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Abstract

Financial contagion and systemic risk measures are commonly derived from conditional quan-

tiles by using imposed model assumptions such as a linear parametrization. In this paper, we

provide model free measures for contagion and systemic risk which are independent of the specifi-

cation of conditional quantiles and simple to interpret. The proposed systemic risk measure relies

on the contagion measure, whose tail behavior is theoretically studied. To emphasize contagion

from extreme events, conditional quantiles are specified via hierarchical Archimedean copula. The

parameters and structure of this copula are simultaneously estimated by imposing a non-concave

penalty on the structure. Asymptotic properties of this sparse estimator are derived and small

sample properties illustrated using simulations. We apply the proposed framework to investigate

the interconnectedness between American, European and Australasian stock market indices, pro-

viding new and interesting insights into the relationship between systemic risk and contagion. In

particular, our findings suggest that the systemic risk contribution from contagion in tail areas is

typically lower during times of financial turmoil, while it can be significantly higher during periods

of low volatility.

JEL classification: C40, C46, C51, G1, G2

Keywords: Conditional quantile, Copula, Financial contagion, Spill-over effect, Stepwise penalized

ML estimation, Systemic risk, Tail dependence.

1. Introduction
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financial markets and financial institutions. The reason is that high connectivity among financial

markets/institutions causes additional risk which is transmitted between market participants. For

example, due to the connectedness of financial firms, risk managers have an increased interest in the

risk transmitted to their institutions from other institutions, as the exposed uncertainty has to be

taken as given and uncontrollable. Moreover, policy makers and regulators aim at identifying risk

vectors that will enable them to react to situations of market stress in an suitable manner. As a

result of the crisis, many concepts for measuring spill-over effects (contagion) and systemic risk have

been proposed with different advantages and disadvantages. See, e.g., Ishikawa, Kamada, Kurachi,

Nasu, and Teranishi (2012) or Brunnermeier and Oehmke (2013) for a summary of recent empirical

literature, and Bisias, Flood, Lo, and Valavanis (2012) for a survey on quantitative approaches to the

measurement of systemic risks. A few of these approaches are briefly reviewed in the sequel.

Diebold and Yilmaz (2014) suggest a consistent and handy tool for describing connectedness between

financial institutions on the basis of corresponding realized log-volatilities. The proposed connected-

ness and systemic risk measures are constructed from generalized forecast error variance decomposi-

tions, whose computation requires an estimate of the covariance matrix of firm-specific idiosyncratic

shocks. The measures are naturally forward looking and allow statements concerning bilateral con-

tagion (between two risk factors), multilateral contagion (between several risk factors) and systemic

risk (pollution among all risk factors). However, the underlying time series should be a proxy for risk,

as the concept of Diebold and Yilmaz (2014) is based on the conditional mean of the underlying time

series. For example, the body of the distribution of financial returns does not appropriately reflect

risk, for which reason the proposed measures cannot be interpreted as risk-channel when applied to

financial returns.

Further approaches study systemic risk based on credit risk models to assess the probability of default.

For example, Lucas, Schwaab, and Zhang (2014) and Cherubini and Mulinacci (2015) use CDS prices

to investigate spill-over effects of sovereign default risks within the Euro-area and contagion within

the European banking system, respectively. While Lucas et al. (2014) apply a methodology using

dynamic skewed-t distributions, Cherubini and Mulinacci (2015) build their analysis on hierarchical

Archimedean copulae (HAC). In general, copulae became a standard tool for modeling non-linear

and asymmetric dependence among risk factors, which are also interesting features for describing

characteristics of financial systems. One of the key issues in measuring risks within a financial system

is to appropriately specify the dependence structure between financial assets. This is of even greater

importance, since, for example, Coval, Jurek, and Stafford (2009); Zimmer (2012), conclude that poor

dependence models can be considered as one of the reasons for the collapse of CDO markets and

related securities, and the subsequent financial crisis.

Based on financial returns, contagion and systemic risk is commonly measured by variations of the

expected shortfall and Value-at-Risk (VaR). For example, Acharya, Pedersen, Philippon, and Richard-

son (2010) present the marginal and systemic expected shortfall which are related to economic theory

and employed to assess the extent a financial institution is affected by systemic events. Adrian and

Brunnermeier (2011) derive contagion and systemic risk measures from conditional quantile functions

and define CoVaR as the VaR of the return distribution of all system constituents conditional on

the VaR of a financial institution. The authors mainly investigate the contribution of financial insti-

tutions to systemic risk. Theoretical properties of marginal/systemic expected shortfall and CoVaR
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are comprehensively discussed in Mainik and Schaanning (2014). Shortcomings of the quantitive Co-

VaR approach such as the omitted variables bias and the linear-model specification are addressed in

Hautsch, Schaumburg, and Schienle (2015) and Härdle, Wang, and Yu (2015). An alternative ap-

proach is discussed in White, Kim, and Manganelli (2015), who extend the conditional autoregressive

VaR approach (CAViaR) of Engle and Manganelli (2004) and propose Vectorautoregressions for VaR

in order to study dynamics of tail dependence among constituents over time.

Differences between the above mentioned approaches in measuring contagion and systemic risk moti-

vate us to develop a unified framework for describing contagion in tail areas and measuring systemic

risk arising from contagion, e.g., from spill-over effects of tail-events. To the best of our knowledge,

the difference between conditional and unconditional systemic risk has been ignored in the literature

so far, albeit systemic risk due to tail-events can obviously be categorized as conditional systemic risk.

This distinction plays a fundamental role in the empirical case study below.

In line with several discussed approaches, our study relies on a portfolio of risk-factors, e.g., negative

log-returns. The risk in tail areas is measured with conditional quantile functions. To investigate the

effect from one risk factor to another, we define bilateral contagion as the normalized partial derivative

of the conditional quantile function with respect to the risk-transmitting component. Quantities of

this type are denoted as elasticities in economics and their properties are well established. Moreover,

we present the bilateral contagion measure in terms of unconditional quantiles, unconditional quantile

densities and a conditional copula-based quantile to study its theoretical properties. For example,

contagion in tail areas is shown to be mainly driven by the degree of heterogeneity of involved risks and

the underlying dependence structure is shown to be of minor importance in the limit. A heterogenous

relation typically causes weak contagion from high-risks to low-risks (e.g., to a risk factor with an

exponential tailed distribution) and strong contagion from low-risks to high-risks (e.g., to a risk factor

with a heavy tailed distribution).

Our approach straightforwardly yields a matrix of bilateral contagion measures and we derive multilat-

eral measures to explore contagion in tail areas between sub-portfolios. In particular, these are shown

to be weighted averages of bilateral contagion measures, where the weights are the corresponding risk

measures. Likewise, a conditional systemic risk measure for the entire portfolio is derived. Due to the

representation of the systemic risk measure as weighted average, negative dependencies between risks

lead naturally to diversified externalities and reduce systemic risk. Moreover, high-risks contribute

more to systemic risk, which is driven by both contagion and tail-risk, because of the representation

as weighted average of bilateral contagion measures.

To meet the tradeoff between flexibility in tail areas and representing the portfolio with small number

of parameters, in our empirical application, we parameterize the conditional quantile function via HAC

and unconditional quantile functions. Using results on non-concave penalized Maximum Likelihood

(ML) estimation, see Fan and Li (2001), we propose a multi-stage estimation procedure for HAC

similar to Okhrin, Okhrin, and Schmid (2013c). In particular, we estimate the parameters and

aggregate the structure of HAC simultaneously by imposing a non-concave penalty on the structure.

This can be interpreted as penalizing a diversified dependence structure in favor of equi-dependence

while accounting for the curvature of the log-likelihood function. Equi-correlation concepts are broadly

accepted in the finance literature, e.g., Engle and Kelly (2011), but they have been unattended in the

copula literature. The asymptotic properties of our estimation and data-driven aggregation procedure
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are derived and small sample properties are illustrated in a simulation study.

As the proposed estimation method allows us to represent the conditional quantile functions with

a few parameters, we incorporate time-varying parameters in a rolling window analysis. Changing

dependence structures during periods of financial turmoil have been recognized in several studies. For

instance, Oh and Patton (2014); Christoffersen and Jacobs (2014) find that financial assets tend to

show a stronger dependence during crisis periods than in calm periods. We illustrate the behavior of

the proposed contagion and systemic risk measures for nine major stock indices and emphasize the

Australasian area. We use daily data on log-returns from January 1, 2007 to April 30, 2014 and show

that the dependence structure of the considered system can be traced back to five parameters. We

examine bilateral contagion, which supports the theoretical properties of the contagion measure. Our

systemic risk measure provides new insights and highlights interesting features which have not been

discussed in this context. In particular, while our analysis provides the expected result that an in-

crease in dependence between financial markets also increases systemic risk, the developed conditional

systemic risk measure also properly describes the part of systemic risk arising from contagion in tail

areas. As higher order moments like variances are linked to unconditional quantiles, the conditional

systemic risk contribution from contagion in tail areas decreases during times of financial turmoil.

In other words, our findings suggest that a potential breakdown caused by contagion in tail areas is

unlikely during times of high volatility and more probable during calm times.

The paper is organized as follows. Contagion and systemic risk measures are derived in Section 2.

Section 3 discusses the estimation details and Section 4 illustrates the performance of the procedure

in a Monte Carlo simulation. Empirical results are presented in Section 5, while Section 6 concludes.

Regularity assumptions are stated in Appendix A and proofs are moved to Appendix B.

