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Abstract 

 

The analysis of catastrophic and climate impacted hazards is a challenging but 

important exercise, as the occurrence of such events is usually associated with high 

damage and uncertainty. Often, at the local level, there is a lack of information on rare 

extreme events, such that available data is not sufficient to fit a distribution and derive 

parameter values for the frequency and severity distributions. This paper discusses 

local assessments of extreme events and examines the potential of using expert 

opinions in order to obtain values for the distribution parameters. In particular, we 

illustrate a simple approach, where a local expert is required to only specify two 

percentiles of the loss distribution in order to provide an estimate for the severity 

distribution of climate impacted hazards.  In our approach, we focus on so-called 

heavy-tailed distributions for the severity, such as the Lognormal, Weibull and Burr 

XII distribution. These distributions are widely used to fit data from catastrophic 

events and can also represent extreme losses or the so-called tail of the distribution. 

An illustration of the method is provided utilising an example that quantifies the risk 

of bushfires in a local area in Northern Sydney. 
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1) Introduction 

 

Extreme events, such as flooding, storms, droughts and bushfires are already part of 

the natural cycle of weather patterns in Australia and contribute to around $1 billion 

of insured losses annually (Compton and McAneney, 2008). The most recent IPCC 

AR5 WG2 report states with high confidence that ―existing environmental stresses 

will interact with, and in many cases be exacerbated by, shifts in mean climatic 

conditions and associated change in the frequency or intensity of extreme events, 

especially fire, drought and floods.‖ (IPCC, 2014: 16). This indicates that climate 

change is likely to affect the occurrences of extreme events and their associated 

damage. Preparatory measures in the form of mitigation and adaptation are required to 

alleviate the risks at all levels of government. The particular challenge of climate 

change adaptation and the need to build community resilience to natural disasters for 

Australia has also been pointed out by, e.g., Newton (2009), Roiko et al (2012), Ross 

and Carter (2011).  

 

Irrespective of the level of mitigation policy, the long life time of Greenhouse Gases 

means that mitigation efforts will take a long time to have an impact and that it is 

necessary to plan for adaptation to damages arising from climatic change. The effects 

of climate change on extreme events vary across locations, signifying the role of local 

government decision-making. At present, local government decision makers‘ are in a 

state of inertia due to the complexity and range of uncertainties surrounding extreme 

event analysis and adaptation decision-making, see, e.g., Mathew et al (2012). The 

precautionary principle encourages early action to protect the environment when there 

is potential for serious or irreversible damage (UN, 1992). This rationalises the 

implementation of preparatory measures against extreme events (Stern, 2006) placing 

decision makers liable to make appropriate decisions for the welfare of their 

community. It is also possible that, in the future, government officials will become 

legally bound to make wise adaptive measures.  

 

The main issue decision makers‘ face is the absence of proper guidance to understand 

the effects of various uncertain parameters in analysing extreme events and assessing 

their damage. In general, extreme event analysis is challenging because of data 

scarcity and the unknown effects of climate change on the frequency and severity of 

the events. Another analysis challenge is caused by the absence of long records of 

observations where statistical trends can be drawn. Even if historical observations are 

present, they may or may not represent future occurrences of extreme events as the 

effects of climate change can alter the frequency and severity of the events.  Further to 

this, assessing the quantitative damage due to extreme events over a period of time 

introduces other parameters of uncertainty including the discount rate and growth rate, 

see, e.g., Trück et al (2010), Mathew et al (2012). With a focus on the local level, this 

paper discusses cases where the available data is insufficient to fit a distribution or 

derive parameter values of distributions for modelling extreme event severity or 

frequency.  

 

In the absence of local observations, one way to estimate parameter values of 

distributions is to engage local experts to solicit their opinions (Schröter et al, 2005; 

Næss et al, 2006). While most people have an intuitive understanding of the mean of a 

probability distribution, without additional statistical training it is much more difficult 

to understand or specify the variance of a probability distribution. This problem 



2 

 

becomes even more pronounced in the context of asymmetric or heavy-tailed 

distributions that are usually required for modelling catastrophic or climate-impacted 

hazards. Given the difficulty an expert in the field may have in appropriately 

specifying the variance or scale parameter of a distribution, we believe that such prior 

beliefs about the severity distribution of events may be more accurately captured by 

asking experts for quantile values rather than values for means and variances of a 

distribution.  

 

This paper will explain in detail how parameters of a probability distribution can be 

determined so that the estimated distribution is consistent with two quantile values 

that have been specified by an expert. We will present algorithms and closed-form 

solutions for the computation of the parameters. In particular, we will illustrate the 

approach using asymmetric and heavy-tailed distributions such as the Lognormal, 

Weibull and Burr XII distribution. All or some of these distributions have been 

utilised in studies focused on extreme events and have been applied to hurricanes 

(Levi and Partrat, 1991; Braun, 2011), earthquakes (Braun, 2011), extreme rainfall 

(Esteves, 2013; Papalexiou et al., 2013), floods (Mathew et al., 2012), climate 

sensitivity (Pycroft et al., 2011) and sea-level rise (Pycroft et al. 2014). Using the so-

called loss distribution approach (LDA) that has gained popularity in the financial 

sector for modelling insurance claims or losses arising from operational and credit 

risks within the banking industry (Klugman, et al., 1998; Bank for International 

Settlements, 2001) we will then illustrate how the derived distributions can be used to 

quantify existing catastrophic and climate impacted hazards also over a longer time 

horizon.  

 

The remainder of the article is set up as follows. Section 2 outlines the framework of 

estimating potential risks from catastrophic and climate impacted events. The section 

also illustrates the derivation of parameter values for the severity distributions of 

catastrophic events based on expert estimates. Section 3 provides a case study for the 

analysis of risks from bushfires for the Northern Sydney Ku-ring-gai area. Section 4 

discusses the use of these estimates for quantifying losses from climate impacted 

events over a longer time horizon, while Section 5 concludes the paper and provides 

directions for future research. 

2) Modelling Catastrophic Events  

 

In the following, we illustrate how to determine the aggregate loss distribution for 

extreme climate impacted hazards using the so-called loss distribution approach 

(LDA). We further show how to calculate measures for the risk from catastrophic 

events, for example the expected loss or higher quantiles of the aggregate loss 

distribution from climate impacted events over a longer time horizon. Such measures 

are of particular interest to local decision makers when investments into climate 

change adaptation projects are being considered.  

 

The LDA is a statistical approach for generating an aggregate loss distribution using 

an appropriate distribution for the frequency and severity of an event type. The 

approach is particularly popular in the finance and insurance industry, see, for 

example, Klugman et al (1998), Bank of International Settlement (2001). One of the 

most frequently used specifications of this approach is to apply a Poisson distribution 
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for the frequency and a Lognormal distribution for the severity of a particular hazard 

(Klugman et al., 1998) 

 

To compute the probability distribution of the aggregate loss over a one year time 

horizon, we need to estimate the probability distribution function of a single event 

loss and its frequency for one year. For example, if we are interested in the risk from 

bushfires for a local region, under the LDA we need to estimate the probability 

distribution functions of residential property loss from bushfires and the bushfire 

frequency over a one year horizon. Under optimal circumstances, the estimation 

procedure should utilise internal and external data as well as expert judgements, see, 

e.g., Shevchenko and Wüthrich (2006). Unfortunately, at the local level there is often 

hardly any historical data available on losses from extreme climatic events. Under 

such circumstances it is then not possible to fit a distribution to historical data from 

observed events. Also, climatic change or characteristics of the region such as 

additional dwellings and infrastructure investments may have changed the expected 

occurrence and impact of catastrophic events. Therefore, we suggest using expert 

estimates on the frequency and severity of climate impacted hazards to create a model 

that can appropriately describe the risk. Having established probability distribution 

functions for the occurrence and magnitude of catastrophic events, it will then be 

possible to compute the cumulative loss distribution for a particular year, but also 

over a longer period of time. 

