardized
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Application to Acemoglu et al. (2016)

Table 3: Estimation Results

x2 Computer
Investment

High-Tech
Investment

log (Avr.Wage) Change in
real wage

Production
employment

Capital/value
added

Change in
industry share

control 1 control 2

Naive TSLS
-0.3445 -0.1228 -0.1064 1.1675∗∗∗ -0.6300∗∗ -0.3615 -0.1481 0.3951∗

(0.2419) (0.2810) (0.5247) (0.4033) (0.2627) (0.3283) (0.2577) (0.2236)

Dynamic Treatment
-0.5060∗ 0.0410 1.7529∗∗∗ -0.6658 -0.6193∗ -0.0059 0.6311∗∗∗

(0.2632) (0.2029) (0.6623) (0.4922) (0.3279) (0.2249) (0.2093)

Static Treatment
-0.4573∗ 0.2116 1.4795∗ -0.6750 -0.5344∗ -0.0589 0.6398∗∗∗ 1.4301 0.1665
(0.2739) (0.2362) (0.8017) (0.5090) (0.3103) (0.2288) (0.2128) (3.2122) (0.5156)
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Application to Acemoglu et al. (2016)

Table 4: Estimation Results (with x1 < 0.2)

x2 Computer
Investment

High-Tech
Investment

log (Avr.Wage) Change in
real wage

Production
employment

Capital/value
added

Change in
industry share

control 1 control 2

Naive TSLS
-0.2659 -0.4117∗ -0.3604 0.5084∗ -0.1133 -0.9152∗∗∗ -0.1477 0.4235∗∗

(0.1884) (0.2208) (0.3844) (0.2812) (0.2007) (0.2489) (0.1912) (0.1721)

Dynamic Treatment
-0.7455∗∗∗ -0.1723 0.8295∗∗∗ -0.1243 -1.2104∗∗∗ -0.0481 0.5832∗∗

(0.2622) (0.1933) (0.3027) (0.2362) (0.2458) (0.2243) (0.2605)

Static Treatment
-0.1007∗ 0.0142 2.7308∗∗ -0.0226 -0.0751∗∗∗ -0.1063 14.5023∗∗ 27.4410 -0.0503
(0.0571) (0.0574) (1.2683) (0.0256) (0.0259) (0.4050) (6.5019) (23.1810) (0.6722)
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Application to Autor, Dorn and Hansen (2013)

Figure 9: Estimated path-dependent treatment effects

(a) carryover effect (b) contemporaneous effect

(c) carryover effect (static) (d) contemporaneous effect (static)
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Conclusion



Conclusion

• Propose a path-dependent dynamic treatment effect for a short panel setup

• Suggest a semi-parametric estimator based on the control function
approach

• The control function approach is necessary due to the endogeneity of Xit

and to back out the total effect

• Various extensions: SSIV, static first stage, auto-regressive path
dependency

• Still working on the empirical application.

Thank you !

32



Extension: Inference

• For a specific parametric function β(x , b), test

H0 : β(x) = β(x , b) vs. H1 : β(x) ̸= β(x , b).

• e.g., β(x , b) = 0 (signifiance testing), β(x , b) = x ′b (lienarity)

• A
√

N-consistenty estimator of b is available.

Fn = N RSS0 − RSS1

RSS1
, (18)

where RSSs = N−1∑N
i=1 Rs(Xi1) and

Rs(x) =
(

Y2 − D(x)β̃s(x) − ˆ̈H2γ̃
)′

K(x)
(

Y2 − D(x)β̃s(x) − ˆ̈H2γ̃
)

• β̃s(.) estimators under the null.
• γ̃ estimator of γ under the null.

33



• Under the conditions for the limiting distribution of the functional
coefficients, we have

ϱ−1
(

Fn − E[tr(Q−1(Xi1)L(Xi1))]g(0)
hE[ϵ2

i2fX (Xi1)]

)
→d N (0, 1),

where

ϱ2 =
2E[fX (Xi1)tr(Q−1(Xi1)L(Xi1)Q−1(Xi1)L(Xi1))]

∫
g2(u)du

h(E[ϵ2
i2fX (Xi1)])2

with L(Xi1) = E[ϵ2
i2Ẍi2Ẍ ′

i2|Xi1 = x ], λ22 = [Λ]2,2 =
∫

u2κ(u)du and
g(t) =

∫
X1

κ(u)κ(u − t) + λ−1
22 u(u − t)κ(u)κ(u − t)du.