2. Defining contagion and systemic risk

Let X be a d-dimensional random vector X = (X1, . . . , Xd)
> with cumulative distribution function

(cdf) F (x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd) and define the random vector X6k = (X1, . . . , Xk−1,

Xk+1, . . . , Xd)
>, i.e., random variable Xk is not included in X6k. The cdf F (·) is assumed to be differ-

entiable and strictly monotonically increasing in each argument. Given this notation, the conditional

cdf is denoted by

FXk|X6k=x 6k(xk) = P(Xk ≤ xk|X1 = x1, . . . , Xk−1 = xk−1, Xk+1 = xk+1, Xd = xd). (1)

As FXk|X6k=x 6k(xk) is strictly monotonically increasing in xk, its conditional quantile function is

QXk|X6k=x 6k(α)
def
= F−1Xk|X6k=x 6k(α) with α ∈ (0, 1). (2)

In a time series context, the event {X6k = x 6k} might refer to past events, e.g., the previous period’s

VaR as in Engle and Manganelli (2004). Define Uj
def
= Fj(Xj) and uj

def
= Fj(xj) with Uj ∼ U(0, 1)

and uj ∈ (0, 1), j = 1, . . . , d. Following Sklar (1959), F (·) can be decomposed into its marginal cdfs,

Fj(xj), j = 1, . . . , d, and a copula function C(·) describing the dependence between the components

of X such that F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}. Overviews of copulae are given in Joe (1997)
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and Nelsen (2006), while recent developments for mathematical and quantitative finance are presented

in Jaworski, Durante, and Härdle (2013). Analogously to (1), the conditional copula is given by

CUk|U 6k=u6k(uk) = P(Uk ≤ uk|U1 = u1, . . . , Uk−1 = uk−1, Uk+1 = uk+1, Ud = ud), (3)

where {U 6k = u6k} = {F6k(X6k) = F6k(x 6k)} denotes the event {F1(X1) = F1(x1), . . . , Fk−1(Xk−1) =

Fk−1(xk−1), Fk+1(Xk+1) = Fk+1(xk+1), . . . , Fd(Xd) = Fd(xd)}. Let Qj(α) = F−1j (α), j = 1, . . . , d,

be the unconditional marginal quantile functions, α ∈ (0, 1). Based on the conditional copula and the

unconditional quantile functions, the conditional quantile from (2) can be rewritten as

QXk|X6k=x 6k(α) = Qk{C−1Uk|U 6k=u6k(α)} = Qk{C−1Fk(Xk)|F 6k(X6k)=F6k(x 6k)(α)}, (4)

where the inverse of C·|·(uk) is denoted by C−1·|· (α). The latter is called a c-quantile and introduced

in Bouyé and Salmon (2009). More recently, Bernard and Czado (2015) provide a comprehensive

study about non-linear conditional (c-)quantiles and compare their properties with linear conditional

quantiles, see Koenker and Bassett (1978). In particular, the theoretical discussion of Bernard and

Czado (2015) is not encouraging if one wishes to approximate non-linear conditional quantiles with

linear conditional quantiles especially if the conditioning variable is related to a tail-event.

Let fj(xj) = F ′j(xj) be the unconditional density function and let qj(α) = Q′j(α), α ∈ (0, 1), be the

unconditional quantile density function popularized in Parzen (1979) and Jones (1992), j = 1, . . . , d.

Based on (4), the derivative of QXk|X6k=x 6k(α) with respect to x`, ` 6= k, is calculated as

q`Xk|X6k=x 6k(α)
def
=

∂

∂x`
QXk|X6k=x 6k(α) =

qk{C−1Uk|U 6k=u6k(α)}
q`(u`)

∂

∂u`
C−1Uk|U 6k=u6k(α). (5)

Due to the fact that F`(X`) ∼ U(0, 1), k 6= `, the conditional quantile QXk|X6k=x6k(α) = QXk|U 6k=u6k(α)

does not depend on the specific laws of X`, ` 6= k, see, e.g., Bernard and Czado (2015). However,

the partial derivative of the conditional quantile function q`Xk|X6k=x 6k(α) depends on the specific law

of X` via the quantile density function q`(·), see Equation 5. Where possible, we follow a short

hand notation in the sequel, e.g., QXk|X6k=Q 6k(α)(α) = QXk|X6k=x 6k(α)
∣∣∣
x 6k=Q6k(α)

and QXk|U 6k=α(α) =

QXk|U 6k=u6k(α)
∣∣∣
u6k=α

, whereQ6k(α) = {Q1(α), . . . , Qk−1(α), Qk+1(α), . . . , Qd(α)}> and α = (α, . . . , α)>

are vectors of same size as x 6k and u6k.

To put the previous statements in an economic context, consider two risks Xk and X` taking values on

the real line, where “good events” like profits are on the negative part and “bad events” such as losses

on the positive part of the real line. Let QXk|X`
(α) be a linear conditional quantile model of the form

QXk|X`
(α) = a(α) + b(α)X` with α ∈ (0, 1). For small values of α, Adrian and Brunnermeier (2011)

propose QXk|X`=Q`(α)(α) = QXk|U`=α(α) as a risk measure, which is independent from the specific

law F`(·). In order to measure contagion, the focus, nevertheless, changes from the risk measure given

by QXk|U`=α(α) to the coefficient b(α) = q`Xk|U`=α
(α), which depends on the quantile density of X`

according to (5). Roughly speaking, b(α) carries information about (i) the relation of unconditional

risk sensitivities through the quantile density functions and (ii) the sensitivity of dependence caused

risk ∂
∂u`

C−1Uk|U`=u`
(α)
∣∣∣
u`=α

.
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2.1. Bilateral contagion

To stay in an economic context, let X1, . . . , Xd be a portfolio of continuously distributed risks, such as

negative log-returns of financial institutions or financial markets. By normalizing the derivative of the

conditional quantile given in (5) with Q`(u`)/Qk{C−1Uk|U 6k=u6k(α)}, obtain the standardized contagion

measure

Su6kk←`
def
=

Q`(u`)qk{C−1Uk|U 6k=u6k(α)}

q`(u`)Qk{C−1Uk|U 6k=u6k(α)}
∂

∂u`
C−1Uk|U 6k=u6k(α), (6)

where u` is a component of the vector u6k according to the introduced notation. The bilateral contagion

measure at level α ∈ (0, 1) is then defined as Sαk←`
def
= Su6kk←`

∣∣
u6k=α

. An expression of form (6) is

commonly considered as partial elasticity, c.f., Sydsæter and Hammond (1995). Due to non-linearities

of conditional quantiles, we import the concept of elasticities in order to interpret the effect on the

risk measure QXk|U 6k=α(α) by a marginal change in x`: If the contagion tends to zero, i.e., |Sαk←`| ≈ 0,

the risk measure is said to be robust with respect to marginal changes in x`. Conversely, the risk

measure is said to be sensitive or fragile with respect to marginal changes in x`, if |Sαk←`| ≈ ∞. If

|Sαk←`| ≈ 1, the risk of Xk measured through a conditional quantile behaves proportional with respect

to changes in x`. This approach is often described as ceteris paribus analysis, i.e., analyzing the effect

of a marginal change in x`, while other variables are held constant. The copula representation of Sαk←`
is convenient for exploring the theoretical properties of the contagion measure. Nonetheless, Sαk←`
can also be expressed with an implicit assumption on the copula C(·), i.e.,

Sαk←`
def
=

x`
QXk|X6k=x 6k(α)

∂

∂x`
QXk|X6k=x 6k(α)

∣∣∣∣∣
x 6k=Q 6k(α)

, (7)

where x` is one component of the vector x 6k. The computation of bilateral contagion measures via

(7) is useful for many applications, where no explicit assumption about the dependence structure is

imposed. For ease of notation let Sαk` = Sαk←` in the following and let {Sαk`}dk,`=1 be the contagion

matrix collecting all partial elasticities. The contagion matrix has zeros on its diagonal and is (usu-

ally) non-symmetric. While zeros on the diagonal are due to absence of contagion to oneself, the

asymmetry leads to the following conclusions: If Sαk` and Sα`k have positive signs, the risks Xk and

X` are substitutes. Conversely, if Sαk` and Sα`k have negative signs, the risks are complements. No

statement can be made, if Sαk` and Sα`k have different signs.

In order to study the behavior of the proposed contagion measure in tail areas, we introduce the

concepts of tail-monotonicity and conditional tail independence. Parzen (1979) calls a density func-

tion f(x) with cdf F (x), Q(u) = F−1(u), and tail exponent γ > 0 tail-monotone, if (i) it is non-

decreasing on an interval to the right of a = sup{x : F (x) = 0} and non-increasing on an interval

to the left of b = inf{x : F (x) = 1}, with −∞ ≤ a ≤ b ≤ ∞; (ii) f(x) > 0 on x ∈ (a, b) and

supx∈(a,b) F (x){1− F (x)}|f ′(x)|/f(x)2 ≤ γ. Numerous probability laws have tail-monotone densities

such as the Gaussian, Pareto and Cauchy laws. The tail exponent is defined as

γ = lim
u→1

(u− 1) (log [f {Q(u)}])′ = lim
u→1

(1− u) [log{q(u)}]′ ,
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where [log{f(x)}]′ is the score of the underlying probability law and γ characterizes (i) short-, (ii)

exponential- and (iii) long tails for (i) γ < 1, (ii) γ = 1 and (iii) γ > 1 respectively. Furthermore, let

C−1Uk|U`=u`
(α) be the marginal c-quantile, i.e.,

C−1Uk|U`=u`
(α) = C−1Uk|U 6k=u6k(α)

∣∣∣
u1=1,...,u`−1=1,u`+1=1,...,ud=1

,

and let Su`k` be the associated contagion measure. The notation z(x) ∼ y(x), x → a means limx→a
z(x)/y(x) = 1. Bernard and Czado (2015) call Xk and X` conditionally independent in the right

tail, if QXk|X`=x`(α) ∼ g(α), x` → ∞, α ∈ (0, 1), where the function g(α) is independent of x`.

Asymptotic conditional tail independence generally describes a flat conditional quantile function. For

example, the Gaussian copula shows conditional dependence but unconditional independence in both

tails. Based on the introduced concepts, we summarize the limiting behavior of Su`k` in the right tail

area in the following statement.

Proposition 1. Let Xk and X` have tail-monotone densities fk(xk) and f`(x`) with tail exponents

γk and γ`.

(a) If Xk and X` are conditionally dependent such that C−1Uk|U`=u`
(α) → 1, u` → 1, with γk ≥ 1 and

γ` > 1, then Su`k` →
γk−1
γ`−1 as u` → 1.

(b) If Xk and X` are conditionally dependent such that C−1Uk|U`=u`
(α) → 1, u` → 1, with γk > 1 and

γ` = 1, then Su`k` →∞ as u` → 1.

(c) If Xk and X` are conditionally independent in the right tail with γk ≥ 1 and γ` ≥ 1, then Su`k` → 0

as u` → 1.