 

In the LDA, the frequency distribution and severity distribution are assumed to be 

independent and can then be modelled separately. In this section we will outline how 

expert estimates can be used to determine a probability distribution for the frequency 

of and severity of catastrophic or climate impacted events. We will also illustrate a 

procedure that can be used to derive a distribution for aggregate losses for a single 

year or over a longer time horizon, what is of particular interest for investments into 

climate change adaptation. 

 

2.1 The loss distribution approach (LDA) 

 

The LDA (Klugman et al., 1998, Bank of International Settlement, 2001) is used in 

this paper to generate an aggregate loss distribution. We define the cumulative loss G 

over a time horizon as                               

1

N

i

i

G X



                         

  (1) 

                                                                                                      

 

where N is the number of events over a considered time period (usually one year), 

modelled as a random variable from a discrete distribution. The , 1,...,iX i N  denote 

severities of the events modelled as independent random variables from a continuous 

distribution.  

 

The LDA, allows for the computation of the expected loss, i.e. the average outcome, 

but also for the computation of the loss at a given confidence level  . As mentioned 

above, the distribution for the number of events can be defined over any time horizon, 

for example, one month, 6 months, one year, 5 years, etc. However, for rare events 

like catastrophic losses or operational risks in the banking sector, the distribution is 
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usually estimated for a one year time horizon. We decided to follow this approach and 

specify the distribution for the frequency also for a time horizon of one year.   

However, by considering several subsequent years in the simulation analysis, we are 

also able to derive outcomes for losses arising from extreme climate events over a 

longer time horizon.  The methodology to adapt the approach for multiple years is 

explained in Section 4.1.  

 

With a focus on one year, the expected loss, EL, and the loss at a given confidence 

level  , L( ), are then defined by 

0

( )EL xdG x



                                  (2) 

and 

 

( ) inf{ | ( ) }L x G x                     (3) 

 

The expected loss is the expected value of the aggregate loss distribution function G, 

whereas the loss at a confidence level   is simply the  -percentile of the aggregate 

loss distribution. Using Monte Carlo simulation allows us to generate the aggregate 

loss distribution of the event and obtain percentile estimates, such as the 90% and 

99% quantile for the aggregate losses. The accuracy of the estimation depends on the 

adequacy of the parameter estimates but also on the number of simulations in the 

Monte Carlo approach; refer to Fishman (1996) for an explanation. As a result, it is 

usually recommended to run a high number of simulations. 

 

2.2 Estimating the frequency distribution 

 
The frequency of events is usually modelled using a discrete probability distribution 

such as, e.g., the Bernoulli, Binomial, Poisson or Geometric distribution. Discrete 

distributions apply to a random variable whose set of possible values is finite or 

countable. Hence the frequency of an event, as a countable discrete random variable, 

can be modelled by a discrete distribution.  

 

In this paper, we assume that the annual frequency of a catastrophic event N can be 

modelled using a Poisson distribution with parameter λ. The probability mass function 

of the Poisson distribution is given by  

 

       
  

  
   ,                        (4) 

 

 

where k denotes the number of events and λ is the sole parameter of the Poisson 

distribution. 

 

 

For the Poisson distribution, the expected number of events per year is 

  

E[N] = λ.    (5) 
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Figure 1 provides a plot of the probability mass function (PMF) of the Poisson 

distributions with values for λ=0.5 and λ=5. For λ=0.5, corresponding to an average 

of 0.5 events per year, one can see that the distribution is skewed to the right. The 

highest probability is allocated to zero events, P(N=0)=0.6065, while the probability 

for one event is approximately 30%. Therefore, less than 10% of the probability mass 

are allocated to observing two events or more for λ=0.5. For λ=5, corresponding to an 

average number of 5 events per year, the distribution is more symmetric and the 

highest probabilities are assigned to observing four or five events with 

P(N=4)=P(N=5)=0.1755. There is a probability of observing three events or less of 

P(N≤3)=0.2650 and a probability of observing more than five events of 

P(N≥6)=0.3840.  

 

 
Figure 1: Probability mass function (PMF) for a Poisson distribution with λ=0.5 (left 

panel) and λ=0.5 (right panel). 

 

For our empirical analysis, with a focus on expert elicitation, we assume that an 

expert will be able to give an estimate for the expected number of events.
2
 

 
2.3 Estimating severity using quantiles 

 

Extreme events are rare and accordingly it can be difficult to obtain sufficient 

historical data to fit a distribution. However, as decision makers are faced with the 

possibility of extreme losses, calculating a distribution that estimates the probability 

of future events is important. The approach we present involves the elicitation of an 

expert estimate for the value of two quantiles for the severity of the losses and then 

using these estimates to calculate the parameters of the probability distribution.  

Thus, our approach only requires an expert to specify provide two different quantiles 

or percentiles for the severity of losses, i.e. P(X < x1) = p1 and P(X < x2) = p2 in order 

to derive the parameters of the severity distribution. Such a specification is usually 

much easier than providing actual parameters for a distribution, since the approach 

does not require the expert to understand the impact of the location, scale or shape 

parameters on the shape of a heavy-tailed distribution or potential losses.  

                                                 
2 For applications of combining expert estimates with the empirically observed frequency of events 

using Bayesian analysis, see for example, Shevchenko and Wüthrich (2006), Mathew et al (2011) or 

Mathew et al (2012).  
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In our empirical application, we will use the median of the distribution, i.e. p1=0.5, 

and a more extreme outcome for the distribution, the 95
th

 percentile p2=0.95, 

however, the approach can be applied as long as the expert provides estimates for any 

two arbitrary quantiles of the distribution. Further, it is important to keep in mind that 

the applied Lognormal, Weibull and Burr Type XII distributions are highly skewed to 

the right and may exhibit heavy tails. Due to the skewed shape of the distribution, the 

mean is typically influenced by extreme values of the distribution and significantly 

greater than the median. Therefore, it will typically be easier for an expert to specify 

the median as a more robust statistic of the distribution, separating the higher half of 

the potential losses from the lower half.  

 

 
 

Figure 2: Probability density function (PDF) for a Lognormal distribution, with 

parameters        and       . The distribution exactly matches the conditions 

(i) P(X < 30) = 0.5, and, (ii) P(X < 200) = 0.95.  The plot also illustrates that the 

mean of the specified distribution, E(X)=58.37, is significantly greater than the 

median q0.5=30 of the distribution. 

 

Figure 2 presents an exemplary probability density function (PDF) for the Lognormal 

distribution, where the parameters        and        were calculated based on 

an expert specifying (i) the median to be equal to 30, i.e. P(X < 30) = 0.5, and, (ii) the 

95
th

 percentile of the distribution to be equal to 200, i.e. P(X < 200) = 0.95. The dark 

blue area between 0 and 30 to the left of the specified median illustrates that there is 

50% chance for the loss to be less or equal than 30. On the other hand, the dark blue 

area to the right of 200, the specified 95
th

 percentile, is equal to 0.05, indicating that 

there is only a 5% chance of observing losses that are greater than 200. Thus, the 

specified distribution with        and        perfectly matches the conditions 

specified by the expert. The figure also illustrates that the mean of the distribution, 

E(X)=58.37, is clearly greater than the median which is indicative of the heavy-

tailedness of the Lognormal distribution. This is a property of fat tailed distributions 

that is in contrast to the Gaussian normal distributions where the mean and median 

coincide. As mentioned in the previous paragraph and also based on previous 

experience with expert quantile estimations, we believe that it will be easier for a 
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local expert to provide information on the median of the distribution than on the 

mean.  

