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Energy Harvesting Networks

 Wireless networking with rechargeable (energy 

harvesting) nodes:

 Green, self-sufficient nodes,

 Extended network lifetime,

 Smaller nodes with smaller batteries.

A relatively new field with increasing interest.
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Some Applications

Wireless sensor networks

Green
communications
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Harvesting Energy

 Fujitsu’s hybrid device 

utilizing heat or light.

Image Credits: (top) http://www.fujitsu.com/global/news/pr/archives/month/2010/20101209-01.html
(bottom) http://www.zeitnews.org/nanotechnology/squeeze-power-first-practical-nanogenerator-developed.html

 Nanogenerators built at 

Georgia Tech, utilizing strain
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New Network Design Challenge 

 A set of energy feasibility constraints based on 
energy harvests govern the communication 
resources.

 Main design question:

When and at what rate/power should a 
rechargeable (energy harvesting) node transmit? 

 Optimality? Throughput; Delivery Delay

 Outcome: Optimal Transmission Schedules
6/16/2014
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 One Energy harvesting transmitter.

 Find optimal power allocation/transmission 
policy that departs maximum number of bits in 
a given duration T.

 Energy available intermittently. 

 Up to a certain amount of energy can be stored 
by the transmitter  BATTERY CAPACITY.

Throughput Maximization

[Tutuncuoglu-Y.’12] 
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 Energy harvesting transmitter:

 Energy arrives intermittently from harvester
 Transmitter has backlogged data to send within a 

deadline T.
 Stored in a finite battery of capacity 

System Model

Ei

transmitter receiver

Energy queue
Data queue

Emax

Emax
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 Energy arrivals of energy      at times     

 Arrivals known non-causally by transmitter,
 Design parameter: power     rate    .

iE is
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System Model
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Notations and Assumptions

 Power allocation function:

 Energy consumed: 

 Transmission with power p yields a rate of r(p)

 Short-term throughput: 
T

dttpr
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Power-Rate Function

 Transmission with power p yields a rate of r(p)

 Assumptions on r(p):

i. r(0)=0, r(p) → ∞ as p → ∞ 
ii. increases monotonically in p
iii. strictly concave
iv. r(p) continuously differentiable

Example: AWGN Channel,                                
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Power-Rate Function

 r(p) strictly concave, increasing, r(0)=0 implies

)( pr

Ra
te

Power



p
p
pr  in decreasing llymonotonica is  )()tan( 

 Given a fixed energy, a longer
transmission with lower power 
departs more bits.

 Also, r -1(p) exists and is 
strictly convex
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 Battery Capacity:

Energy Constraints

(Energy arrivals of Ei at times si)

 Energy Causality: nn
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 Set of energy-feasible power allocations
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Energy “Tunnel”
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Optimization Problem

 Maximize total number of transmitted bits by deadline T

 Convex constraint set, concave maximization problem
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Necessary conditions for 
optimality of a transmission policy

 Property 1: Transmission power remains constant

between energy arrivals.

 Proof: By contradiction

r(p)dtr(p(t)) dt(t)) r(p

elsetp
tttp
tttp

tp

,tttptp

*  of concavity strict to due        Then

  Define

energy total given with ][0,   some for    Let




























00

222

111
*

2121

)(
],[)(
],[)(

)(

)()(




6/16/2014
16



Let the total consumed energy in epoch be

which is available in energy queue at

Then a constant power transmission

is feasible and strictly better than a non-constant 

transmission.

Necessary conditions for optimality
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 Property 2: Battery never overflows.

Proof:

pr(p)dtr(p(t))dt(t))pr(
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Policy can be improved Policy cannot be improved

p(t)

p’(t)
p*(t)

  r(p(t))dt(t))dtpr(
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Necessary conditions for 
optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant 

only if battery is depleted. Conversely, power level decreases 

at an energy arrival instant only if battery is full.

Policy can be improved Policy cannot be improved

p(t)
p’(t)

  r(p(t))dt(t))dtpr(

p*(t)
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Necessary conditions for 
optimality of a transmission policy

 Property 4: Battery is depleted at the end of transmission.