This statement basically rules out contagion in the right tail area, if Xk and X` are conditionally

tail independent and stresses the importance of conditional tail dependence for analyzing contagion

in tail areas. Furthermore, if the asymptotic behavior of the marginal c-quantile can be described by

C−1Uk|U`=u`
(α)→ 1, u` → 1, and the marginal distributions have long or exponential tails, the specific

dependence between Xk and X` can be neglected in the limit. The contagion effect is dominated by

the relation of the probability laws and independent of the level α ∈ (0, 1) as u` → 1. To provide

some intuition for heterogenous marginal cdfs and tail-dependence in the left tail area, consider the

following bivariate example:

Suppose Xk ∼ N(0, 3) and X` ∼ t3 with identical first and second moments and tail exponents γk = 1

and γ` = 4/3. As shown in the left panel of Figure 2.1, |Qk(u)| < |Q`(u)| and qk(u) < q`(u) for a small

u which is clear given the differences in the tails. In addition, let {Fk(Xk), F`(X`)}> ∼ C(uk, u`; θ),

where C(uk, u`; θ), θ = 2, refers to the Clayton copula supporting dependence in the left tail area. As

the Clayton copula is restricted to positive dependence and is exchangeable, i.e., C(uk, u`) = C(u`, uk),

Figure 2.2 reveals 0 < ∂
∂u`

C−1Uk|U`=u`
(α) = ∂

∂uk
C−1U`|Uk=uk

(α) and α ≥ C−1U`|Uk=uk
(α) = C−1Uk|U`=u`

(α) for

the considered levels α = 0.0001 and α = 0.5. These properties can also be shown analytically. Com-

bining assumptions about marginal cdfs and dependence implies that Qk(uk)/Q`{C−1U`|Uk=uk
(α)} < 1

and q`{C−1U`|Uk=uk
(α)}/qk(uk) > 1 in the left tail. As a result, Suk`k → ∞ as uk → 0 irrespective of α,

which is indicated by the dashed lines in the right panel of Figure 2.1. Moreover, the solid lines in
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the right panel of Figure 2.1 clearly illustrate that Su`k` → 0 as u` → 0, although the copula supports

dependence in the lower left tail area. This is due to the fast convergence of q`(u`)→∞ as u` → 0.

The economic interpretation of the example can be summarized as follows: Given a small value of α,

a marginal change in xk referring to Xk with low-risk, e.g., Xk ∼ N(0, 3), leads to a significant change

in QX`|Uk=α(α) related to X` with high-risk, e.g., X` ∼ t3. Yet, the reverse statement does not hold!

An important implication for managing financial crises is as follows: An intensification of the distress

of a low-risk financial market can amplify a financial crisis due to contagion; however low-risk markets

are significantly less affected if the increased distress is in high-risk markets. All in all, this example

emphasizes the importance of marginal probability laws and their relations to each other for studying

contagion in tail areas.

2.2. Contagion from and to sub-portfolios

Deriving multilateral contagion measures is notional more tedious than deriving bivariate contagion

measures, but relies on the same idea. To compactly formulate contagion effects from or to a set of

risks, denote by K` and Lk the sets of indices including all indices expect ` and k respectively, i.e.,

K` = {1, . . . , d} \ ` and Lk = {1, . . . , d} \ k.

We firstly aim at exploring the simultaneous effect on all variables with index in K`, i.e., on X1 or

. . . or X`−1 or X`+1 or . . . or Xd by a marginal change in x`. The conditional independence of the

events {Xk|X6k = x 6k}, k ∈ K`, justifies building an aggregated function by adding up QXk|X6k=x 6k(α),

k ∈ K`, which describes the aggregated effect on all risks transmitted by X`. The contagion effect is

then obtained by differentiating and normalizing the corresponding aggregated risk measure. More

formally, the derivative of the aggregated function at x` for x 6k = Q6k(α) is given by

∂

∂x`

∑
k∈K`

QXk|X6k=x 6k(α)

∣∣∣∣∣∣
x 6k=Q 6k(α)

=
∑
k∈K`

q`Xk|U 6k=α(α),

whose normalization with Q`(α)/
∑

k∈K`
QXk|U 6k=α(α) leads to the contagion measure

SαK`←`
def
=

∑
k∈K`

QXk|U 6k=α(α)Sαk`∑
k∈K`

QXk|U 6k=α(α)
. (8)

As the contagion measure (8) is a weighted average of bivariate contagion measures Sαk`, diversification

of risks is naturally incorporated. More precisely, contagion effects Sαk` to a sensitive risk Xk, i.e., to

a risk with a sensitive risk measure QXk|U 6k=α(α), contribute more to the aggregated risk of the entire

sub-portfolio K`. Moreover, (8) is a signed elasticity and shares the same interpretation as partial elas-

ticities Sαk`, i.e., SαK`←` describes the marginal effect on the aggregated function
∑

k∈K`
QXk|U 6k=α(α)

by a marginal change in x`. For instance, a p%-change in x` causes a (SαK`←` · p)%-change in the

aggregated risk measure.

Secondly, consider the marginal effect on risk measure QXk|U 6k=α(α) by a simultaneous marginal-

change in all x` with ` ∈ Lk. Let v = Q6k(α)/‖Q6k(α)‖2, where ‖ · ‖2 denotes the Euclidean norm with
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‖v‖2 = 1. Then, the directional derivative of the function QXk|X6k=x6k(α) at x 6k along v is given by

∇x 6kQXk|X6k=x 6k(α)
∣∣∣
x6k=v

=
1

‖Q6k(α)‖2

∑
`∈Lk

Q`(α)q`Xk|U 6k=α(α). (9)

Normalizing (9) by 1/QXk|U 6k=α(α) results in a signed elasticity, which however does not straightfor-

wardly permit classifying risk Xk as stable or fragile when compared with 1. Simply speaking, this is

due to the fact that a change in each component of the vector x6k (“explanatory variables”) cannot be

compared with a change in a scalar QXk|U 6k=u6k(α) (“dependent variable”). Note, however, that this

problem does not arise for the cases discussed above, see Equation 8, since the risk measure is a scalar

valued function and a scalar variable is marginally changed. Let p6k = (p1, . . . , pk−1, pk+1, . . . , pd)
>

collect the considered p`%-change in each component of x 6k. Define ‖y‖ = (
∑q

j=1 y
q
j )

1/q, where q

denotes the number of components in y. Note that ‖y‖ takes implicitly the size of y into account.

Then, normalization of (9) with {‖ p6k ‖QXk|U 6k=α(α)}−1 gives the contagion measure

Sαk←Lk
def
=

1

‖ p6k ‖‖Q6k(α)‖2

∑
`∈Lk

Sαk`. (10)

Given a simultaneous 1%-change in each x`, i.e., p` = 1, ` ∈ Lk, the risk measure QXk|U 6k=α(α) changes

approximately by (Sαk←Lk)%. Due to the normalization with ‖ p6k ‖ in (10), the contagion measure

Sαk←Lk allows categorizing risk Xk as robust or stable if Sαk←Lk < 1 and sensitive if Sαk←Lk > 1. Note

that especially ‖ p6k ‖ = 1 for d = ∞, which reflects minor importance of each component in v as

d→∞.

In the spirit of Adrian and Brunnermeier (2011), SαK`←` and Sαk←Lk have the following economic

interpretation: SαK`←` measures the pollution of a financial institution X` to the financial system in

distress, i.e., each component X6k is at its VaR and thus, takes values X6k = Q6k(α). Likewise, Sαk←Lk
describes the extent institution Xk is affected in case of a systemic event. A simultaneous change in

x 6k can also be interpreted as “joint” shock affecting several risks simultaneously, which relates our

concept to factor-based models from credit risk analysis. Note that both presented measures Sαk←Lk
and SαK`←` are special cases of a general contagion measure SαK←L describing the effect on sub-portfolio

K by a simultaneous change in each component of sub-portfolio L, with K ∩ L = ∅.

2.3. Systemic risk

Systemic risk of a portfolio is endogenous by construction, as each included risk contributes to and is

affected by systemic risk. As illustrated in the introduction, there are several ways to define systemic

risk. Our definition presented below is derived from contagion effects, for which reason we call it

conditional systemic risk. The idea is relatively simple: we build all possible “leave-one-out” portfolios

and check, whether the“left-out-risk”pollutes the sub-portfolio or is polluted by a simultaneous change

in the components of the respective sub-portfolio. Normalization of the aggregated contagion effects

yields the result. Our approach characterizes precisely that component of systemic risk arising from

contagion in the tail areas. This contagion-based definition is in line with other definitions of systemic

risk, e.g., Diebold and Yilmaz (2014), which do not distinguish between conditional and unconditional

10



systemic risk though.

Formally, we construct an (endogenous) aggregated risk measure for the entire portfolio of risks as

d∑
`=1

∑
k`∈K`

QXk`
|X6k`=x 6k`

(α), (11)

similar to that for measuring multilateral contagion. Let p be a d-dimensional vector of 1’s. Defining

Q(α) = {Q1(α), . . . , Qd(α)}> as well as v = Q(α)/‖Q(α)‖2 and differentiating (11) at x along v

produces

∇x
d∑
`=1

∑
k`∈K`

QXk`
|X6k`=x 6k`

(α)

∣∣∣∣∣∣
x=v

=
1

‖Q(α)‖2

d∑
`=1

∑
k`∈K`

Q`(α)q`Xk`
|U 6k`=α(α). (12)

Using qk`Xk`
|U 6k`=α(α) = 0 for all k`, normalization of (12) leads to our notion of systemic risk

Sα def
=

1

‖ p ‖‖Q(α)‖2

∑d
k,`=1QXk|U 6k=α(α)Sαk`

(d− 1)
∑d

k=1QXk|U 6k=α(α)
, (13)

where the normalization with ‖ p ‖ is for the same reason as above. The proposed conditional systemic

risk measure is also a weighted average of bivariate contagion measures Sαk`. Despite the underlying

endogeneity, Sα shares the interpretation of an elasticity in terms of categorizing a portfolio of risks

as stable if Sα ≈ 0 and fragile if Sα > 1.

3. Estimation details

In our empirical application below, we impose a structure on the conditional quantiles that supports

the modeling of (conditional) tail dependence, as pure non-parametric estimation of introduced conta-

gion and systemic risk measures is accompanied by an inflated variance. Recently, dozens of different

copula models with their weak and strong points have been proposed in the literature. Worth men-

tioning for modeling higher dimensional random vectors are vines, c.f., Bedford and Cooke (2001,

2002); Kurowicka and Joe (2011), factor copulas, see Oh and Patton (2014), and HAC. As shown

in Okhrin, Okhrin, and Schmid (2013b); Okhrin et al. (2013c), HAC are flexible enough to capture

the nature of dependence in financial data and they also support the modeling of tail dependence in

a diversified way. Therefore, in this paper we concentrate only on this type of copulas which allow

for a more flexible and intuitive dependence structure in comparison to simple Archimedean copulas,

and need a smaller number of parameters compared to elliptical copulas (Okhrin et al. 2013b). In

particular the latter is an important property as it comes to modeling the dependence between a high

number of financial time series. In this section, we formally introduce HAC and then discuss the

penalized estimation problem with the asymptotic properties of the estimator.