 

The following sub-sections will illustrate how to compute parameter values for a 

Lognormal, a Weibull and a Burr XII distribution. As noted in the introduction, these 

distributions have been applied to the analysis of extreme events, such as hurricanes 

(Levi and Partrat, 1991; Braun, 2011), earthquakes (Braun, 2011), extreme rainfall 

(Esteves, 2013; Papalexiou et al, 2013), floods (Mathew et al, 2012), climate 

sensitivity (Pycroft et al, 2011) and sea-level rise (Pycroft et al, 2014). 

2.3.1 The Lognormal Distribution  

 

The Lognormal distribution with parameters   and   can be stated in terms of the 

normal distribution. If the severity X follows a Lognormal distribution, i.e. 

                , log(X) is normally distributed with parameters   and  , i.e. 

log(X) ~ N(µ,  ). The Lognormal distribution has been widely used for the analysis of 

extreme risk in the finance industry and the Bank for International Settlements 

identifies the Lognormal distribution as the default option for modelling the severity 

of losses from operational risks (BIS, 2010). Amongst many other applications, the 

distribution has been applied to indices for property losses resulting from catastrophic 

events in the US (Burnecki et al., 2000) and climate sensitivity (Calel et al, 2013). 

 

Now, let‘s assume that an expert is able to provide two different quantiles for the 

severity of losses, i.e. P(X < x1) = p1 and P(X < x2) = p2. Then the parameters of the 

Lognormal distribution can be estimated using this information only. In our empirical 

application, we will use the median of the distribution (p1=0.5) and the 95
th

 percentile 

(p2=0.95), however, the approach is applicable to any two quantiles of the 

distribution. 

  

The inverse cumulative distribution function (CDF) of the normal distribution is 

 

                                (6) 

 

where     denotes the CDF of the standard normal distribution. From equation (6), 

we can derive equations for the parameters of the Lognormal distribution in terms of 

the probabilities    and    and the corresponding percentile values    and   . We get 

the following closed-form expressions for   and  , see, e.g., Cook (2010). 

 

  
   

          
      

               
  (7) 

and 

 

  
     

               
 .                           (8) 

 

Therefore, it is straightforward to obtain the parameter estimates for the Lognormal 

distribution. As mentioned above with                  we get log(X) ~ N(µ,  ), 

such that   and   can be derived using the following expressions: 
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          (9) 

 

and 

  
                

               
 .                            (10) 

 

The derived parameters of equation (9) and (10) will then satisfy the conditions P(X < 

x1) = p1 and P(X < x2) = p2 specified by the expert.  

2.3.2 The Weibull Distribution 

 

The Weibull distribution was originally formulated to test the tensile strength of 

brittle materials
3
 (Weibull, 1951) and has been applied to a wide range of uses. This 

includes, for example, the modelling of insurance claims resulting from natural 

catastrophe events in the US (Chernobai et al., 2006), losses from operational risks in 

the banking industry (Chernobai et al., 2010), reinsurance premiums based on fire loss 

data (Cummins et al., 1990), the modelling of extreme returns from investments 

(Goncu et al., 2012) and wind speed frequency distributions for use in the analysis of 

wind energy potentials (Justus et al., 1976; Stevens and Smulders, 1979; Seguro and 

Lambert, 2000). The Weibull distribution is defined by a shape parameter  , and a 

scale parameter  , and is denoted by the following CDF: 

 

              ( (
 

 
)
 

)                                  (11) 

 

 

The inverse CDF of the Weibull distribution can then be expressed as 

 

                                                        (12) 

 

 

Again, we assume that an expert is able to provide two different quantiles for the 

severity of losses, i.e. P(X < x1) = p1 and P(X < x2) = p2. Using equation (12), we can 

then solve for the shape parameter   and scale parameter   

 

 

  
                                 

                
                                (13) 

 

  
  

             
 

 ⁄
                                                        (14) 

 

to obtain a Weibull distribution satisfying the conditions specified by the expert. 

2.3.3 The Burr XII Distribution 

 

The Burr XII distribution is a continuous probability distribution for non-negative 

random variables. If has three parameters, a scale parameter α, and two shape 

                                                 
3 Weibull‘s 1951 paper was titled ‗A statistical distribution function of wide applicability‘. 
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parameters   and  . Due to its three parameters, the Burr XII distribution can capture 

a wide range of values for skewness and kurtosis. Like the Lognormal distribution, it 

belongs to the class of heavy-tailed distributions what makes it very suitable for 

modelling extreme or catastrophic losses. It also has become widely utilised for 

modelling the distribution of household income
4
 and has been applied to modelling 

insurance claims and losses from operational risks, see e.g. Chernobai et al. (2006), 

Cummins et al. (1990), Embrechts and Schmidli (1994), just to name a few. It has 

also been applied to the analysis of the duration of volcanic eruptions (Gunn et al., 

2013) and the modelling of irregularities in tree diameter (Tsogt and Lin, 2012). The 

Burr Type XII distribution also includes other distributions as special cases, for 

example the Lognormal, Gamma or Pareto Type II distribution and has the Weibull 

distribution as a limiting case (Rodriguez, 1977). So it is clearly the most flexible out 

of the three distributions considered in this study.  

 

The Burr Type XII distribution is a three-parameter family of distributions with CDF  

 

             (  (
 

 
)
 
)
  

                           (15) 

 

where c and k are shape parameters and α  is a scale parameter. Given the 

specification of two different quantiles for the severity of losses, P(X < x1) = p1 and 

P(X < x2) = p2 by an expert, we are also able to estimate a Burr distribution that can 

match these quantiles. Note that due to the fact that the Burr Type XII distribution has 

three parameters and only two conditions need to be matched, there is not a unique 

solution for the parameter values. We therefore decided to set the scale parameter α 

equal to the median specified by the expert, i.e. we set α =x1 with P(X < x1) = 0.5. 

This procedure also significantly facilitates the estimation of the remaining two 

parameters. Unfortunately, there is no closed-form solution as for the Lognormal and 

Weibull distribution. Instead an optimisation algorithm is used to solve for estimates 

of the two shape parameters   and   that match the conditions.
5
  

2.4 Simulation of Aggregate Losses 

 

Having defined the specification of the frequency and severity distributions, this 

section outlines how we combine these functions into estimates for the aggregate 

losses. Combining the frequency and severity of the losses is a well-known actuarial 

technique (Klugman et al, 1998). Usually, Monte Carlo simulation is used to 

compound the severity and frequency distribution and calculate the aggregate losses 

for an event type, see, e.g., Fishman (1996).  

 

With the utilisation of Monte Carlo simulation we generate an annual loss distribution 

using a simple simulation algorithm that follows the following steps: 

 

                                                 
4 Note that the Burr XII distribution is also known as the Singh and Maddala distribution within 

discussions of household income distributions – refer to Singh and Maddala (1976) and Jäntti and 

Jenkins (2010) for further details. 
5
 Tools for performing this optimisation are available, for example, in R or Matlab, but the estimation 

can also be conducted with Microsoft Excel using the Solver Analysis Tool. The optimisation will need 

to solve for the two shape parameters   and   that yield           
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1. Take a random draw from the frequency distribution: suppose this simulates N 

events per year. 

