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Outline

@ Motivation and Challenge: Inference on High-dimensional Time Series (HDTS)

© Literature Review: PCA, Factor Modelling and Random Matrix Theory
© Major Contribution:

@ Asymptotic Theory for Spiked Eigenvalues

@ Statistical Application: Equivalence Test of Two High-dimensional Time Series
© Simulation

@ Empirical Application: Hierarchical Clustering for Multi-country Mortality Data

© Conclusion and Future Works
@ References
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Why to study High-dimensional Autocovariance Matrices
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HDTS (1): Mortality Data
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Figure 1: Log death rates for Australian
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HDTS (2): Stock Returns
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Figure 2: Daily returns of 160 US stocks in 2014
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-
Challenges of HDTS Inference (1)

The major difficulty: curse of dimensionality.
Example:

For the population covariance matrix X (a p x p matrix), i.e.

o111 012 O1p

021 022 O2p
Y = .

Opt  Op2 Opp

the sample covariance matrix estimator X is inaccurate in the sense of

5 p P

S -~ 2

(S L
i=1 j=1
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Curse appears: when T = O(p H)Z ZH does not converge to zero.
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-
Challenges of HDTS Inference (2)

@ Common approaches to curse of dimensionality: (1) dimension reduction (2)
variable selection.
Example: dimension reduction projects a p-dimensional vector y, into a
K-dimensional subspace.

Vit l11 l12 lik €t
Yot Loy Loz Lok €at
Yot Lot Lpe Lok Ept

© PCA: purse the subspace where the projected data holds the most variation of the
original data.

© Extra challenge on HDTS: the projected data from PCA may lose time-serial
dependence.
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Dimension Reduction based on Autocovariance Matrices

An ideal data structure on HDTS (for feasible dimension reduction):
yt:sz—‘rez, t:1,2,.‘.7T,

that satisfies (intuitively) that the low-dimensional projected data f; holds the most
time-serial dependence while the error component e; has almost independent
observations.

The autocovariance matrix X := E[f:f;..] is helpful.

Intuition: We see that X, =L - E[ftf,TH] -LT. For the orthogonal complement matrix
B:px(p—K)(i.e.B"L=0,B"B=1, g),we have ¥, B=0.

The (p — K) columns of B are eigenvectors of the matrix =, ¥ corresponding to zero
eigenvalues.




Subspace extracted from autocovariance matrices

In terms of analysis above, we conclude

@ The K columns of factor loading matrix L are eigenvectors of the matrix ¥, X
corresponding to non-zero eigenvalues.

@ The number K (the dimension of the subspace) is also the total number of
non-zero eigenvalues of the matrix ¥, ¥.

A traditional estimator for £, ¥ is the sample version £, % .

To study the dimension reduction on HDTS, it is equivalent to focus on empirical
eigenvalues and eigenvectors from the symmetrized sample autocovariance matrix

s 57
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-
Challenge

@ Similar to PCA under high-dimensional scenarios, the sample version fTiT can
be far from the population version ¥, X..
Example: one sufficient condition for feasible PCA is

TL/M%O’ as p, T — .
© Few literature on empirical eigenvalues and corresponding eigenvectors (from the
sample auto-covariance matrix).
@ Lam, Yao and Bathia (2011, Biometrika)
@ Lam and Yao (2012, Annals of Statistics)
@ Li, Wang and Yao (2017, Annals of Statistics)
@ Zhang, Pan, Yao and Zhou (2022, JASA to appear)




Some simulations before we go on...

@ Consider the simple case where LT = (,0), and

fre
Y = f2t + €t, tl:'l,...,T7
0o
where (e;) are i.i.d. standard Gaussians, and (fi;): and (f:): are AR(1) processes.