3.1. Hierarchical Archimedean copula
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HAC generalize Archimedean copulae, where in the latter arguments are exchangeable, making them

inappropriate for measuring scale free dependence for a large dimensional vector X. HAC, however,

are recursively built by substituting arbitrary marginal distributions of an Archimedean copula by a

further Archimedean copula. This procedure can be subsequently applied for structuring the depen-

dence between the random variables. For instance, Hofert and Scherer (2011) and Choroś-Tomczyk,

Härdle, and Okhrin (2013) motivate the structure by clustering economic sectors and Okhrin, Oden-

ing, and Xu (2013a) by geographical location. HAC are interesting from a statistical perspective, as

the induced dependencies are non-elliptical, non-exchangeable and allow for modeling joint extreme

events. Further examples for applications of HAC in quantitative finance and risk management can

be found in Savu and Trede (2010) and Härdle, Okhrin, and Okhrin (2013). Beyond that, Hering,

Hofert, Mai, and Scherer (2010) induce sub-group specific dependencies via Lévy subordinators and

Härdle, Okhrin, and Wang (2015) discuss time-variations, where the structure depends on the hidden

state of a Markov chain.

Formally, HAC rely on generator functions φ ∈ L = {φ : [0;∞) → [0, 1] |φ(0) = 1, φ(∞) =

0; (−1)kφ(k) ≥ 0; k ∈ N} and its non-decreasing and convex inverse (−1)kφ(k)(x), x ∈ [0,∞). For

instance, a 4-dimensional Archimedean copula is given by φ{φ−1(u1) +φ−1(u2) +φ−1(u3) +φ−1(u4)}.
As shown in Figure 3.1, inducing a binary structure leads already to a variety of possible HAC, e.g.,

Ck{C`1(u1, u2), C`2(u3, u4)} = φk

[
φ−1k [φ`1{φ

−1
`1

(u1) + φ−1`1 (u2)}] + φ−1k [φ`2{φ
−1
`2

(u3) + φ−1`2 (u4)}]
]
,

where φk denotes the generator at the higher hierarchical level and φ`j the generator of the lower

nesting level, j = 1, 2. Let d` sub-copulae be rooted at hierarchical level `. If the nesting conditions –

(i) φk, φ`j ∈ L and (ii) φ−1k ◦φ`j having completely monotone derivatives – are satisfied for j = 1, . . . , d`,

HAC are properly defined distribution functions according to McNeil (2008). Furthermore, all r-

variate marginal distribution functions are HAC, r ≤ d, which only depend on generators at lower

hierarchical levels, see Okhrin et al. (2013c). Weaker conditions on the decomposition of generators are

stated in Rezapour (2015), but not necessary for our purpose, as we restrict the following discussion to

single parameter families of φθk and do not allow mixtures of them within one HAC. This restriction

simplifies the “hard to check” nesting condition to the parameter ordering θk ≤ θ`j , j = 1, . . . , d`,

for most parametric families such as Clayton and Gumbel, see Hofert (2011). Even though d` sub-

copulae are rooted at hierarchical level `, only the smallest parameter θ`j , j = 1, . . . , d`, determines

the feasible parameter space of θk presented below. Hence, we define θ` = min[θ`j : j ∈ {1, . . . , d`}],
such that θk ≤ θ` holds for all `j , j = 1, . . . , d`. Furthermore, the parameter at the respective higher

nesting level is denoted by θk(`) in order to emphasize the relation to θ`.

If the structure of a HAC is not determined by the application, it has to be estimated from data.

Having similar dependence between the involved random variables, Okhrin et al. (2013b) and Okhrin

and Ristig (2014) suggest recursively aggregating a binary tree structure to more complex structures

involving nodes with different number of branches. This procedure is reasoned by the associativity

property of Archimedean copula, see Nelsen (2006, Theorem 4.1.5), but not statistically studied.

However, Okhrin et al. (2013b) point out that even a misspecified structure can be interpreted as

minimizer of the Kullback-Leibler divergence in the spirit of White (1994). A non-parametric –yet

computationally demanding– method for re-building the structure from data is proposed by Segers
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Figure 3.1: Example of a four-dimensional binary and partially nested HAC.

and Uyttendaele (2014).

Górecki, Hofert, and Holeňa (2014) build on the grouping techniques for binary trees of Okhrin et al.

(2013b) and propose recovering binary structures from pairwise Kendall’s correlation coefficients.

For this purpose, they introduce pseudo variables based on the diagonal of Archimedean copula,

U`j
def
= U(θ`j ) = φθ`j [d`jφ

−1
θ`j
{max(U1, . . . , Ud`j )}], with U`j ∼ U(0, 1), j = 1, . . . , d`j , and show that

U`j follows a standard uniform distribution as well. Despite arising statistical inefficiencies, this trans-

formation leads to a computationally more tractable procedure than the stage-wise ML estimation

method of Okhrin et al. (2013b), as the tedious derivation of the HAC’s density is not needed. Instead

the density of a bivariate Archimedean copula can be used for estimating the parameter at each stage

of the procedure to recover the structure of a binary HAC.

Consider the simultaneous estimation of the structure and parameters of Ck{C`1(u1, u2), C`2(u3, u4)}:
At the first stage of the multi-stage procedure, the dependence parameters for all possible pairs of

variables (U1.U2), (U1.U3), (U2.U3), . . ., are estimated. Given that θ̂`1 estimated from (U1.U2) leads

to the strongest fit, the variables U1 and U2 are removed from the set of variables and the pseudo-

variable U`1 = φθ̂`1
[2φ−1

θ̂`1
{max(U1, U2)}] is added. At the next step, the dependence parameters for

all remaining pairs of variables (U`1 .U2), (U`1 .U3), (U`1 .U4) and (U3.U4) are estimated. Given that

θ̂`2 estimated from (U3.U4) leads to the strongest fit, U`2 = φθ̂`2
[2φ−1

θ̂`2
{max(U3, U4)}] is computed

and the set of variables is accordingly modified. At the final step, the estimation of the parameter at

the root simplifies to the estimation of θk(`) from the binary Archimedean copula φθk(`){φ
−1
θk(`)

(U`1) +

φ−1θk(`)(U`2)}. The recursive estimation procedure itself reduces the computational costs enormously,

but also the transformation based on the diagonal of Archimedean copula plays a key role. The fact

that U`1 ∼ U(0, 1) and U`2 ∼ U(0, 1) allows the estimation of θk(`) using simple ML estimation for

binary Archimedean copula irrespective of lower hierarchical levels. Hence, considering the estimation

of the parameter at the k-th nesting level is absolutely sufficient for our purpose.

A more general example of a partially nested HAC is given in Figure 3.2. Let Op(1) refer to a random

variable converging to zero in probability as n → ∞. Knowing the general structure of the HAC

and the parameters θ1, . . . , θd` , the parameter θ` can be consistently estimated like the parameter of

a d`-dimensional Archimedean copula, as U1
def
= U(θ1), . . . , Ud`

def
= U(θd`) are uniformly distributed.

Given the consistent estimate θ̂`, the parameter θk(`) can be consistently estimated, as U5, . . . , Ud and
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Figure 3.2: Example of a partially nested HAC.

U(θ̂`) = U(θ`) + Op(1) are uniformly distributed as n→∞.

As mentioned above, the sketched procedure recovers only binary structures, but not those given in

Figure 3.2. Yet, non-binary HAC have clear advantages compared to their binary counterparts. In

particular, they are easier to interpret, as less nodes and parameters are involved, and the parameters

can be more efficiently estimated, if the true structure is non-binary or even known. Okhrin et al.

(2013b) propose non-binary structures by joining two subsequent nodes, if θ̂` − θ̂k(`) ≤ ε, for a pre-

specified parameter ε. There are, however, various difficulties in the selection of ε. This motivates

developing a data-driven method to determine εn. The parameter εn results from an implicit penal-

ization of the structure in a penalized ML setting and has an aesthetic statistical interpretation. In

particular, a non-concave penalty is imposed on the parameter difference (θ`−θk(`)). For that reason,

we firstly formulate the estimation problem, state secondly the asymptotic properties of the penalized

estimator and thirdly, derive εn.

3.2. Penalized estimation of HAC

Let the univariate marginal distribution functions of the underlying d-dimensional HAC be known.

Based on the sketched multi-stage estimation procedures, θk(`) is the only parameter to be estimated

at the k-th nesting level, as parameters from lower nesting levels are estimated in previous estimation

stages. In particular, the transformation based on the diagonal of Archimedean copula produces

(asymptotically) standard uniformly distributed random variables, so that the estimation problem at

the k-th hierarchical level can be traced back to the estimation of the parameter of a dk-dimensional

Archimedean copula, where dk refers to the number of (pseudo) variables of that respective level.

To emphasize the flexibility of HAC, more than 2.8 ·108 possible structures are available in dimension

d = 10. Addressing the question of an optimal structure, the huge amount of possible structures

makes the calibration of all specifications and subsequent model selection infeasible in practice. As

alternative to model selection, two subsequent parameters could also be tested for being equal, but

the more tests have to be sequentially conducted, the more demanding is the asymptotic analysis of

the estimator. To overcome those complications, while reducing the number of different parameters in

the model and re-covering the structure optimally, the estimated parameter is shrunken as explained

below. In general, we build the procedure on the seminal work of Fan and Li (2001) and suggest
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determining/aggregating the structure as well as estimating the involved parameters simultaneously.

Shrinkage estimators are popular for simultaneous parameter estimation and model selection in linear

and generalized linear models, see Tibshirani (1996), Fan and Li (2001) and Tibshirani (2011), but

they are rarely applied to non-linear likelihood-based estimation problems. While the dimension of

the dependent variable is typically fixed, Fan and Peng (2004) also consider a diverging number of

parameters linked to the number of explanatory variables. We do not discuss a diverging number of

parameters, as by definition, the dimension of d-dimensional HAC are connected to at most (d − 1)

parameters. The advantages and disadvantages of several penalty functions are comprehensively

reviewed in Fan and Lv (2010). As the smoothly clipped absolute deviation (SCAD) penalty function,

pλ (| · |), has superior properties in comparison with other penalties we restrict the following discussion

to the SCAD penalty, whose first derivative is of the form

p′λ (|γ|) = λ

[
I {|γ| ≤ λ}+

max (aλ− |γ|, 0)

λ (a− 1)
I {|γ| > λ}

]
,

with a > 2. In general, an appropriate penalty function should be singular at the origin, i.e.,

lim inf
n→∞

lim inf
γ→0+

p′λn (γ) /λn > 0, so that the penalized estimator is a thresholding rule.