2. Take N random draws from the severity distribution: denote these simulated losses 

by L1, L2, …, LN. 

3. Sum the N simulated losses to obtain the simulated annual loss G = L1+L2+…+LN. 

4. Return to Step 1, and repeat k times. Then we will obtain G1, G2, …, Gk annual 

losses, where k is a large number that enables us to derive a distribution for the 

aggregate losses.  

 

Note that the number of simulation runs should be chosen to be at an appropriately 

high level, k=10000, for example, or even higher given that the simulation is intended 

to be conducted for extreme events that are severe but rare. In our empirical study we 

have decided to use 100,000 simulation runs.
6
 

 

As mentioned above, this section defines the LDA for a simulation approach focused 

on a one period example. However, if the intended analysis involves the comparison 

of different adaptation strategies over a longer period of time, it will be necessary to 

simulate not just for one year but over a longer period of time. The described 

algorithm can be easily adjusted for this purpose and the simulated losses for each 

year t=1,2, …, T can be discounted using a specified discount rate d. It might also be 

necessary to adjust the model parameters of the frequency and severity distribution 

through time. An example is the case where an increase in the frequency and/or 

severity of the catastrophic event is assumed to occur over time, what may be a 

possible scenario for climate impacted hazards. Assuming that the effects on the 

parameters of the frequency and/or severity distribution through time can be 

quantified correctly, it is then possible to produce figures for the costs or benefits of 

different adaptation strategies. The case study for bushfire risk in Ku-ring-gai in 

section 3.2 presents an application of the procedure for conducting an assessment of 

the frequency and/or severity of an extreme event over a long time horizon (i.e. 40 

years) and produces cost estimates for property loss. 

3) Empirical Results 

 

3.1 Case Study - Bushfires in the Ku-ring-gai area  

 

In this section we apply the developed framework to a case study of bushfires in the 

Ku-ring-gai local government area in Northern Sydney, Australia. Bushfires have 

been chosen as an example, as there is a growing literature that suggests an increase in 

the number of days with weather conducive for bushfire occurrences, which also 

means that the extended fire seasons may reduce the number of days suitable for 

controlled burning which is an important adaptation measure currently practised in 

Australia (Lucas et al, 2007). Also the IPCC 2014 reports state that ―there is high 

confidence that increased incidence of fires in southern Australia will increase risk to 

people, property and infrastructure‖ (IPCC, 2014: 25). Many Australian local 

governments have been recognising that worst case bushfire damages can be more 

frequent.  For instant, the Final Report of the 2009 Victorian Bushfires Royal 

                                                 
6 Note that for catastrophic or climate impacted hazards, the frequency parameter   is typically rather 

small with    . Therefore, in many of the simulation runs, we will get zero events even when a 

longer time horizon of, e.g., 40 years is being considered.   
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Commission noted that it would be a mistake to treat the Black Saturday bushfire 

event that claimed hundreds of lives and destroyed thousands of homes as a ‗one-off‘ 

event and that ―with populations at the rural–urban interface growing and the impact 

of climate change, the risks associated with bushfire are likely to increase‖ (VBRC, 

2010). Amongst other considerations, the Ku-ring-gai area has been chosen as the 

basis for the analysis as it has a high risk of bushfire due to the prevalence of 18,000 

hectares of bushland and 89 kilometres of urban/bushland interface (Taplin et al, 

2010). In addition, the area has 13,000 homes (equivalent to 36% of the total) with a 

high risk rating for property damage (Chen, 2005). Thus the bushland and houses at 

the bushland interface place the Ku-ring-gai local government area highly vulnerable 

to bushfire damage. 

 

We compute parameter values for a Lognormal, Weibull and Burr Type XII 

distribution, using information we have elicited from a local government‘s bushfire 

expert for the Ku-ring-gai area. The expert specified the following information about 

frequency and severity of bushfires at the local level:    

 

(i) Under current conditions, a severe bushfire is expected to happen 

approximately once every ten years (λ=0.1), while only one in five of these 

fires would damage houses.  

(ii) For severity, the expert provided information on the 50
th

 percentile of the 

distribution, i.e. the median, and a 95
th

 percentile estimate of the severity 

distribution, i.e. a worst-case scenario. The estimates provided by the 

expert for these quantiles are q0.5=30 and q0.95=200 houses damaged, 

respectively.
7
 

3.2 Estimating the Severity using Expert Opinions 

 

As reviewed in Section 2.3, property loss distributions have been built using an expert 

estimate that the median number of houses damaged in a bushfire would be 30 and the 

worst case (95th percentile) of the losses would be 200 houses, i.e. P(X < 30) = 0.5, 

and P(X < 200) = 0.95. Utilising the estimates provided by the expert and the 

framework described in Section 2, we estimate the parameters for the Lognormal, 

Weibull and Burr XII distributions. These parameter estimates are provided in Table 1 

and are classified into whether they are a location, scale of shape parameter.   

 

With these parameter estimates specified, we can now review the resulting estimates 

of the number of houses damaged for a wider range of percentiles. The PDFs for the 

number of houses damaged based on the derived Lognormal, Weibull und Burr XII 

distribution are shown in Figure 3. As we are focusing on extreme events the 

probability of losses are low, but the importance of this exercise is that a wider range 

of probabilities have been quantified and can be applied using the LDA. Figure 3 also 

illustrates that the functional form of the distributions results in notably different 

                                                 
7 As mentioned in Section 2.3, it was usually easier for an expert to specify the median as a more 

robust statistic of the distribution. The median could easily be illustrated as the value, separating the 

higher half of the potential losses from a bushfire from the lower half. Also, calculations to derive 

distributional parameters based on a specified mean would have required a higher computational effort. 

Note that uncertainty associated with the quantile estimates could also be accounted for with the use of 

Bayesian inference and multiple expert estimates, see, for example, Mathew et al (2012), Trück et al 

(2010).   
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PDFs using the same expert estimates. We have plotted the PDFs across three 

different axis specifications to highlight the differences in the tails of the distributions. 

The distributions lead to different estimates for the overall number of houses damaged 

in a bushfire. Irrespective of the differences in terms of the number of houses 

damaged, the percentile estimates for the 50
th

 and 90
th

 percentiles match those the 

expert has given us – refer to Table 2 for confirmation of these estimates. Table 2 also 

reinforces the observation there there are notable differences in the 25
th

 and 99.5
th

 

percentile estimates. The estimates for the Burr XII and Lognormal distributions 

contain the largest tails with 99.5
th

 percentile estimates exceeding those of the 

Weibull distribution by a factor of 2.18 and 1.40, respectively. This is not a surprising 

result, as these two distributions are more heavy-tailed than the Weibull distribution. 

In particular, the Burr distribution provides a significantly higher probability for 

extreme losses than the Weibull but also than the Lognormal distribution. 

 

Table 1: Estimated parameters for the derived Lognormal, Weibull and Burr XII 

severity distributions for the number of destroyed houses in a bushfires in the Ku-

ring-gai area.   