@ Parameters are chosen so that

Y12 = Elyy/1]E[yey/ 4] = diag(10,3,0,...,0).

p

e T =1000,p € {100,500, 800}.




|
What the fixed p asymptotic theory tells us

@ Parameters are chosen so that

Y15 = E[yry/ 1] = diag(10,1,0,...,0).
N —
p

@ Let )\ be the (non-increasingly ordered) eigenvalues of fﬂfr. When p is fixed, we
know that as T — oo, we have Ay — 10, Ao — 1and \; — Oforall i > 2.
Or in other words, we have

p+2

]
ZaA (dx) =5 2(51o+(51)

So.
p+2« ’

L+ P
+2
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Sample eigenvalues, p=100
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Sample eigenvalues, p=500
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Sample eigenvalues, p=800
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Review on Available Results for Autocovariance




|
The setting

@ Consider a stationary time series (y:)i—1,...7 € R¥*? arising from the factor model
yi=Lh+e, t=1,...,T,

where the matrix (f;);—1...r contains K independent factors and LT L = Ix.

.....

@ High dimensional setting: p=pr -+ occas T — occand p/T — ¢ > 0.

@ Each factor (fi)i=1,... 7 is itself a stationary time series of the form

e o]
fit:UiE:(ZSi/Zi,F/7 i=1,...,K, t=1,...,T,
1=0

where (z;) are i.i.d. with zero mean and unit variance.

@ Normalization: take ||¢;|¢, = 1 so that Var(fy) = o forall i < K and t > 0.

o)



Analysis of Autocovariance

@ Autocovariance of each factor is given by Cov(fy, fi t+r) = 0';-2’}/,'(7'), 7> 0.
Under this setup, for 7 > 0 we have

om(7)
5. = Elyyl,] = LEffL L = L - L.

ok (T)

@ The spectrum of the ((K + p) x (K + p) dimensional) matrix M := ¥, ¥ :

o(M) = {0’?’}/1 (7')2, e aKny 7') 0,. 0}
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Asymptotics of sample eigenvalues

@ In practice, we often estimate the eigenvalues
o(M) = {otn (..., ok (r)’,0,....0}

using eigenvalues A -, . .., Aksp.r Of the matrix M := £, 57

@ The asymptotic properties of {\; - }i=1,... k+p are the focus of several recent papers
including Lam, Yao & Bathia (2011), Lam & Yao (2012), Li, Wang & Yao (2017).

@ Main goal of our work is to establish the asymptotic normality of {1 -,..., Ax,+}.




The “low dimensional” regime where p is fixed

@ When the dimension p is fixed, as the sample size T — oo,
M= )/:\.rfT g ):T):I =M

in the operator (and hence in any) norm.

@ By continuity (w.r.t. the operator norm), for any k < K + p and fixed 7 > 0,
P 4 2
M, r = ok yk(T)

and the asymptotic fluctuation of )\« - is Gaussian.

@ However, when p — oo, this is no longer true.




The “high dimensional” regime where p diverges

@ Suppose now that p=pr - occas T —ocandp/T — ¢ > 0.

° )ET)AZI still “consistently” estimates .3 -, but only entry-wise, so in general
liminf||£,£) — .5 [lop >0
p,T—o0

and as a result, we have M. /4 o4vk(7)?. The asymptotic fluctuations of A
(around its limiting mean) may not be Gaussian either.
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Recent works in the “high dimensional” regime

@ Assume p/T — ¢ > 0.

@ When K = 0 (the so-called null case), Li, Pan & Yao (2015) derives the limiting
spectral distribution of ffT, i.e.asp, T — oo,

K+p
Z d»,; . (dx) = some non-degenerate distribution v.

i=1

@ The phase transition of {\« -} is shown in Li, Wang & Yao (2017): there exists a
critical threshold n > 0 such that the following dichotomy exists:
> if ofvi(T)? > mthen ;. — pi > ofvi()? in probability, i.e. ); , is detectable,
> if ofyi(1)2 < mthen X, — {max x : v[x,00) > 0}, i.e. A;, "blends in" with all the
other small eigenvalues which are estimators of zero.
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CLT of Spiked Empirical Eigenvalues
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Conditions on Dimension, Factors and Idiosyncratic Error

Assumptions 1

Q@ p, T —vocandp/T—c>0.

@ o0 — oo and there exists C > 0 such thatoi/oj < C foralli,j=1,... K.

Q (zi)1<i<k,1—L<t<T+1 is independent, identically distributed with E[z;] = 0,
E[z2] = 1 and uniformly bounded 4 + ¢ moment for some ¢ > 0.