Let the sequence of random vectors {Ui}ni=1 be independent copies with Ui = {Ui1, . . . , Ui`1(θ̂`1),

Ui`d` (θ̂`d` ), . . . , Udk}> and Uik ∼ U(0, 1), k = 1, . . . , dk. Note that Ui might include pseudo-variables

and let each Ui have an identical parametric density function of a dk-dimensional Archimedean copula

C(u1, . . . , udk ; θk(`)) in the family
{
c(u1, . . . , udk ; θk(`)) : θk(`) ∈ Θk(`) ⊆ R

}
, where c(·) is the copula

density c(u1, . . . , udk ; ·) = ∂dk
∂u1,...,∂udk

C(u1, . . . , udk ; ·). The corresponding log-likelihood contributions

are denoted by `i(θk(`)) = log{c(Ui1, . . . , Uidk ; θk(`))}, whose regularity assumptions are listed in Ap-

pendix A. These are in line with those in Fan and Li (2001) and Cai and Wang (2014). Given the

SCAD penalty and the contributions `i(θk(`)), the penalized log-likelihood at the k-th hierarchical

level is given by

Q(θ`, θk(`)) =
n∑
i=1

`i(θk(`))− npλn(θ` − θk(`)), (14)

where (θ` − θk(`)) is non-negative by construction, as θ` shortens the feasible parameter space of θk(`)
to Θk(`)\(θ`,∞). Given a consistent estimator of θ` from the previous estimation stage, denoted by θ̂`,

the objective function is defined as Qθ̂`(θk(`))
def
= Q(θ̂`, θk(`)) and the penalized estimator is given by

θ̂λnk(`) = arg max Qθ̂`(θk(`)). Similar to Fan and Li (2001, Theorem 2), the sparsity and oracle property

of the penalized estimator θ̂λnk(`) are summarized in Proposition 2 and 3 respectively. Denote by θ`,0
and θk(`),0 the true parameters and assume that θ`,0 = θk(`),0, namely two parameters on subsequent

levels are equal.

Proposition 2. Let {Ui}ni=1 be independent with log-density `i(θk(`)) for which Assumptions 1-3 hold.

If n1/2λn →∞ as n→∞, then limn→∞ P(θ̂λnk(`) = θ`,0) = 1.

Proposition 2 shows that no k-th hierarchical level is added with probability tending to one, if the

true model is parsimonious. In other words, the structure is automatically aggregated, if θ̂λnk(`) =
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θ̂`, which has similarities with the fused LASSO proposed in Tibshirani, Saunders, Rosset, Zhu,

and Knight (2005). If θk(`) is the parameter at the lowest nesting level, there exists no parameter

θ` and the parameter θk(`) is consequently not penalized. This makes it simple to establish the

consistency of θ̂` as shown in Lemma 2, see Appendix B. Now, change the perspective and assume that

θ`,0 > θk(`),0, namely parameters on two subsequent nodes are truly different. Denote by Î(θk(`)) =

−n−1
∑n

i=1 `
′′
i (θk(`)) an estimator of the information matrix I(θk(`)) defined in Assumption 1, c.f.,

Appendix A.

Proposition 3. Let {Ui}ni=1 be independent with log-density `i(θk(`)) for which Assumptions 1-3 hold.

If λn → 0 as n→∞, then

n1/2
{
Î(θk(`),0) + p′′λn(θ`,0 − θk(`),0)

}[
(θ̂λnk(`) − θk(`),0)−

{
Î(θk(`),0)

+p′′λn(θ`,0 − θk(`),0)
}−1

p′λn(θ`,0 − θk(`),0)
]
L−→ N{0, I(θk(`),0)}.

As a consequence of Proposition 3, the asymptotic covariance of n1/2θ̂λnk(`) can be reasonably approxi-

mated by Î(θ̂λnk(`)), if λn → 0 as n→∞. Under this convergence of λn, the estimator θλnk(`) enjoys the

so called oracle property, i.e., the quality of θλnk(`) is as good as if the structure of the HAC was known

in advance. It can be straightforwardly deduced from subsequently applying Proposition 2 and 3 that

the stage-wise estimation of HAC, as sketched above, recovers the true structure with probability

tending to one for n1/2λn →∞ as n→∞ and that the estimators are n1/2-consistent for λn → 0 as

n→∞.

3.3. Attaining sparsity

Even though the maximization of Qθ̂`(θk(`)) is an univariate numerical optimization problem, it is

a challenging task due to the singularity of the penalty pλ(·) at the origin. Based on similar ideas

as presented in Zou and Li (2008), who provide a comprehensive discussion on maximizing non-

concave penalized log-likelihood functions, Proposition 4 yields an appealing formula for the penalized

estimator θ̂λnk(`). Denote by θ̂k(`) the ML estimator for θk(`).

Proposition 4. Let {Ui}ni=1 be independent with log-density `i(θk(`)) for which Assumptions 1-3 hold.

Then, θ̂λnk(`) = θ̂k(`) + εn, with εn
def
= ε(λn, an) = Î(θ̂k(`))

−1p′λn(θ̂` − θ̂k(`)).

Proposition 4 shows that the penalized estimator θ̂λnk(`) can be expressed as sum of the ML estimator

θ̂k(`) and a penalty term presented by the data-driven parameter εn ≥ 0. The parameter εn is a

trade-off between the variability of n1/2θ̂k(`) and the strength of the imposed penalty. The estimator

θ̂λnk(`) deviates enormously from the ML estimator, if the flatness of the log-likelihood decreases Î(θ̂k(`))

and εn; but an increase in the distance between the ML estimates decreases εn, i.e., p′λn(θ̂` − θ̂k(`)) is

large, as limγ→∞ p
′
λ(γ) = 0+.

While Zou and Li (2008) apply the least angle regression (LARS) algorithm, see Efron, Hastie,

Johnstone, and Tibshirani (2004), to attain sparsity, we apply the thresholding rule

θ̂k(`) = θ̂`, if θ̂` − θ̂k(`) ≤ εn, (15)
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at each estimation-stage to obtain a sparse structure. The proposed thresholding rule is elementarily

related to the underlying copula, as the structure is aggregated, if θ̂λnk(`) ≥ θ̂`. In other words, the

positive bias of the penalized estimator, c.f., Proposition 3, causes a violation of the required nesting

condition, so that the estimated HAC fails to be a well defined distribution function. Furthermore,

the thresholding rule avoids the a priori specification of a small ε, criticized by Zou and Li (2008).

The final task for conducting this penalized multi-stage estimation procedure is an appropriate selec-

tion of (λ, a)>. The simultaneous estimation and aggregation of the structure needs a different εn at

each estimation stage for the following reasons: (i) While the parameters at lower hierarchical levels

are estimated, the structure at higher hierarchical levels is unknown. Therefore, the information from

higher nesting levels cannot be taken into account, when εn is fitted. (ii) Since HAC allow several

nodes at the same hierarchical level, two or more sub-structures might be simultaneously built. Ob-

viously, taking the same εn can be quite misleading. (iii) The sub-structure at higher nesting levels

is by construction more complex than the sub-structure at lower levels. A more complex structure,

however, should intuitively be stronger penalized in terms of (λ, a)>, as the structure is built with

more parameters.

Wang, Li, and Tsai (2007) suggest selecting (λn, an)> by minimizing the BIC, see Schwarz (1978), for

linear and partially linear models. They, furthermore, show superior asymptotic properties compared

with tuning parameters chosen in another optimal way. In particular, the true model is consistently

identified, if (λn, an)> minimizes the BIC. We basically transfer this idea to our highly non-linear

likelihood-based model. However, the asymptotic properties of the tuning parameters themselves are

not discussed and are beyond the scope of this paper. The tuning parameter are optimally determined

by

(λn, an)> = arg max
(λ,a)>

2
n∑
i=1

`i

{
θ̂k(`) + ε(λ, a)

}
− qk log(n), (16)

where qk denotes the involved number of parameters up to the k-th hierarchical level. Selecting

the tuning parameters according to (16) penalizes parameters at higher nesting levels automatically

stronger, as the number of parameters qk is part of the BIC.

4. Simulation Study

The simulation study relies on m Monte Carlo replications, which are needed to estimate 1000 struc-

tures correctly. This is due to the fact that only estimates stemming from the same structure can be

compared and used to compute summary statistics. In order to compare the results of the simulation

study among Archimedean families (Clayton, Frank, Gumbel, Joe), let τ : Θk(`) → [0, 1] transform

the parameter θk(`) into Kendall’s correlation coefficient, see Joe (1997); Nelsen (2006). We illus-

trate the performance of the estimation procedure for two types of models: (i) 5-dimensional HAC

with ((U3.U4.U5)θ` .U1.U2)θk(`) , where θ` = τ−1(0.7) and θk(`) = τ−1(0.3) refer to the group spe-

cific dependence parameter of the random vectors (U3, U4, U5)
> and (U`, U1, U2) respectively, where

U` = φθ` [3φ
−1
θ`
{max(U3, U4, U5)}]. The parameters in terms of Kendall’s τ(·) are chosen as in Segers

and Uyttendaele (2014, Section 8.1) for 4-variate HAC. The sample size is n = 250. (ii) As τ(·)
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Family s(θ̂) = s(θ0) τ(θ̂1) (sd) τ(θ̂2) (sd) #{θ̂}
Clayton 0.82 0.70 (0.01) 0.30 (0.02) 3.04
Frank 0.85 0.70 (0.01) 0.30 (0.02) 3.03
Gumbel 0.85 0.70 (0.01) 0.30 (0.02) 3.02
Joe 0.88 0.70 (0.01) 0.30 (0.02) 3.04

Table 4.1: s(θ̂) = s(θ0) reports the fraction of correctly specified structures, τ(θ̂k) (sd), k = 1, 2, refers
to the sample average of Kendall’s τ(·) evaluated at the estimates and sd to the sample standard
deviation thereof. If the structure is misspecified, #{θ̂} gives the number of parameters on average
included in the misspecified HAC. Monte Carlo sample size is n = 250.

is a non-linear transformation, we investigate differences in the aggregation performance for differ-

ent strength of dependence. In detail, we consider 3-dimensional HAC ((U2.U3)θ` .U1)θk(`) , where

θ` refers to the dependence between (U2, U3)
> and θk(`) to the dependence of between (U`, U1)

>,

with U` = φθ` [2φ
−1
θ`
{max(U2, U3)}]. The parameters are chosen such that θ` = τ−1(ω`), with

ω` ∈ {0.9, 0.7, 0.5, 0.3, 0.1}, and θk(`) = τ−1(ωk(`)), with k(`) = `, . . . , 5. The sample size is n = 100.