 Location 

parameter 

Scale 

parameter 

Shape parameter 

Lognormal 3.40 (µ) 1.15 (σ)   

Weibull  48.24 (λ) 0.77 ( )  

Burr XII  30.00 (α) 1.55 ( ) 1.00 ( ) 

 

 

 
Figure 3: Probability density functions (PDF) for losses from a bushfire based on the 

provided information by the local bushfire expert for Ku-ring-gai P(X < 30) = 0.5, 

and P(X < 200) = 0.95. The figure provides a plot of the derived Lognormal (bold), 

Weibull (dotted) and Burr XII (dashed) distribution for 0<X≤200 (upper panel), 

200≤X≤1000 (middle panel) and 1000≤X≤2000 (lower panel). 
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Table 2: Descriptive statistics for the number of destroyed houses based on the 

derived Lognormal, Weibull and Burr XII distributions for the severity of a bushfire.  

  

 Percentiles Mean 

25 50 95 99 99.5 

No. 

Houses 

Damaged 

Lognormal 13.80 30.00 200.00 439.38 587.01 58.37 

Weibull 9.55 30.00 200.00 349.94 418.79 56.14 

Burr XII 14.76 30.00 200.00 579.43 911.16 68.72 

 

 

3.3 Considering long time horizons - discounting and the impact of climate 

change  

 

In Section 2 we illustrated how the annual aggregate loss L for a given year can be 

calculated. If the total loss over a number of years needs to be calculated, discounting 

will be necessary to convert the future monetary units into present monetary amounts 

so that a valid comparison can be made with all of the costs defined in present 

monetary terms. 
 

Based on the methodology discussed in the paper, the discounted present value of the 

cumulative loss (DPVL) over the considered time horizon T can then be calculated 

using the simulated annual aggregate loss Lt as well as an applied growth rate g, and 

discount rate d, using the following formula: 

 


 




T

t
t

t

t

d

gL
DPVL

0 )1(

)1(

                                                               

(16) 

 

The growth rate g represents economic growth and can be thought of as capturing the 

rising costs for the replacement of property and/or infrastructure. It may also represent 

an increased exposure to risk or an increase in economic damage over the time 

horizon considered. For instance, suppose an expert estimates a damage of 100 houses 

today in a bushfire risk zone which is likely to increase to 110 houses ten years later 

due to additional dwellings in the bushfire risk zone. Under such circumstances a 

growth rate of approximately 1% may be used to represent this increase in exposure to 

risk in the conducted analysis. In contrast, Lt should reflect forecasts of the change in 

frequency and severity of the natural hazard and may therefore also capture changes 

due to climatic change. 

 

Within the climate change literature there has been a great deal of debate in the 

climate change literature regarding the ‗correct value‘ of the discount rate (Nordhaus, 

2008; Quiggin, 2008; Tol and Yohe, 2009; IPCC, 2007; Garnaut, 2008). One reason 

for the discount rate controversy is that the value of a discount rate can be derived 

either in a financial sense, where the discount rate reflects the cost of capital or the 

cost of acquiring funds, see, e.g., Nordhaus (2008), or in an economic sense, where 

the discount rate considers the importance of present consumption against future 

consumption (Stern, 2006).  

 

While Government commissioned reports by Stern (2006) and Garnaut (2008) 

recommend the use of low social discount rates, their arguments have been criticised 
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by various authors (Dasgupta, 2007; Weitzman, 2007; Nordhaus, 2008). Irrespective 

of this discussion, the time scale being used in the analysis will be an important 

consideration. The latest IPCC AR5 WGIII report notes that an issue with using a 

simple arbitrage argument for setting the discount rate to the interest rate (i.e. the cost 

of capital or the cost of acquiring funds) is that ―we do not observe safe assets with 

maturities similar to those of climate impacts‖ (IPCC, 2014a: 31). So when the 

analysis is focused on a time scale where intergenerational welfare is irrelevant, such 

as, e.g., adaptation measures against losses that are likely to occur over the next five 

to ten years, the discount rate should be chosen based on the (risk-free) market 

interest rate. As noted in the latest IPCC AR5 WGIII report, ―when projects are 

financed by a reallocation of capital rather than an increase in aggregate saving 

(reducing consumption), the discount rate should be equal to the shadow cost of 

capital‖ (IPCC, 2014a: 31). 

 

Discounting is important for analysing options that are expected to be long-term 

investments (Hepburn, 2007). Ng (2011) explains this importance using a simple 

example: the NPV (Net Present Value) of a Million US dollars 200 years from now 

discounted at 1.4% (used by Stern) has a PV (Present Value) of US$59,618, but has a 

PV of only US$35 if discounted at 5% (market rate) i.e. a difference of a factor of 

1,700 between the two calculations. The choice of an appropriate discount rate is 

important as the results of economic analysis may be sensitive to the value chosen. 

While the economic vs. financial discount rate debate (or in other words, the 

normative vs. positive approach) remains beyond the likely local government focus on 

climate adaptation, an extended time dimension does imply that the sensitivity of 

different discount rates needs to be understood. The discount rate is an important 

factor and when there is not a clear agreement on the choice of the discount rate in the 

analysis, sensitivity tests that include the variation of the discount rate will assist in 

the understanding of its effect on the final result and decision. 

  

As we have prescribed the use of discount rates and highlighted the importance of 

different discount rate formulations based on the timescale being reviewed, Table 3 

lists some example discount rates that can be utilised by local decision makers within 

Australia for different timescales (i.e. 5 years, 10 years and beyond). Discount rates 

consistent with the normative and positive approach are provided. Accordingly, the 

next section performs a sensitivity test of the base scenario with a discount rate of 4% 

with the review of a scenario that employs a lower discount rate (1.35%) consistent 

with the normative approach. 

3.4 Estimates of total losses for Ku-ring-gai  

 

With estimates for the severity of bush fire events established in Section 3.2, this 

section produces estimates of the total losses from bushfires based on the derived 

probability distributions for the number of severe bushfires that are associated with 

property losses. We then modify our assumptions to review additional scenarios based 

on a normative approach to setting discount rates and changes in the damages due to 

climate change impacts. 

 

To calculate the total losses the following data has been used. The mean cost of 

reconstruction per house is $422,000. The current risk prone property value is 

approximated by the property construction cost, which is obtained by subtracting the 
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average land value per property from the average property sale price. The regional 

land value is estimated by the NSW Valuer General (DOL 2009) and the regional 

average property sales price is obtained from Hatzvi and Otto (2008).  

 

Table 3 – Examples of discount rates for use within Australia and different time 

horizons. 

Garnaut (2008) – 

Normative approach 
Interest Rate 

Ramsey Rule (δ+ηg) 
5 year 10 year 

1.35 and 2.65 2.90 3.33 3.93 

Note: the interest rates listed are the bond yields for August 29, 2014. The calculation of the discount 

rate based on the Ramsey Rule utilises an average growth rate of 1.965 for the period between 1961 

and 2013. η is set to 2 and δ to 0 based on IPCC (2014a): 34. 

 

 

Recall that the frequency of bushfires for the Ku-ring-gai area was specified by an 

expert to be λ=0.1. Further, due to the efforts of fire brigades and other existing 

resources, the expert has specified that the number of severe bushfires that would 

actually lead to property damage would be 1 out of 5 events, i.e. only 20% of the 

bushfires. The expert also specified that total losses would not exceed 1000 

properties. This means that we have needed to modify the process prescribed in 

Section 2 such that the frequency of events (Poisson distribution) interacts with a 

binomial function that accounts for the actual occurrence of lost houses per event. In 

addition, we have imposed a restriction so that the upper bound of losses is equal to 

1000 properties. 