Proof:

increasing is  since        Then
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Necessary Conditions for 
Optimality

Implications of Properties 1-4:

 Structure of optimal policy: (Property 1)

 For power to increase or decrease, policy must meet the upper or 

lower boundary of the tunnel respectively (Property 3)

 At termination step, battery is depleted (Property 4).

 An algorithmic solution can be found recursively, see 

[Tutuncuoglu-Y.12] 
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Energy “Tunnel”

cE

t1s 2s
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Energy Causality

Battery Capacity
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Shortest Path Interpretation

 Optimal policy is identical for any concave power-rate function!

 Let                       , then the problem solved becomes:

The throughput maximizing policy yields 
the shortest path through the energy tunnel for 
any concave power-rate function.
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Shortest Path Interpretation

 Property 1: Constant power is better than any other alternative

 Shortest path between two points is a line (constant slope)

E

t0
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Alternative Solution
(Using Property 1)

 Transmission power is constant within each epoch:

 KKT conditions  optimum power policy.
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Directional Water-Filling

 [Ozel, Tutuncuoglu, Ulukus, Y., 2011]

 Harvested energies filled into epochs individually

0 t
O O O

0E 1E 2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

0 t
O O O

0E 1E 2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

 Battery Capacity: water-flow limited to Emax by taps

0 t
O O O

0E 1E 2E

Water levels (vi)
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Example
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy

E

t0

0 tO O O OO O
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Simulation Results

 Improvement of optimal algorithm over an on-off transmitter in 
a simulation with truncated Gaussian arrivals.
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Extension to Fading Channels

 [Ozel-Tutuncuoglu-Ulukus-Y.‘11]

 Find the short-term throughput maximizing 
and transmission completion time minimizing 
power allocations in a fading channel with 
known channel states.

 Finite battery capacity

6/16/2014
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System Model

 AWGN Channel with fading h :

 Each “epoch” defined as the interval between two “events”.

)1log(
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TM Problem with Fading
 Transmission power constant within each epoch:

 Maximize total number of transmitted bits by deadline T

 Solution once again is directional waterfilling.
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Directional Water-Filling 
for fading channels

0 t
O O Ox

0E 2E 4E

Fading levels (1/hi)

Water levels (vi)

x

 Same directional water filling model with added 

fading levels.

 Directional water flow (Energy causality)

 Limited water flow (Battery capacity)
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Multiple EH Transmitters

 How to allocate power when there are more than one 
energy harvesting transmitters sharing the same 
medium?

 How do the network parameters affect the optimal 
policy?

 Many recent multi-node models, e.g., MAC (and BC) 
[Ozel,Yang,Ulukus’11,’12],  Relay [Cui, Zhang,’12], [Oner, 
Erkip’13], [Varan, Y.’13], …, Two-way Relay [Tutuncuoglu, 
Varan, Y.’13],…
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Interference and EH: 
Gaussian IC with EH Transmitters
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 Sum-Throughput Maximization Problem:
Find optimal transmission power/rate policies that 
maximize the total amount of data transmitted to 
both receivers by a deadline T=Nτ.

Problem Definition
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 Claim:

Concavity of sum-rate

2121 ),( ppppr  and  in concave  jointlyis 

Given any transmission scheme achieving a sum-rate 
r(p1,p2), one can utilize time-sharing to construct concave 
sum-rate:
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 Convex problem allows the solution to be found 

using coordinate descent between          and 

Optimal Policy

Iterative Generalized Directional Water-filling(IGDWF): 

constrained water-filling with generalized water levels: 
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Two-user IGDWF
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Two-user IGDWF
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Two-user IGDWF
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Two-user IGDWF
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Take-away

 Multiple energy harvesting transmitters sharing the 
same medium: transmit policy of one depends on the 
others.

 Care need to be exercised in iteratively finding the 
water-filling solutions.

 Policies do depend heavily on the channels, some 
instances converge in one iteration and/or result in 
simplified algorithms, e.g., strong interference.
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Multiple EH Transmitters:
The concept of Energy Cooperation
[Gurakan-Ozel-Yang-Ulukus ’12]

 Intermittent energy nodes may be energy deprived!