• In practice, size and power of the test depend on the bandwidth parameter
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Extension:
Shift-Share Instrumental Variables



Identification with Shift-share instrumental variables

• An important class of examples is the case with so-called “Shift-Share
Instruments” (SSIV) that is given by

Zℓt =
NI∑
i=1

ωiℓt fit (19)

where i denotes industry and ℓ is location at time t

• ωiℓt : share of industry i in location ℓ s.t.
∑

i ωiℓt = 1

• fit : exogenous shock given to the industry i

• In cross-sectional case, identification and consistency of the TSLS comes
from the exogeneity of fit (Adao et al., 2020) or ωiℓt (Goldsmith-Pinkham
et al., 2020)

• No discussion for the dynamic case.
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Identification with SSIV

• Back to our estimator:
• If we focus on the “contemporaneous treatment effect”, the estimator is(

X̃′
2K1/2(x)PK1/2Z2

(x)K1/2(x)X̃2

)−1
X̃′

2K1/2(x)PK1/2Z2
(x)K1/2(x)Ỹ2.

where for a random matrix A with NL rows, the matrices
PK1/2A(x) = K1/2(x)A(A′K(x)A)−1A′K(x) and
Ã = (I − ι(ι′K(x)ι)−1ι′K(x))A.

• Given the invertibility of Z′
2K(x)X̃2 and Z′

2K(x)Z2, it reduces to

β̂0
2(x) = (Z′

2K(x)X̃2)−1Z′
2K(x)Ỹ2,

36



Identification with SSIV

Z′
2K(x)X̃2 =

∑
ℓ

Zℓ2X̃ℓ2κh(Xℓ1 − x) =
∑

ℓ

∑
i

wiℓ2fi2X̃ℓ2κh(Xℓ1 − x)

=
∑

i

fi2(
∑

ℓ

wiℓ2κh(Xℓ1 − x))
∑

ℓ

wiℓ2X̃ℓ2κh(Xℓ1 − x)∑
ℓ

wiℓ2κh(Xℓ1 − x)

=
∑

i

fi2w̄i2(x)X̄i2(x)

Proposition 1

Suppose that β0
2(.) is continuously differentiable. Then, the SSIV estimator in

(36) equals to the local constant IV estimator β̄0
2(.) associated with the sample

moment condition

N−1
I

∑
i

fi2w̄i2(x)(Ȳi2(x) − X̄i2(x)β̄0
2(x)) = 0,

where w̄i2(x) =
∑

ℓ
wℓi2κh(Xℓ1 − x) and Āi2(x) =

∑
ℓ

wℓi2κh(Xℓ1−x)∑
ℓ′ wℓ′ i2κh(Xℓ′1−x)

Ãℓ2 for

a random variable Aℓ2. 37



Identification with SSIV

In our dynamic case, the identification of the SSIV can be achieved from the
following assumptions

• fit ⊥ (wℓit , εit)|Xℓ(t−1) for all i = 1, . . . , NI and ℓ = 1, . . . , NL;

• {fit}NI
t=1 is i.i.d.;

•
∑

i wℓit = 1 for all ℓ = 1, . . . , NL.

⇒ E[
∑

ℓ

Zℓ2εℓ2|Xℓ1] =
∑

ℓ

E[fi2|Xℓ1]E[
∑

i

wℓi2εℓ2|Xℓ1] =
∑

ℓ

E[fi2|Xℓ1]E[εℓ2|Xℓ1],

and thus

E[
∑

ℓ

Zℓ2(εℓ2 − E[εℓ2|Xℓ1 = x ])|Xℓ1 = x ]

= E[
∑

ℓ

Zℓ2εℓ2|Xℓ1 = x ] −
∑

ℓ

E[εℓ2|Xℓ1 = x ]E[
∑

i

wℓi2fi2|Xℓ1 = x ]

= E[
∑

ℓ

Zℓ2εℓ2|Xℓ1 = x ] −
∑

ℓ

E[εℓ2|Xℓ1 = x ]E[fi2|Xℓ1 = x ] = 0,
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Assumptions

Back

Assumption 1

(a) The density function of Xi1, denoted by fX1 (·), is Lipschitz continuous and
bounded away from zero on its compact support X1.

(b) The kernel function κ(·) is a symmetric density function with a compact
support.

(c) The function β(·) : X1 → R3 is continuously differentiable.

(d) There exists a constant s > 2 such that
supx∈X1 E[max{ϵs

i2, ∥Xi2∥2s , ∥Gi2∥2s}|Xi1 = x ] < ∞ and for some
ς < 1 − s−1 satisfying N2ς−1h → ∞.

(e) Nh5 → 0 and Nh2/(log N)2 → ∞.
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