 

Table 4 contains the estimates for the NPV of total losses from property damage that 

result from the adjusted LDA over a time horizon of 40 years. The total losses have 

been computed using three sets of assumptions related to equation (16). The base 

scenario utilises a discount rate of 4%, approximately in line with the rate computed 

using the Ramsey Rule that is shown in Table 3. Two additional scenarios have been 

applied to review the sensitivity of the values chosen in the base scenario. The lower 

discount rate scenario decreases the discount rate to 1.35% to be in line with that used 

by Garnaut (2008), which was set based on a normative approach to discounting.  

 

We also examine two different scenarios including impacts of climate change: in the 

first one we assume that there will be a doubling in the frequency of bushfires over 

the 40 year time horizon while the severity of the bushfires is not affected.
8
 In the 

second climate change scenario, we assume the same increase in frequency, but also 

assume that the severity of the fires is increased and houses are damaged by 33% of 

the bushfires instead of 20% as initially specified by the expert.  

 

Note that the 25
th

 percentile estimate for the NPV of property damage in Millions of 

Australian Dollars ($M) is zero across all but one of the scenarios due to the low 

frequency of severe bushfire events (λ=0.1) with only one out of five of these events 

generating a loss in houses. Given these specifications, we would expect to observe a 

severe bushfire in the Ku-ring-gai area on average approximately every ten years, 

                                                 
8 Note that we assume a linear increase in the frequency such that after 20 years the frequency 

parameter has increases from λ=0.1 in year 0, to λ=0.1025 in year 1, λ=0.105 in year 2, λ=0.1075 in 

year 3, … , λ=0.15 in year 20, … , λ=0.2 in year 40.  
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while 80% of these events would not damage any houses. Therefore, considering a 40 

year time horizon, for a relatively high percentage of the simulation runs, there will be 

no losses during these 40 years, what explains the 25
th

 percentile of the cumulative 

loss distribution to be equal to zero.       

 

Table 4 – Simulated discounted present values (NPV) of the cumulative losses from 

bushfires for the Ku-ring-gai area for a 40 year time horizon in Millions of Australian 

Dollars ($M). The base case assumes a discount rate of 4% and zero change in 

climate impact. The lower discount rate scenario decreases the discount rate to 

1.35% (as used in Garnaut, 2011). The climate change impact scenarios assume a 

linear increase in the frequency of bushfires from λ=0.1 in year 0, to λ=0.1025 in 

year 1,…., λ=0.2 in year 40. The second climate change scenario assumes that on top 

of an increase in the frequency, bushfires become more severe such that houses are 

damaged by 33% of the bushfires instead of 20% as specified in the base case. 

Losses in 

$M 

Percentiles Mean 

25 50 75 95 99 

Base case scenario  

(4% discount rate, 1% growth rate) 

NPV 

(Total 

Losses) 

LN 0.00 1.43 9.42 38.83 87.42 8.60 

W 0.00 0.68 9.78 39.46 75.69 8.25 

B 0.00 1.52 9.13 37.21 102.18 8.76 

Lower discount rate  

(1.35% discount rate, 1% growth rate) 

NPV 

(Total 

Losses) 

LN 0.00 2.54 15.88 61.79 136.62 13.77 

W 0.00 1.13 16.38 63.02 115.17 13.26 

B 0.00 2.67 15.05 60.10 163.43 14.17 

Climate change impact with adaptation  

(4% discount rate, 1% growth rate, frequency to double over 40 year horizon) 

NPV 

(Total 

Losses) 

LN 0.00 4.46 14.67 48.12 99.37 11.89 

W 0.00 3.96 15.56 48.29 86.07 11.58 

B 0.00 4.40 13.85 47.53 121.69 12.16 

Climate change impact without adaptation 

(4% discount rate, 1% growth rate, frequency to double over 40 year horizon, 

damages occur in 33% of severe bushfires) 

NPV 

(Total 

Losses) 

LN 3.07 10.91 25.78 69.75 130.97 19.78 

W 2.28 11.03 27.13 66.26 108.43 19.12 

B 3.12 10.44 23.99 71.29 159.47 19.93 

 

In the base case scenario, the median estimate for total losses ranges from $0.68M and 

$1.52M depending on the distribution used. The mean estimates for the loss are 

$8.60M for the Lognormal case, $8.25M for the Weibull, and $8.76M for the Burr 

Type XII distribution. Note that these numbers show less variation across 

distributions than for the estimated severity distributions in Table 2. The differences 

across the distributions that were seen in the estimates of the severity of the bushfire 

(i.e. number of houses damaged) have been quelled when the calculation of total 

losses has been performed. This is due to the relatively low expected frequency of 

bushfires (λ=0.1), the occurrence of actual damage to houses per event (one in five 

bushfires) and the imposition of an upper limit of 1000 properties being lost in the 

most extreme case. However, for the 99
th

 percentile of the simulated NPV, we still 
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observe a significantly higher value for the Burr XII ($102.18M) than for the 

Lognormal ($87.42M) and the Weibull distribution ($75.69M). These numbers can be 

interpreted as suggesting that there is a 1% chance that the NPV of losses over the 40 

year time horizon will exceed even $87.42M (in the Lognormal case). This number is 

approximately 10 times higher than the expected NPV of losses $8.60M and is a 

result of the skewness and the heavy tails of the Lognormal distribution. We also find 

that the average damage is clearly less sensitive to the type of fat tailed distribution 

used, however, other percentiles, in particular the 99
th

 percentile, vary considerably. 

While local government stakeholders may often prefer to base their decisions on mean 

values, accounting for estimates of worst case scenarios should also be part of the 

decision process           

 

Let us now consider the alternative scenarios, starting with the lower discount rate. A 

lower discount rate of 1.35%, instead of 4% in the base scenario, corresponds to 

placing greater weight also on later time periods and increases the simulated NPV of 

damage to houses from bushfires in the Ku-ring-gai area by approximately 60%. For 

example, for the Lognormal distribution, the NPV of the expected losses over the 

considered 40 year time period increases from $8.60M to $13.77M. These results 

emphasize the significant effect of the chosen discount rate, since all other parameters 

in the simulation exercise were exactly the same for both scenarios. 

 

The introduction of increased climate change impacts with adaptation inflates the 

estimates due to a doubling in the frequency of bushfires. This leads to higher 

estimates for total losses by approximately 40%. The expected NPV of losses over the 

40 year time horizon is now between $11.58M (Weibull) and $12.16M for the Burr 

XII distribution. The second climate change scenario reviews the case where also the 

severity is assumed to increase, such that damages occur for 33% of severe bushfires. 

This results in an increase in losses by approximately 65% in comparison to the first 

climate change scenario and by approximately 130% in comparison to the base case 

scenario. The expected NPV of losses over the 40 year time horizon ranges from 

$19.12M (Weibull) to $19.93M for the Burr XII distribution.  

 

Overall, as expected the NPV estimates are sensitive to a lower discount rate and an 

increase in the frequency of bushfires. The most substantial effect is observed when 

both frequency and severity of bushfires is assumed to increase. Note that the exercise 

at hand is the estimation of losses for an extreme event and not the conduction of a 

cost benefit analysis; hence the differences between the scenarios should only be 

interpreted as being indicative of the impact of the different assumptions applied. 