Table 4.1 summarizes the results of the 5-dimensional setup. The true structure is found in more

than 82% of the cases and the parameters are unbiasedly estimated with a small empirical standard

deviation. If the true structure is not identified, HAC are constructed from 3 parameters in most of

the cases as shown in the last column of Table 4.1. Note that a correct classification of the structure

requires several aggregation steps, which enlarges the room for mistakes. We would like to emphasize

that the results are sensitive with respect to the selection of the tuning parameters (λ, a)>. In

practice, (16) is computed by a global stochastic optimization algorithm namely simulated annealing.

Our experiments have shown the longer the simulated annealing algorithm iterates the more precise

are the estimation results with respect to a correct specification of the structure. However, more

iterations make the entire procedure more computationally intensive.

The major findings of the 3-dimensional setting are presented in Table 4.2. In contrast to the previous

simulation study, there is only one possible error source to obtain a misspecified structure. The

penalized estimator is overall unbiased and the correct structure is detected in most of the cases,

especially if the distance between τ(θk(`),0) and τ(θ`,0) is large. Nevertheless, the low classification

rate of the 3-dimensional Archimedean Clayton copula (U1.U2.U3)τ−1(0.1) should be mentioned as well

as the bias of the estimator of the lower parameter of the Frank copula ((U2.U3)τ−1(0.9)U1)τ−1(0.3).

5. Systemic risk analysis of stock markets

In our empirical study, we apply the ideas on measuring financial contagion and conditional systemic

risk to major stock indices of Australasia as well as the leading indices of Europe and the US. In par-

ticular we consider log-returns of index closing prices for the US Dow Jones Industrial Average Index

(DJIA), the Euro STOXX 50 Index (SX5E), the Japanese Nikkei 225 Index (N225), the Shanghai

Stock Exchange Composite Index (SSEC), the Australian All Ordinaries Index (XAO), the Singapore

Stock Market Index (STI), the Korea Composite Stock Price Index (KOSPI), the Hong Kong Hang
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Clayton Frank

τ(θk(`),0) τ(θ`,0) s(θ̂) = s(θ0) τ(θ̂k(`)) τ(θ̂`) s(θ̂) = s(θ0) τ(θ̂k(`)) τ(θ̂`)

0.10 0.10 0.31 0.12 0.12 0.83 0.10 0.10
0.10 0.30 0.93 0.10 0.30 0.77 0.09 0.31
0.10 0.50 1.00 0.10 0.50 1.00 0.11 0.50
0.10 0.70 1.00 0.10 0.70 1.00 0.10 0.70
0.10 0.90 1.00 0.10 0.90 1.00 0.11 0.91

0.30 0.30 0.88 0.30 0.30 0.88 0.30 0.30
0.30 0.50 0.98 0.30 0.30 0.93 0.30 0.50
0.30 0.70 1.00 0.30 0.70 1.00 0.30 0.70
0.30 0.90 1.00 0.30 0.90 1.00 0.25 0.92

0.50 0.50 0.89 0.50 0.50 0.88 0.50 0.50
0.50 0.70 1.00 0.50 0.70 1.00 0.50 0.70
0.50 0.90 1.00 0.50 0.90 1.00 0.47 0.91

0.70 0.70 0.90 0.70 0.70 0.90 0.70 0.70
0.70 0.90 1.00 0.70 0.90 1.00 0.69 0.90

0.90 0.90 0.84 0.90 0.90 0.86 0.90 0.90

Gumbel Joe

0.10 0.10 0.87 0.10 0.10 0.87 0.10 0.10
0.10 0.30 0.85 0.09 0.31 0.91 0.09 0.31
0.10 0.50 1.00 0.10 0.50 1.00 0.10 0.50
0.10 0.70 1.00 0.10 0.70 1.00 0.10 0.70
0.10 0.90 1.00 0.10 0.90 1.00 0.11 0.90

0.30 0.30 0.90 0.30 0.30 0.89 0.30 0.30
0.30 0.50 0.95 0.30 0.30 0.98 0.30 0.50
0.30 0.70 1.00 0.30 0.70 1.00 0.30 0.70
0.30 0.90 1.00 0.30 0.90 1.00 0.30 0.90

0.50 0.50 0.90 0.50 0.50 0.90 0.50 0.50
0.50 0.70 1.00 0.50 0.70 1.00 0.50 0.70
0.50 0.90 1.00 0.50 0.90 1.00 0.50 0.90

0.70 0.70 0.90 0.70 0.70 0.90 0.70 0.70
0.70 0.90 1.00 0.70 0.90 1.00 0.70 0.90

0.90 0.90 0.88 0.90 0.90 0.86 0.90 0.90

Table 4.2: The columns τ(θk(`),0) and τ(θ`,0) refer to parameter values in terms of Kendall’s τ(·) at

the lower and higher hierarchical level, respectively. s(θ̂) = s(θ0) reports the fraction of correctly
specified structures, τ(θ̂k(`)) and τ(θ̂`) refer to the sample averages of Kendall’s τ(·) evaluated at the
estimate of the higher and lower hierarchical level. Monte Carlo sample size is n = 100.
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Figure 5.1: The sparsely estimated HAC for the entire data.

Seng Index (HSI) and the Taiwan Capitalization Weighted Stock Index (TAIEX). Based on the dif-

ferent size and geographical proximity of the nine stock market indices considered, i.e., six markets in

East and Southeast Asia, the Australian market in relatively close proximity to these markets as well

as the significantly more distant major markets in Europe and the US, we expect this choice also to

provide an interesting setup for the proposed penalized estimation of the HAC structure. Note also

that trading takes place at rather similar time intervals at the Australasian markets, while closing

prices for the European and US index are available only much later in the day.

In a classical copula-GARCH setup as, e.g., proposed in Jondeau and Rockinger (2006), the multi-

variate time series of log-returns is formally modeled by

Xt = µt (Xt−1, . . .) + σt (Xt−1, . . .) εt, (17)

εt|Ft−1 ∼ C{Fε1(x1), . . . , Fεd(xd); θt},

where Ft = σ(Xt, Xt−1, . . .) denotes the information set at time point t = 1, . . . , T . The marginal

time series {Xtj}Tt=1, j = 1, . . . , d, are assumed to follow ARMA-APARCH models with skewed-t

distributions Fεj (·). The parameter vectors of the conditional mean µt(·), the standard deviation

σt(·) and the marginal distributions Fεj (·), j = 1, . . . , d, are skipped for notational convenience. A

brief description of the data, model selection procedure and performance of the marginal models are

reported in Appendix C showing that {εtj}Tt=1, are approximatively iid for j = 1, . . . , d. The depen-

dence between the indices is modeled with a Clayton-based HAC C(·; θt) depending on the parameter

sequence {θt}Tt=1. Even though Archimedean dependence structures might not perfectly describe the

dependence among financial returns on the entire support, the Clayton-family is appropriate for an-

alyzing left tail areas. Recall that dependence in the left tail area is a necessary requirement for

analyzing spill-over effects in that area according to Proposition 1.
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Since the simulation study suggests that a large amount of data is required to recover the “true”

structure with high confidence, we firstly use the entire data to fix the structure and secondly apply

the rolling window method to estimate time variations of θt. The estimation outcome based on the

entire sample is presented in Figure 5.1, which shows that the dependencies within the financial system

are modeled by five parameters. As there are just five parameters to be estimated in each window, we

restrict the window-width to three month, i.e., 63 observations. For comparison, a t-copula approach

would require 36 parameters for modeling the dependence structure as well as one parameter for all tail

areas. The estimated HAC proposes equi-dependencies (θ3 = 0.9) between the Australasian indices

N225, XAO, KOSPI, TAIEX and the sub-tree of STI and HSI. Slightly stronger dependence is found

for the sub-system of DJIA, SX5E. As the copula in (17) models the cross-sectional dependence among

the components of Xt at time point t = 1, . . . , T , the weak dependence at the root node of the HAC-

structure reflects the different trading times of the indices as well as possibly the geographical distance

between European, US and Australasian markets. Note, however that the dependence between the

European SX5E and the US DJIA index is estimated to be relatively high, although these markets

trade at different times and are also geographically distant. If the estimate at the root-node showed

stronger dependence between the sub-systems, it would be interesting to investigate contagion between

the systems. Yet, the weak dependence at the root node rather suggests a separate analysis of the

sub-systems.

Let us first consider the relationship between log-returns from the US and the European index:

exploring contagion between the DJIA and the SX5E, Table C.1 reveals that the distribution of the

residuals of the DJIA has slightly thicker tails and is more left-skewed than the distribution of SX5E

residuals. Given a small value α, this little heterogeneity in the margins implies for the unconditional

quantile functions of the log-returns |QSX5E(α)| < |QDJIA(α)| and for the unconditional quantile

densities qSX5E(α) < qDJIA(α), since the effect of the time-varying mean and volatility can be neglected

as α → 0. Note that the quantile and quantile density functions of the log-returns generally depend

on the time-varying mean and volatility. The estimated spill-over effects SαSX5E←DJIA and SαDJIA←SX5E

are presented in Figure 5.2, where Sαk←` = Sαk`. Obviously, the effect to DJIA by a marginal change in

SX5E, SαDJIA←SX5E, is larger than SαSX5E←DJIA for all levels of α ∈ {0.1, 0.01, 0.0001}. Similar to the

example in Section 2.1, this result relies on the ratio of quantile densities, qDJIA{C−1DJIA|·(α)}/qSX5E(α),

which drives the contagion effect SαDJIA←SX5E as α→ 0. Moreover, as α→ 0, Figure 5.2 also reveals

that the contagion effects SαDJIA←SX5E and SαSX5E←DJIA converge to a constant which is independent

of the copula parameter θ2,t.