Q (eit)1<i<prki<t<T+1 I8 iid. standard Gaussian.

Q supl|¢lle, < oo.




Conditions on Number of Factors, Auto Time-lag and Factor Strength

Assumptions 2

@ 7 is a fixed, non-negative integer
Q@ K=0(T""®)and K = o(0%) as T — oc.

© the sequence (p -, - . ., ik,-) is arranged in decreasing order and there exists
e > 0 suchthat i, /piv1- > 1+eforalli=1,... K—1.

Assumptions 3

@ rcNandr - 0 asT — oo.
Q K =o0o(T""®(1)"/?) and K = o(c?y1(7)%) as T — .
@ there exists Cy > 0 such that u; - /pj~- < Ci foralli,j=1,...,K andr > 0.

@ there exists Ty large enough and some € > 0 such that ;- /piv1,» > 1+ € for all
i=1,....K—1and T > To. y
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Location of Spiked Empirical Eigenvalues

Theorem 1

Under Assumption 1 and either Assumption 2 or 3, we have

Anr 1 ( K )
= 1= — |+ | ———], n=1,... K. 0.2
pne P (mr)ﬁ) P\ 2l ©2)

where pn - is

Wir = IE[}/,-J}/,-J+T]2 = U?’}//(T)z, i=1,....,K, 7>0. (0.3)




-
CLT of Spiked Empirical Eigenvalues

@ The asymptotic distribution of \; ; remains unknown.
@ Our work is a first step in answering this question - we show that:

Theorem 2

Under Assumption 1 and either Assumption 2 or 3, we have

ﬁZ’IEIT) (2{” - 1) = N(0,1),

where 0; , is defined implicitly as the solution to some (non-random) equation.

@ For generality we allow K — oo and even 7 — oc.




Statistical Application: Equivalance Test for two HDTS’s
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Statistical applications: auto-covariance test

@ Hypothesis testing for comparing two populations is a traditional statistical problem

» T-test and/or Z-test for equality of two population mean
» F-test for equality of two population variance
@ Comparing two populations of high-dimensional time series
» Provide better inference if they share similar information (both temporal and

cross-sectional)
» Aggregated analysis for multiple populations of high-dimensional time series

@ Human mortality data from different countries
> Interest: spiked eigenvalues of high-dimensional auto-covariance matrices for two
populations
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Hypothesis testing for two populations

@ Testing for the equivalence of spiked eigenvalues for auto-covariance matrices of
two high-dimensional time series
@ For two high-dimensional time series {yﬁ”} and {yﬁz)} following the factor
models in canonical form under assumptions of Theorem 2,
> Ho: ") = 1@ foralli=1,2,..., K;
> Hy: u,(L) #* M,(zf) for atleastone i, i=1,2,..., K.




Test statistic

@ For two HD time series, a test statistic can be considered as,

ST A @
Z T i i i , 0.4
" 2\/5\//,7— 01 T ( )
where
0D e A2 442
6!,7’ = 2 y Vir = 2 ) and Yi,r = 2 ) (O 5)

and 0,@ is the asymptotic centering of AE?.
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Test statistic

Theorem 3

Under the assumptions of Theorem 2, for two independent high-dimensional time
series {yﬁ”} and {yﬁz)} following the same factors in canonical form , we have

_ T A _ e
T T LT
J T = N(0,1), 0.6
ovov. O (0,1) (0.6)
as T,p — oo, where b, ., vi - and~; , are defined in (0.5).
(M _,@
Theorem 3 is a direct result of Theorem 2, since an asymptotic distribution of A, X Air

can be derived using the independence between A,-B and AfZT)




Test statistic

Theorem 4

Under the assumptions of Theorem 2, if we additionally assume two independent

high-dimensional time series {yﬁ”} and {y@} follow two different canonical factor
models with

Ki=ke=K, A0 =@ =, v =v® = v and ) = (1 +c)o?.

1,7 Iy »T s T

Then, for any ¢ such that VT 25 — 0o as T, p — oo and ") # A, it holds that

I’

Pr(|Z.-

> Zo|Hi) — 1, (0.7)

for T,p — oo, where z, is the a-th quantile of the standard normal distribution.




