

#### Integrating the Radiology Information System with Computerised Provider Order Entry: The impact on repeat medical imaging investigations

Elia Vecellio (South Eastern Area Laboratory Services, NSW Health Pathology) Andrew Georgiou (Australian Institute of Health Innovation, Macquarie University)





#### AUSTRALIAN INSTITUTE

AIHI | AUSTRALIAN INSTITUTE OF HEALTH INNOVATION

# Centre for Health Systems and Safety Research

- Medication Safety and e-Health
- Communication and Work Innovation
- Human Factors & eHealth
- Pathology and Imaging Informatics
- Safety & Integration of Aged and Community Care Services
- Primary Care Safety and eHealth

Research Methods Development

#### 3/08/2016

## The role of medical imaging

- Contribute to the examination, diagnosis, monitoring/documentation and treatment of patients.
- Potential safety implications of exposure of patients to carcinogenic ionising radiation
- CT procedures are among the largest source of medically-related exposures to ionising radiation
- Repeat imaging requests represents 9.2% of all imaging requests (Lee et al. Radiology, 2007)
- Potential for unintentional (inappropriate) repeat imaging requests (Kamat et al. Emer Med Journal, 2015)







#### Aim

To assess the impact of implementing an integrated Computerised Provider Order Entry/Radiology Information System/Picture Archiving and Communication System on the number of x-ray and computer tomography procedures (including repeat imaging requests) for inpatients at a large Sydney hospital





#### Medical imaging department located within an 855-bed Sydney teaching hospital

- Existing Cerner PowerChart (Version 2004.01) and in-house imaging results reporting system (HOSREP)
- Neither system were integrated with each other
- GE Healthcare Centricity Radiology Information System (RIS) introduced in 2009 to replace HOSREP.
- New RIS fully integrated into Cerner PowerChart
- New RIS also included PACS functionality allowing films to be captured, stored and communication electronically.





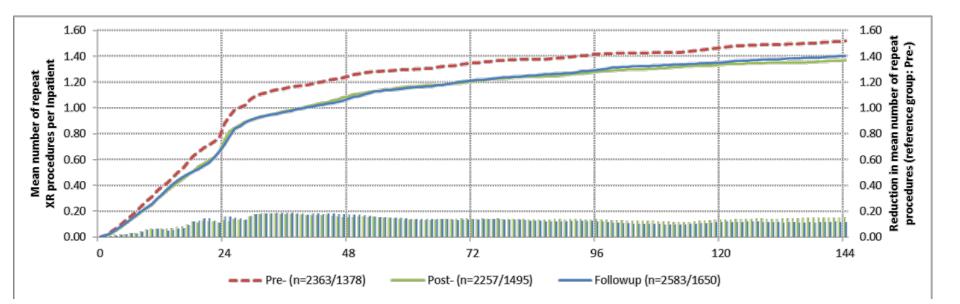
## Setting

## Analysis



- The mean number of imaging procedures per patient were calculated by dividing the number of procedures by the number of patients.
- Repeat procedures were defined as those procedures when an identical procedure code was ordered for the same patient.
- Inferential statistics utilised univariate ANOVA methods and 95% Confidence Intervals (CIs) for the differences in rates between time-periods used Dunnett's C correction for multiple comparisons.
- SPSS version 22
- Seasonally matched comparisons

| Study period | Calendar period |  |  |  |
|--------------|-----------------|--|--|--|
| Pre-         | Jan-Jul 2009    |  |  |  |
| Post-        | Jan-Jul 2010    |  |  |  |
| Follow-up    | Jan-Jul 2011    |  |  |  |




|                                     | Mean rate of procedures per inpatient   |  |                |    |              |  |  |
|-------------------------------------|-----------------------------------------|--|----------------|----|--------------|--|--|
|                                     | (No. of procedures / No. of inpatients) |  |                |    |              |  |  |
|                                     | Pre-                                    |  | Post-          |    | Follow-up    |  |  |
| XR                                  | 3.02                                    |  | 2.55           |    | 2.58         |  |  |
|                                     | (4161/1378)                             |  | (3807/1495)    | (4 | 4254/1650)   |  |  |
| Mean change (reference group: Pre-) |                                         |  | -0.47          |    | -0.44        |  |  |
| (95% CIs)                           |                                         |  | (-0.78, -0.17) | (- | 0.75, -0.13) |  |  |



|                                                  | Mean rate of procedures per inpatient<br>(No. of procedures / No. of inpatients) |  |                        |  |                        |  |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------|--|------------------------|--|------------------------|--|--|--|
|                                                  | Pre-                                                                             |  | Post-                  |  | Follow-up              |  |  |  |
| СТ                                               | 1.38<br>(1175/854)                                                               |  | 1.31<br>(1255/959)     |  | 1.30<br>(1239/951)     |  |  |  |
| Mean change (reference group: Pre-)<br>(95% CIs) |                                                                                  |  | -0.07<br>(-0.15, 0.02) |  | -0.07<br>(-0.16, 0.01) |  |  |  |









# Key findings





- Decrease in imaging procedure requests following the implementation of new RIS/PACS integrated with CPOE
- Average of 0.46 fewer x-rays and 0.07 CT procedures
- There was also a lower rate of repeat procedures 0.13 fewer repeat x-ray procedures in 24h
- This was mainly driven by a drop in the number of x-ray procedures.

## Limitations





- Observational study which utilises a dataset with information about patients with at least one imaging procedure
- Changes in imaging request rates were not compared with a control hospital.

# Implications

- Enhanced clinical access to patient information including about what and when images previously requested
- Access to electronic images eliminates problems associated with misplaced and lost films
- Potential for electronic decision support at point of care as an aid to quality evidence-based decision making