4) Conclusion 

 

At the local level, there is often a lack of information on low frequency high severity 

events and the available data is often insufficient for the quantification of distributions 

of the frequency and severity of such events. With a focus upon local assessments of 

extreme events, this paper provides an example of eliciting expert estimates to 

develop a range of scenarios that are focused on the cumulative losses from bushfires 

in the Ku-ring-gai local government area, located within Sydney, Australia. The 

region is prone to bushfires and has provided a useful foundation for a focus on 

localised risk from catastrophic events and the potential impact of climate change. 
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We show how to estimate parameters for severity distributions in a straightforward 

and simple manner. In the case of this paper, this is when an expert provides 

conditions for two percentiles of the distribution, namely the median and an estimate 

for a higher percentile of the distribution. We illustrate the suggested approach for the 

Lognormal, Weibull and Burr XII distributions; three of the most common probability 

distributions for modelling catastrophic events. We also show how the elicitation of 

an expert estimate can be utilised within the loss distribution approach (LDA) to 

calculate aggregate losses for a single year or a longer time horizon. Our approach 

also allows for the calculation of high quantiles of the loss distribution. We find that 

the average damage is less sensitive to the type of fat tailed distribution used, 

however, higher percentiles, particularly the worst case damage (99
th

 percentile), vary 

considerably. Local government stakeholders may often prefer to base their decisions 

on mean values, however accounting for estimates of the worst case damage should 

be part of the decision process. In our study, we have relied on point estimates from 

one expert for simplicity, but we acknowledge that local experts are likely to give 

estimates in the form of ranges or may be uncertain about their estimates. Uncertainty 

associated with the quantile estimates can also be accounted for with the use of 

Bayesian inference and multiple expert estimates, see, for example Mathew et al 

(2012), Trück et al (2010). However, the analysis of these issues is beyond the focus 

of this paper. 

 

We have illustrated the method, using a case study where we quantify the risk of 

bushfires for a local area in Northern Sydney. In doing so, we have adapted the LDA 

for a longer time period of time to highlight changes that occur across the estimates 

due to discounting and potential impacts of climatic change. Our results illustrate the 

significant effect of the chosen discount rate for the net present value of the simulated 

losses. For example, changing the discount rate from 4% (set based on the positive 

approach to discounting using the Ramsey Rule) to 1.35% (in line with the normative 

approach and one of the discount rates used in Garnaut (2008)) increases the mean 

NPV of losses from bushfires by approximately 60%. Our analysis also finds that 

climate change may have strong impacts on the simulated losses, in particular when 

both the frequency and severity of bushfires will increase over the considered time 

horizon. 

 

Overall, we provide a framework for quantifying losses from extreme events and 

climate impacted hazards that can be based on local knowledge provided by an expert 

and does not require large amounts of historical data on catastrophic events. The 

implementation of the approach is straightforward and local governments should be 

able to perform a similar analysis so as to quantify risks and perform sensitivity 

testing. In addition to prescribing that a range of scenarios be used when discussing 

risk, we would also like to highlight the importance of engaging local experts and 

stakeholders when assessing the appropriate climate adaptation decisions based on the 

risk assessment. Such local consultation occurred when the Ku-ring-gai local 

government devised a ‗Climate Change Adaptation Strategy‘; refer to Ku-ring-gai 

Council (2010) for further details. This is an important point as the exercise at hand 

was the estimation of losses for an extreme event and not the conduction of a cost 

benefit analysis. The assessment of the benefits of different adaptation measures has 

been left for future research and will also depend upon localised factors, such as 

existing infrastructure and the nature of the extreme event/s. 

 



19 

 

 

References 

 
Australian Government (2014) ‗Natural disasters in Australia‘, 

http://australia.gov.au/about-australia/australian-story/natural-disasters 

Bank for International Settlements (BIS) (2001) ‗Consultative document: operational 

risk‘, viewed March 2009, www.bis.org 

Braun, A. (2011) ‗Pricing catastrophe swaps: A contingent claims approach‘, 

Insurance: Mathematics and Economics, Volume 49, Issue 3: 520-536. 

 

Burnecki, K., Kukla, G., Weron R. (2000) ‗Property insurance loss distributions‘, 

Physica A: Statistical Mechanics and its Applications, Volume 287, Issues 1–2: 269-

278. 

 

Chernobai, A., Menn, C., Rachev, S.T., Trück S. (2010), ‗Estimation of Operational 

Value-at-Risk with Minimum Collection Thresholds‘, in: Rösch and Scheule (eds), 

Model Risk in financial crises - challenges and solution for financial risk models, Risk 

Books. 

 

Chernobai, A., Burnecki, K., Rachev, S.T., Trück S., Weron,R. (2006), ‗Modeling 

Catastrophe Claims with Left-Truncated Severity Distributions‘, Computational 

Statistics 21(4). 

 

Chen, K. (2005) ‗Counting bushfire-prone addresses in the Greater Sydney region‘, 

Proceedings of the Symposium on Planning for Natural Hazards: How can we 

mitigate the impacts? University of Wollongong, 2-5 February. 

Cook, J. D. (2010) ‗Determining distribution parameters from quantiles‘, Working 

Paper. http://www.johndcook.com/quantiles_parameters.pdf 

Crompton, R.P., McAneney, J. (2008) ‗The cost of natural disasters in Australia: the 

case for disaster risk reduction‘,  Australian Journal of Emergency Management, 

23:43-46. 

Cummins, J. D., Dionne, G., McDonald, J. B., Pritchett, B. M. (1990) ‗Applications 

of the GB2 family of distributions in modeling insurance loss processes‘, Insurance: 

Mathematics and Economics, Volume 9, Issue 4: 257-272. 

Dasgupta, P. (2007). ‗Commentary: The Stern Review's Economics of Climate 

Change‘, National Institute Economic Review, 199(1), 4-7. 

Dessai, S., van der Sluijs, J. P. (2007) ‗Uncertainty and climate change adaptation – a 

scoping study‘, A Copernicus Institute and Tyndall Centre Report for the Netherlands 

Environmental Assessment Agency. 

DOL, Department of Land (2009), 'Land values issued for Ku-ring-gai', Office of the 

New South Wales Valuer General, Media Release. 

Embrechts P., Schmidli H. (1994) ‗Modelling of extremal events in insurance and 

finance‘, Mathematical Methods of Operations Research 39 1 – 34. 

http://www.bis.org/
http://www.johndcook.com/quantiles_parameters.pdf


20 

 

Esteves, L. S. (2013) ‗Consequences to flood management of using different 

probability distributions to estimate extreme rainfall‘, Journal of Environmental 

Management, Volume 115: 98-105. 

Fishman (1996) ‗Monte Carlo: concepts, algorithms and applications‘, Springer Series 

in Operations Research, Springer-Verlag, New York. 

Garnaut, R. (2008) ‗The Garnaut Climate Change Review: Final Report‘, Cambridge 

University Press, Cambridge, UK. 

Goncu, A., Karaman A., Imamoğlu, O., Tiryakioğlu, M., Tiryakioğlu, M. (2012) ‗An 

analysis of the extreme returns distribution: the case of the Istanbul Stock Exchange‘, 

Applied Financial Economics, Vol. 22, Iss. 9. 

Gunn, L.S., Blake, S., Jones, M. C., Rymer, H. (2013) ‗Forecasting the duration of 

volcanic eruptions: an empirical probabilistic model‘, Bulletin of Volcanology, 76. 

Guo, M., Zhang, T.H., Chen, B.W., Cheng, L. (2014) ‗Tensile strength analysis of 

palm leaf sheath fiber with Weibull distribution‘, Composites Part A: Applied Science 

and Manufacturing, Volume 62: 45-51. 

IPCC (2007) ‗Framing issues‘, in: Climate Change 2007: Mitigation. Contribution of 

Working Group III to the Fourth Assessment Report of the Intergovernmental Panel 

on Climate Change, Cambridge University Press, Cambridge, United Kingdom and 

New York, NY, USA. 