 Relay can “receive” 

the energy to forward 

the data.

 Energy cooperation 

between nodes can be 

very useful!
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Wireless Energy Transfer

 Already present in RFID systems

 New technologies like strongly coupled 

magnetic resonance reported to achieve 

high efficiency in 

mid-range

Image Credits: (top) http://www.siongboon.com/projects/2012-03-03_rfid/image/inlay.jpg
(middle) http://www.witricity.com
(bottom) http://electronics.howstuffworks.com/everyday-tech/wireless-power2.htm

Transfer energy to a 60-watt bulb with 50 percent efficiency
from 6-feet & 90 percent efficiency from 3-feet (MIT).
75 percent efficiency from two to three feet away (Intel).
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Wireless Energy Transfer
In-body (in-vein) wireless devices
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Image Credits: (top) 
http://www.extremetech.com/extreme/119477-stanford-
creates-wireless-implantable-innerspace-medical-device 
(bottom) http://www.imedicalapps.com/2012/03/robotic-
medical-devices-controlled-wireless-technology-
nanotechnology/

Poon, 2012



Energy Harvesting and 
Cooperating Models (EH-EC)

52

 Time slotted model,  N slots 

with length T, indexed by i

 K transmitters receive energy 

packets of size Ej[i] at the 

beginning of the ith time slot
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2
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 Received energy stored in an infinite size battery

 In slot i, node k transmits with power pk[i]

6/16/2014



EC-EH 
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 In time slot   ,transmitter   
sends transmitter    an energy 
of          with efficiency

 Uni-directional energy transfer 
is a special case with  
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 Energy in node k’s battery at the end of the ith time slot: 
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EC-EH
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Energy Constraints:

 Non-negativity of transmit power and transferred 
energy:
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 Energy Causality: Energy required by transmission 
or transfer is available, i.e., harvested:

 What is the sum-capacity of EC-EH-MAC and 
EC-EH-T(wo)-W(ay)-C?
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 Sum-Capacity:

EC-EH-TWC
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EC-EH-MAC
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Problem Statement
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

 Find maximum achievable sum-rate by optimizing the 
energy transfer and energy expended for tx.
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[Tutuncuoglu-Y. ’13]



Simplifying the Problem
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1) Optimal Routing of Energy Transfers:
Use equivalent transfer efficiency values that reflect the 
optimal routing of energy transfers.

2) Procrastinating Policies:
Restrict to a subset of policies that delay energy transfer 
unless transferred energy is used immediately

3) Decomposition:
Solve energy transfer and power allocation separately
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 Redefine effective efficiency values as

where                        is any feasible energy transfer path

Routing Energy Transfers

59

2,1 3,2

1 2 3

3,1  Energy can be transferred 
through multiple paths.

 Optimal policy chooses the 
highest efficiency path.

 Transferring and receiving 
energy simultaneously is 
suboptimal.
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Procrastinating Policies
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 Definition: A procrastinating policy satisfies

i.e., the energy received by a node is not greater than the 
energy required for transmission within that time slot.

 In a procrastinating policy, a node does not transfer 
energy unless the receiving node intends to use it 
immediately.

 Lemma: There exists at least one procrastinating policy 
that solves the sum-capacity problem.

  Restrict search space to such policies 
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Sum-Capacity Problem
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 Define consumed powers

 Sum-Capacity problem can be decomposed as
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Power Allocation Energy Transfer
Solved directly (single slot)Solved via IGDWF

6/16/2014



EC-EH-TWC

62

T 2T 3T 4 T

4

0

T 2T 3T 4 T

3

9

12

0

8

6

2

6

v1

v2

2]1[1 E 5]2[1 E

4]2[2 E 7]4[2 E

5.01,22,1 

6/16/2014



EC-EH-TWC
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EC-EH-MAC
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 Energy transfer direction is determined by 

 Power allocation problem is solved as if a single transmitter 
with energy arrivals
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Simulations
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Energy transfer from 3 to 1 is 
optimal after this point, 
allowing sum-capacity 
improvement
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TWC-Simulations
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Uni-directional energy transfer 
may be suboptimal in both 

directions
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Information Theory of 
EH Transmitters

 So far, we have assumed 

sufficiently long time slots and 

utilized the known rate 

expressions.