To analyze systemic risk within the sub-system DJIA and SX5E denote by Q(α) the vector of uncon-

ditional quantiles, i.e., Q(α) = {QDJIA(α), QSX5E(α)}>. Moreover, recall that a conditional quantile

QXk|X6k=x 6k(α) measures the impact on Xk given the event {X6k = x 6k} and that a quantile Qk(α)

measures risk unrelated to a specific event, α ∈ (0, 1). Loosely speaking, ‖Q(α)‖2 can be regarded as

measure for unconditional risk. The fact that the systemic risk measure Sα is a normalized weighted

average, see (13), suggests that stronger contagion SαDJIA←SX5E implies larger contributions of the

DJIA to the systemic risk measure Sα. This is because of two facts: (i) SαDJIA←SX5E is larger than

SαSX5E←DJIA because of slightly heterogenous margins. (ii) As the DJIA has slightly thicker tails than

the SX5E, the weights given by the risk measure QXk|U 6k=α(α) = Qk{C−1Uk|U 6k=α(α)}, k = DJIA, are

larger than those for the SX5E.
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Figure 5.2: The upper panel shows estimates of the dependence parameter θ̂2,t, the centered panel
illustrates the risk transmitted from DJIA to SX5E SαSX5E←DJIA and the lower panel the risk trans-
mitted from SX5E to DJIA SαSX5E←DJIA. Solid lines refer to α = 0.1, dashed lines to α = 0.01 and
dotted lines to α = 0.0001.
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The lower panel of Figure 5.3 brings systemic risk to light which is present at all levels α over the

entire period. There are two major components driving Sα: (i) the dependence parameter θ2 and (ii)

the unconditional risk ‖Q(α)‖2. Interestingly, the quantities θ2 and ‖Q(α)‖2 have a contrary effect

on Sα: stronger dependence between the markets will increase systemic risk, but a higher level of

unconditional risk will typically decrease Sα. While the co-movement of systemic risk and dependence

satisfies underlying expectations, the relation between ‖Q(α)‖2 and Sα is not obvious. Being precise,

Sα does not measure the general level of systemic risk, but addresses that part of systemic risk arising

from contagion in tail areas. For the following consideration let us now assume that the dependence

between the markets is constant over time: if volatility in model (17) increases, i.e., σj,t+1(·) > σj,t(·),
the absolute value of the unconditional quantile also increases, i.e., |Qk,t+1(α)| > |Qk,t(α)|, since α

is constant and the effect of µk,t is usually negligible. To observe a constant systemic risk from t to

(t+ 1) despite increased volatility, joint tail events at (t+ 1) have to be more extreme than those at

time point t. This connection between quantiles and moments leads to the following summary: If, on

the one hand, the unconditional risk level is already high, systemic risk due to contagion in the tail

area is typically low. If, on the other hand, the unconditional risk level is low, a potential breakdown

due to contagion in tail areas becomes more likely, therefore, increasing systemic risk.

For example, let us have a closer look at the second half of year 2008 displayed in Figure 5.3. Despite

the financial crisis, systemic risk arising from contagion in the tail area is extremely low compared to

other periods of the sample. This is true for all levels of α considered. These results are due to the

almost constant dependence parameter θt2 during that period and the enormously high unconditional

risk ‖Q(α)‖2. Inspection of the data generating process (17) shows that volatilities σtj(Xj,t−1, . . .),

t = 1, . . . , T , j = 1, . . . , d, are directly related to the unconditional risk measures Qj(α). There might

be a systemic factor driving the volatility of both stock indices DJIA and SX5E during the crisis, but

our study does not support the hypothesis of high systemic risk due to contagion in the left tail area.

Analyzing systemic risk within the sub-system rooting at θ4 = 0.51 of Figure 5.1 shows a similar

relation between unconditional risk ‖Q(α)‖2 and conditional systemic risk arising from contagion in

the tail areas Sα. Note that now ‖Q(α)‖2 is computed from the stock indices HSI, KOSPI, N225,

SSEC, STI, TAIEX and XAO. Again we find that systemic risk from spill-over effects of an unexpected

shock is typically high during periods of low unconditional risk ‖Q(α)‖2. Nevertheless, Figure 5.4

shows that the conditional systemic risk is less pronounced than in the sub-system of DJIA and SX5E,

which is related by the overall higher level of ‖Q(α)‖2. Using the terminology from Section 2, the

sub-system can be categorized as robust since Sα < 1, α = 0.0001, which emphasizes the absence of

systemic risk due to contagion in tail areas.

6. Conclusion

In this paper, we have proposed a consistent and unified framework for describing financial contagion

and measuring systemic risk arising from contagion in tail areas. Properties of the developed bilateral

contagion measure are comprehensively discussed and derived. Contagion measures describing effects

from and to sub-portfolios are derived by aggregating the respective bilateral children. In particular,

the effect from a sub-portfolio can be interpreted as a joint shock hitting that subset of the portfolio.

A measure to quantify systemic risk is derived by similar arguments and the proposed measures are
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Figure 5.3: The upper panel shows estimates of the dependence parameter θ̂2,t, the centered panel
shows the unconditional risk measure ‖Q(α)‖2, and the lower panel systemic risk Sα within the sub-
portfolio SX5E and DJIA. Solid lines refer to α = 0.1, dashed lines to α = 0.01 and dotted lines to
α = 0.0001.
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Figure 5.4: The upper panel shows the unconditional risk measure ‖Q(α)‖2 and the lower panel
systemic risk Sα for the sub-portfolio HSI, KOSPI, N225, SSEC, STI, TAIEX and XAO. Solid lines
refer to α = 0.1, dashed lines to α = 0.01 and dotted lines to α = 0.0001.

related to existing approaches in the literature. To combine a small number of parameters in total with

flexibility in tail areas, we suggest modeling dependencies among random variables with hierarchical

Archimedean copula and provide a new estimation procedure for that type of copula. Based on

theory about penalized Maximum Likelihood estimation, we discuss the asymptotic properties of

the estimator which are supported by a simulation study. Last but not least, we have applied the

developed tools in an empirical study based on a rolling window analysis of major stock indices.

Next to the expected result that an increase in dependence between financial markets also increases

systemic risk, our study also reveals new relations between (conditional) systemic risk and the overall

(unconditional) risk level. We find that the systemic risk contribution from contagion in tail areas

decreases during times of financial turmoil, i.e., we propose that a potential systemic breakdown

caused by contagion in the tail areas is less likely during times of high volatility and could rather

occur due to a shock in a quiet market environment.

A. Regularity assumptions

Assumption 1. The model is identifiable and θk(`),0 is an interior point of the compact parameter

space Θk(`). We assume that Eθk(`){`
′
i(θk(`))} = 0 and information equality holds,

I(θk(`))
def
= Eθk(`)

{
`′i(θk(`))

2
}

= −Eθk(`)
{
`′′i (θk(`))

}
for i = 1, . . . , n.

Assumption 2. The Fisher information I(θk(`)) is finite and strictly positive at θk(`),0.

Assumption 3. There exists an open subset Ω of Θk(`) containing the true parameter θk(`),0 such that
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for almost all Ui, i = 1, . . . , n, the density c(Ui1, . . . , Uidk ; θk(`)) admits all third derivatives c′′′(·; θk(`))
for all θk(`) ∈ Ω. Furthermore, there exist functions M(·) such that

∣∣`′′′i (θk(`))
∣∣ ≤ M(Ui), for all

θk(`) ∈ Ω, with E {M(Ui)} <∞.

B. Mathematical appendix

Proof of Proposition 1.

Note that limu`→1 Su`k` equals

Su`k` =

[
logQk{C−1Uk|U`=u`

(α)}
]′

[
logQ`(u`)

]′ as u` → 1. (18)

To prove part (a), recall that the quantile density function is defined as derivative of the quantile

function, i.e., q(u) = Q′(u). Parzen (1979) shows that q(u) ∼ (1 − u)−γ , u → 1, where q(·) denotes

the quantile density function of a probability law with tail-monotone density function f(·) and tail

exponent γ. Since
∫

(1−u)−γdu = (γ−1)−1(1−u)1−γ+K, we conclude thatQ(u) ∼ (γ−1)−1(1−u)1−γ ,

u→ 1, where K is a constant independent of u. As a consequence, (18) can be reformulated as

Su`k` =
(1− γk)

[
log{1− C−1Uk|U`=u`

(α)}
]′

(1− γ`)
[

log(1− u`)
]′

=
γk − 1

γ` − 1

1− u`
1− C−1Uk|U`=u`

(α)

∂

∂u`
C−1Uk|U`=u`

(α) as u` → 1. (19)

Since the limit of (19) is not well defined, we apply l’Hôpital’s rule and represent (19) as

Su`k` =
γk − 1

γ` − 1

1
∂
∂u`

C−1Uk|U`=u`
(α)

∂

∂u`
C−1Uk|U`=u`

(α)→ γk − 1

γ` − 1
as u` → 1.

To prove part (b), we build on another result of Parzen (1979), who shows for the case γ = 1 that

q(u) ∼ (1− u)−1{− log(1− u)}β−1, u→ 1, and β ∈ [0, 1],

where β is the so called shape parameter. We exclude extreme cases from our analysis and restrict

the discussion to the case β ∈ (0, 1). The cases β = 0 and β = 1 refer to the extreme-value and to

the exponential distribution respectively. Integration, i.e., Q(u) ∼ β−1{− log(1− u)}β, u→ 1, allows

rewriting (18) as

Su`k` =
1− γk
β`

(1− u`) log(1− u`)
1− C−1Uk|U`=u`

(α)

∂

∂u`
C−1Uk|U`=u`

(α) as u` → 1, (20)

where the parameter β` describes the shape of the law of X`. Since the limit of (20) is not well
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defined, we apply l’Hôpital’s rule and obtain

Su`k` =
1− γk
β`

1 + log(1− u`)
∂
∂u`

C−1Uk|U`=u`
(α)

∂

∂u`
C−1Uk|U`=u`

(α)→∞ as u` → 1,

where the positive sign of the limit is due to γk > 1.

To prove part (c) for γ` > 1, note that C−1Uk|U`=u`
(α) ∼ Fk{g(α)}, u` → 1, by the definition of

conditional independence, so that (19) can be rewritten

Su`k` =
γk − 1

γ` − 1

1− u`
1− Fk{g(α)}

∂

∂u`
Fk{g(α)} → 0 as u` → 1.

The proof for γ` = 1 follows by similar arguments.