Hatzvi, E., Otto, G. (2008) 'Prices, Rents and Rational Speculative Bubbles in the 

Sydney Housing Market', Economic Record, 84, 405-420. 

Hepburn, C. (2007) ‗Use of discount rates in the Estimation of the costs of inaction 

with respect to selected environmental concerns‘, OECD Working paper.  

HM Treasury (2003) ‗The Green Book: Appraisal and evaluation in Central 

Government‘, London: HM Treasury. Retrieved from 

http://greenbook.treasury.gov.uk/ 

IPCC (2014) ‘Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: 

Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report 

of the Intergovernmental Panel on Climate Change‘, Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA. 

IPCC (2014a)  ‗Social, Economic and Ethical Concepts and Methods‘, in: Climate 

Change 2014: Mitigation of Climate Change. Contribution of Working Group III to 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,  

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 

Jäntti, M., Jenkins, S. P. (2010) ‗The impact of macroeconomic conditions on income 

inequality‘, The Journal of Economic Inequality, 8 (2): 221-240. 

Justus, C. G., Hargraves, W.R and Yalcin, A. (1976) ‗Nationwide assessment of 

potential output from wind-powered generators‘, J. Appl. Meteorol., 15: 673–678. 

Klugman, S., Panjer, H., Willmot, G. (1998) ‗Loss Models: From Data to Decisions‘, 

New York: John Wiley. 

Ku-ring-gai Council (2010) ‗Climate Change Adaptation Strategy‘. 

Levi, C., Partrat, C. (1991) ‗Statistical analysis of natural events in the United States‘, 

ASTIN Bulletin, 21 (2): 253–276. 



21 

 

 

Lucas, C., Hennessy, K., Mills, G., Bathols, J. (2007) ‗Bushfire Weather in Southeast 

Australia: Recent Trends and Projected Climate Change Impacts‘, Bushfire 

Cooperative Research Centre. 

Mathew S., Henderson-Sellers A., Taplin R. (2011) ‗Prioritising climatic change 

adaptation investment at local government levels‘ in Social, Economic and Political 

Elements of Climate Change" (ed. Prof. Walter Leal), Springer, pp. 733-751 

Mathew S., Trück S., Henderson-Sellers A. (2012) ‗Kochi, India case study of climate 

adaptation to floods: ranking local government investment options‘, Global 

Environmental Change 22(1): 308-319. 

Næss, L., Norland, I., Lafferty, W., Aall, C. (2006) ‗Data and process linking 

vulnerability assessment to adaptation decision-making on climate change in 

Norway‘, Global Environmental Change, 16: 221–233. 

Newton, G. (2009) ‗Australia's environmental climate change challenge: overview 

with reference to water resources‘, Australasian Journal of Environmental 

Management 16(3), 130–139. 

Ng, Y. (2011) ‗Consumption tradeoff vs. catastrophes avoidance: implications of 

some recent results in happiness studies on the economics of climate change‘, 

Climatic Change, 105: 109-127.  

Nordhaus, W. D. (2008) ‗A Question of Balance: Economic Modeling of Global 

Warming‘, New Haven, CT: Yale University Press. Retrieved 1/10/2011, from 

http://nordhaus.econ.yale.edu/Balance_2nd_proofs.pdf 

Papalexiou, S. M., Koutsoyiannis, D., Makropoulos, C. (2013) ‗How extreme is 

extreme? An assessment of daily rainfall distribution tails‘, Hydrol. Earth Syst. Sci., 

17: 851-862. 

Pearce, D. W., Groom, B., Hepburn, C., Koundouri, C. (2003) ‗Valuing the future: 

Recent advances in social discounting‘, World Economics, 4(2), 121-141. 

Quiggin, J. (2008) ‗Stern and his critics on discounting and climate change: an 

editorial essay‘, Climatic Change 89.3, 195-205., 89(3), 195-205. 

Pycroft, J., Vergano, L., Hope, C. W., Paci, D., Ciscar, J. C. (2011) ‗A Tale of Tails: 

Uncertainty and the Social Cost of Carbon Dioxide‘, Economics: The Open-Access, 

Open-Assessment E-Journal, 5: 1—29. 

Pycroft, J., Vergano, L., Hope, C. (2014) ‗The economic impact of extreme sea-level 

rise: Ice sheet vulnerability and the social cost of carbon dioxide‘, Global 

Environmental Change, Volume 24: 99-107. 

Rodriguez, R. N. (1977) ‗A guide to the Burr type XII distributions‘, Biometrika, Vol. 

64, Number 1: 129–134. 

Roiko, A., Mangoyana, R., McFallan, S., Carter, R., Oliver, J., Smith, T. (2012) 

‗Socio-economic trends and climate change adaptation: the case of South East 

Queensland‘, Australasian Journal of Environmental Management 19(1), 35–50. 

Ross, H., Carter, R.W. (2011) ‗Natural disasters and community resilience‘ 

(Editorial), Australasian Journal of Environmental Management, 18(1), 1-5. 



22 

 

Schröter, D., Polsky, C., Patt, A.(2005) ‗Assessing vulnerabilities to the effects of 

global change: an eight step approach‘, Mitigation and Adaptation Strategies for 

Global Change, 10(4): 573-595. 

Seguro, J.V., Lambert T.W. (2000) ‗Modern estimation of the parameters of the 

Weibull wind speed distribution for wind energy analysis‘, Journal of Wind 

Engineering and Industrial Aerodynamics, Volume 85, Issue 1: 75-84. 

Shevchenko, P., Wüthrich, M. (2006) ‗The structural modelling of operational risk via 

Bayesian inference: combining loss data with expert opinions‘, Journal of Operational 

Risk 1(3), pp. 3-26. 

Singh, S.K., Maddala, G.S. (1976) ‗A function for the size distribution of incomes‘, 

Econometrica 44(5): 963–970.  

Stevens, M.J., Smulders, P.T. (1979) ‗The estimation of the parameters of the Weibull 

wind speed distribution for wind energy utilization purposes‘, Wind Eng., 3 (2). 

Taplin, R., Henderson-Sellers, A., Trück, S., Mathew, S., Weng, H., Street, M., 

Bradford, W., Scott, J., Davies, P. and Hayward, L. (2010) ‗Economic evaluation of 

climate change adaptation strategies for local government: Ku-ring-gai Council case 

study‘. 

Trück, S., Bradford, W., Henderson-Sellers, A., Mathew, S., Scott, J., Street, M., Taplin, 

R. (2010) ‗Assessing climate change adaptation options for local governments‘ in 

Climate Alert: Climate change monitoring and strategy (ed. Yuzhu You and Ann 

Henderson-Sellers), Sydney University Press, pp. 362-400 

Tol, R., Yohe, G. (2009) ‗The Stern Review: A deconstruction‘, Energy Policy 37(3): 

1032-1040. 

Tsogt, K. and Lin, C. (2012) ‗A flexible modeling of irregular diameter structure for 

the volume estimation of forest stands‘, Journal of Forest Research, 19.   

Van den Bergh, J. (2010) ‗Safe climate policy is affordable – 12 reasons‘, Climatic 

Change 101(3): 339-385. 

VBRC (2010) ‗2009 Victorian Bushfires Royal Commission – Final Report – 

Summary‘. 

Weitzman, M. L. (2007) ‗A review of the Stern review on the economics of climate 

change‘, Journal of Economic Literature, 45(3), 703-724. 


	Working paper cover page
	Parameter_Estimation_20141007