 What if energy harvesting is 

at the channel use level, i.e., 

each input symbol is individually 

limited by EH constraints?

Tx

iE

Rx
)( pRRate 

iX
ENC

iE

DEC
1  1  0  0  0  1

iY
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Energy Harvesting (EH) Channel:

[Tutuncuoglu-Ozel-Ulukus-Y.‘13] 

 The channel input is restricted by an 

external energy harvesting process.

 State: available energy

 Has memory (due to energy storage)

 Depends on channel input

 Causally known to Tx (causal CSIT)

ENCODER
iXW

Energy 
Harvesting

Energy 
Storage

Information Theory of 
EH Transmitters
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EH Channel

ENCODER
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iE

DECODER
Ŵ

CHANNEL
iX iY

iS

XYP |

ii SX 

),min( max1 EEXSS iiii 

(Ch. input constrained by state)

(State has memory)
(State evolves based on ch. input)1max E
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Capacity with Zero Storage

 Let               , and encoder can use arriving energy, i.e.,

 Memoryless channel with causal state, [Shannon 1958]
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ŴW

iE

 .      
        
1,0,1
,0,0




ii

ii

XthenEif
XthenEif



71
6/16/2014

Capacity with Infinite Storage




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CIS

 As                  , a save-and-transmit scheme proposed for the 

AWGN ch [Ozel, Ulukus, 12] is optimal.

 Any codeword with                 can be conveyed without error 

maxE

pX  ][

ENCODER DECODER
ii YX 

ŴW
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The Binary EH Channel

[Tutuncuoglu-Ozel-Y.-Ulukus’13] 

 Unit battery, 
 Binary noiseless channel,
 Timing channel equivalent: encoding strategy; upper bound by 

providing state info at the decoder.
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 A tighter upper bound than [Tutuncuoglu-Ozel-Y.-Ulukus’13]:

A lower bound on 
i.e., the information leaked to the 
receiver about the harvesting process.

)|;( UTZI

New Results on BEHC
[Tutuncuoglu-Ozel-Y.-Ulukus’14]
(will be presented at ISIT 2014)

 Improved encoding scheme as well:
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New Results on BEHC

Asymptotically 
optimal achievable 

rate

Improved upper 
bound on capacity

Capacity within 
0.03 bits
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EH DMC with CSIT&CSIR
[Ozel-Tutuncuoglu-Ulukus-Y.’14]
(will be presented at ISIT 2014)

 The battery state     is available causally at both Tx and Rx 
 Input symbol                        , with            consuming     units 

of energy.
Xi  {0,1,..., K}

Si

ENCODER CHANNEL DECODER
iX iY

ŴW

maxE
iE

iS

 Information flows both through the physical channel and the 
battery state. (e.g., communication is possible without channel)

iS iS

Xi  k k
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EH DMC with CSIT&CSIR

ENCODER CHANNEL DECODER
iX iiYY 21

ŴW
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ENCODER CHANNEL DECODER
iX iY

ŴW

maxE
iE
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)|( ii xyp

Original EH 
channel with 

CSIT and CSIR:

Equivalent 
channel with 

feedback:
[Chen-Berger ‘05]

Feedback does not increase 
capacity Weissman, Goldsmith 2009
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EH DMC with CSIT&CSIR



Conclusion
• New networking paradigm: energy harvesting nodes

 New design insights arise from new energy constraints!

 Realistic concerns, e.g. storage capacity, storage 

efficiency impact transmission policies.

 Multi-terminal scenarios need to be handled with care.

 Cooperation with an energy harvesting relay or energy 

cooperation brings additional insights and possibilities.

 Information theoretic formulations are challenging but 

promising to yield new insights.
6/16/2014
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Current Studies and 
Open Problems

 Information theoretic limits, optimal coding schemes 
for energy harvesters

 Operational principles of energy harvesting receivers

 Impact of EH on signal processing PHY algorithms

 Impact on network protocols

 Efficient online schedules, simple practical 
implementations

 Papers: 
6/16/2014
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