Lemma 1 (C.f., Fan and Li (2001) and Cai and Wang (2014)). Under the assumptions of Proposi-

tion 2, if n1/2λn →∞ as n→∞, then for θk(`) satisfying (θk(`) − θk(`),0) = Op(n−1/2),

lim
n→∞

P
{
Qθ`(θk(`)) ≤ Qθ`(θ`)

}
= 1. (21)

Proof of Lemma 1.

Due to the natural constraints on the parameters, we need to show that for εn = An−1/2, with A > 0,

Q′θ`(θk(`)) > 0 for 0 < θ` − θk(`) < εn. (22)

Taylor expansion of `′i(θk(`)) about θk(`),0 leads to

Q′θ`(θk(`)) =

n∑
i=1

`′i(θk(`),0) +

n∑
i=1

`′′i (θk(`),0)(θk(`) − θk(`),0) +
1

2

n∑
i=1

`′′′i (θ̄k(`))(θk(`) − θk(`),0)2

+ np′λn(θ` − θk(`)),

with θ̄k(`) lying between θk(`) and θk(`),0. By classical arguments, c.f., Lehmann and Casella (1998),

n−1
n∑
i=1

`′i(θk(`),0) = Op(n−1/2), and n−1
n∑
i=1

`′′i (θk(`),0) = −I(θk(`),0) + Op(1),

and by using (θk(`) − θk(`),0) = Op(n−1/2), we obtain

Q′θ`(θk(`)) = Op(n1/2) + np′λn(θ` − θk(`))

= nλn

{
Op(n−1/2/λn) + p′λn(θ` − θk(`))/λn

}
.

As lim inf
n→∞

lim inf
θk(`)→θ−`

p′λn(θ`−θk(`))/λn > 0 for the considered penalty and Op(n−1/2/λn)→ 0 as n→∞,

(22) holds.

Lemma 2. Under the assumptions of Proposition 2 and 3, if λn → 0 as n→∞, then θ̂`−θ`,0 = Op(1).

27



Proof of Lemma 2.

Let c(u, v; θ) be the density function of a bivariate Archimedean copula. The stage-wise estima-

tion procedure is initialized with estimating the parameter θ1 for all possible pairs (U1, U2)
>, . . . ,

(U1, Ud)
>, . . . , (Ud−1, Ud)

>, i.e., θ̂1,gh = arg max
θ1

∑n
i=1 log{c(Uig, Uih; θ1)} for g = 1, . . . , d − 1, h =

g + 1, . . . , d, and selecting the largest estimate among all estimated parameters. Suppose θ̂1,(d−1)d is

the estimator with the largest value and set θ̂1 = θ̂1,(d−1)d. Then, θ̂1−θ1,0 = Op(1) follows by classical

ML theory. Remove Ud−1 and Ud from the set of variables. To finish the first estimation-stage set

Ud−1 = φθ̂1

[
2φ−1

θ̂1
{max(Ud−1, Ud)}

]
and add Ud−1 ∼ U(0, 1) to the set of variables again.

At the next estimation stage θ2 is estimated for all possible pairs (U1, U2)
>, . . . , (U1, Ud−1)

>, . . . ,

(Ud−2, Ud−1)
>, i.e., θ̂λn2,gh = arg max

θ2

∑n
i=1 log{c(Uig, Uih; θ2)} − npλn(θ̂1 − θ2), for g = 1, . . . , d − 2,

h = g + 1, . . . , d − 1, and selecting the largest estimate among all estimated parameters. Suppose

θ̂λn2,(d−2)(d−1) is the estimator with largest value, set θ̂λn2 = θ̂λn2,(d−2)(d−1) and assume θ1,0 = θ2,0. Due

to the consistency of θ̂1, we obtain Qθ̂1(θ2) = Qθ1,0(θ2) + op(1). If λn → 0 as n → ∞, the penalized

estimator θ̂λn2,n is n1/2-consistent, c.f., Fan and Li (2001); Cai and Wang (2014), and Lemma 1 implies

P{Qθ1,0(θ̂λn2 ) ≤ Qθ1,0(θ1,0)} → 1 as n→∞. If θ1,0 > θ2,0, it can be shown by applying arguments of

the proof of Proposition 3, that the bias arising from penalized ML estimation vanishes asymptotically

as λn → 0, so that (θ̂λn2 − θ2,0) = Op(1) as n→∞. The statement follows by iteratively repeating the

previous steps up the `-th hierarchical level.

Proof of Proposition 2.

Due to Lemma 2, we obtain Qθ̂`(θk(`)) = Qθ`,0(θk(`)) +op(1). For any θk(`) satisfying (θk(`)−θk(`),0) =

Op(n−1/2), Lemma 1 implies P{Qθ`,0(θ̂λnk(`)) ≤ Qθ`,0(θ`,0)} → 1 as n → ∞, which completes the

proof.

Proof of Proposition 3.

Note that the estimator θ̂λnk(`) satisfies 0 =
∑n

i=1 `
′
i(θ̂

λn
k(`)) + np′λn(θ̂` − θ̂λnk(`)). Taylor expansion of `′i(·)

about θk(`),0 and p′λn(·) about θ−0 = (θ`,0 − θk(`),0) leads to

0 =

n∑
i=1

`′i(θk(`),0) +

n∑
i=1

`′′i (θk(`),0)(θ̂
λn
k(`) − θk(`),0) + n

[
p′λn(θ−0 ) + p′′λn(θ−0 ){(θ̂` − θ̂λnk(`))− θ

−
0 }
]
,

which can be rewritten as

n1/2
{
Î(θk(`),0) + p′′λn(θ−0 )

}[
(θ̂λnk(`) − θk(`),0)−

{
Î(θk(`),0) + p′′λn(θ−0 )

}−1
p′λn(θ−0 )

]
= n−1/2

n∑
i=1

`′i(θk(`),0) + p′′λn(θ−0 )n1/2(θ̂` − θ`,0). (23)

Note that the existence of a n1/2-consistent estimator θ̂λnk(`) requires the condition p′′λn(θ`,0−θk(`),0)→ 0

being satisfied for θ`,0 > θk(`),0 as n→∞, c.f., Fan and Li (2001, Theorem 1). As this property holds

for the SCAD penalty, we obtain p′′λn(θ−0 ) = p′′λn(θ`,0−θk(`),0) = O(1). Using Lemma 2, it can be easily

shown that n1/2(θ̂` − θ`,0) = Op(1). Hence, the right hand side of (23) converges to N{0, I(θk(`),0)}
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by a central limit theorem as n→∞.

Proof of Proposition 4.

Since θ̂` ≥ θk(`) and θ̂` ≥ θ̂k(`), a linear approximation of pλ(|θ̂`− θk(`)|), for (θ̂`− θk(`)) ≈ (θ̂`− θ̂k(`)),
gives

pλ(|θ̂` − θk(`)|) ≈ pλ(θ̂` − θ̂k(`)) + p′λ(θ̂` − θ̂k(`))
{

(θ̂` − θk(`))− (θ̂` − θ̂k(`))
}
. (24)

Quadratic approximation of `i(θk(`)) around θ̂k(`) and `′(θ̂k(`)) = 0, leads to the minimization problem

arg min
θk(`)

1

2
(θk(`) − θ̂k(`))2

{
−

n∑
i=1

`′′i (θ̂k(`))

}
+ np′λn(θ̂` − θ̂k(`))

{
(θ̂` − θk(`))− (θ̂` − θ̂k(`))

}
.

Ignoring non-relevant parts and solving it with respect to θk(`) gives the unique solution θ̂λnk(`) = θ̂k(`)+

Î(θ̂k(`))
−1p′λn(θ̂`(k)−θ̂k), where information equality gives−n−1

∑n
i=1 `

′′
i (θ̂k(`)) ≈ n−1

∑n
i=1 `

′
i(θ̂k(`))

2 =

Î(θ̂k(`)), which completes the statement of Proposition 4.

C. Data description and fit of the marginal distributions

The daily log-returns obtained from Datastream cover the principal equity indices of the following

nine areas/countries over the period January 1, 2007 - April 30, 2014: USA (DJIA), Europe (SX5E),

Japan (N225), China (SSEC), Australia (XAO), Singapore (STI), Korea (KOSPI), Hongkong (HSI)

and Taiwan (TAIEX). Missing values in the marginal time series, which consist of 1913 observations

each, are replaced by the sample average of the surrounding 10-20 observations. ARMA-APARCH

models with skew-tχν distributed error terms are employed to remove temporal dependence, see Ding,

Granger, and Engle (1993) and Fernández and Steel (1998). The models are selected according to

the smallest BIC, where up to three autoregressive and moving average lags are considered in the

ARMA and APARCH components. The shape and skewness parameter is denoted by ν ∈ [1,∞) and

χ ∈ (0,∞) respectively.

The estimated values presented in Table C.1 indicate that the distributions of the residuals have heavy

tails and are slightly left-skewed, where χ = 1 indicates symmetry. Instead of presenting the entire

estimation results, we only report results on diagnostic tests concerning the autocorrelation in the first

and second moment of the standardized residuals as well as the Anderson Darling test for assessing the

model fit, see Box and Pierce (1970) and Anderson and Darling (1952). The corresponding p-values

are listed in Table C.1. Even though there is weak evidence for autocorrelation in ε2i for the N225

and STI as well as in εi for the SSEC and TAIEX, the model fit is regarded as sufficiently good, as

each series passes the Anderson Darling test at the 5% significance level.
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Index χ ν Q10(εi) Q15(εi) Q10(ε
2
i ) Q15(ε

2
i ) AD GoF

DJIA 0.85 6.22 0.96 0.85 0.43 0.76 0.08
HSI 0.92 8.24 0.70 0.26 0.19 0.32 0.28
KOSPI 0.87 7.28 0.19 0.49 0.42 0.17 0.44
N225 0.89 10.55 0.69 0.77 0.91 0.03 0.23
SSEC 0.91 4.55 0.03 0.10 0.07 0.16 0.21
STI 0.90 12.89 0.15 0.16 0.06 0.03 0.83
SX5E 0.91 7.94 0.92 0.85 0.15 0.20 0.66
TAIEX 0.86 5.67 0.19 0.02 0.58 0.58 0.15
XAO 0.84 16.88 0.79 0.86 0.95 0.96 0.69

Table C.1: Parameter estimates for skewed Student-t distribution and p-values for conducted Ljung-
Box tests, Ql(·), for lags l ∈ {10, 15}, and the Anderson-Darling goodness of fit test (AD GoF) for
daily log-returns of the considered stock market indices.
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