Implementation

@ Step 1: Estimations of the factor model
» Use symmetrized lag- sample auto-covariance matrix to estimate the number of
factors 7(") and factor loading matrices L from the two samples and then estimate the
factors.
@ Step 2: Standardizing the estimated factor models to the canonical form

» This can be achieved by normalizing the estimated loading matrix to a diagonal matrix
and the variance of each factors to be 1.
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Implementation

@ Step 3: Estimates of unknown parameters for the test statistic

» Bootstrap methods for time series such as the sieve bootstrap needs to be conducted
on the estimated factors for estimating v} and 0,(')

I, T T°
@ Step 4: Computing the test statistic and p-values

> The test statistic can be computed as

Zy = (M) =) Nl i
” b TN T+ Te 2vr 6r

where §7_, V*_and ¥ _ are bootstrap estimates.

I’

Australian
National
University

35/48



Simulation Studies
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Data Generating Process

@ DGP:

» consider a one-factor model for both populations, where the factor is generated by
A =M+ 2T, m=1,2, (0.8)
2 2
where ¢>1 =0.5and {21 ¢ } are i.i.d. N ( (az"’)) ) with (ag’”)> = 3/4, so that

Var (f( )) =1
» And the data is generated by

(m) Ggm) (m) (m)
v = A 4 el™, (0.9)
On_1

where Ugm) =N'-9, {¢} areiid. M(0,1), and {ffT)} are generated by (0.8).
> Note that ¢ represents the factor strength and 6 = 0 is the strongest case.
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Empirical Sizes

@ Empirical sizes
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Figure 3: Empirical sizes of the auto-covariance test with T = 400, 800,
N =100, 200, 400, 800, 1600, and 6 = 0,0.1,0.3,0.5.
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Empirical Powers: factor strength

@ Empirical powers: scenario 1 - study the effect of different variances

» Consider different groups of data generated with ¢2(® set as
2 2 2 2 2
11 (o), 1.8 (")7,15 (o17) ", 1.7 ("), and 1.9 (o1")", respectively.
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1.00 1.00 1.00
,0
P P
o7 £/ o7 % 07
5 W 5 P 5
H - z By H
H - H . &
= / = P =
©050 o050 . T 050
2 o 2 P 2
& o £ 4 g
i 27 i} P> i
025 L 02 /‘ 02!
p
& &
[
0.00 0.00 0.00
00 010203040506 07080910 000102030405 0607 080910 000102030405 0607 0809 10
(2)2 22 (2)2
oy ) oy
U)27 \1)27 \1)27
o o1 o

Factor strength - 35=0 #5201 A 5203 & 3=05

Figure 4: Empirical powers of the auto-covariance test in the first scenario with T = 400,
N = 2007 400, 800, and § = 0, 0.1 s 037 0.5. > Australian
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Empirical Powers: Spikeness

@ Empirical powers: scenario 2 - study the effect of different auto-covariances
(auto-correlations) of f; ;
» Consider different groups of data generated with ¢,(.’21) set as
0.9¢51), 0.8¢51), O.7¢>§1), 0.6¢>§1), and 0.5¢ﬁ1), respectively.

N =200 N =400 N =800
1.00 1.00 1.00
]
n
0 ,/; 0 4 [ /
5 Y 5 4 5 %
H 4 H 7 H
g 4 * 8
Boso Foso 7 Foso
I i il i i
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00 01 02 03 04 05 05 00 01 02 03 04 05 08 00 01 02 03 04 05 05
(2) (2) 2)
il é1 91
e - T
o1 o1 91

Factor strength #3=0 5=01 5=03 "# 5=05

Figure 5: Empirical powers of the auto-covariance test in the second scenario with T = 400,
N = 200, 400, 800, and § = 0,0.1, 0.3,0.5. Rebonar”
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Empirical Application on Clustering Mortality Data
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Human mortality data across countries
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Figure 6: Log death rates for Australian




Human mortality data across countries

@ We study total death rates from selected countries where the data is available
from 1957 to 2017

@ The data is prepared by taking first order difference on the log death rates as the
original data is not stationary

Table 1: Estimated number of factors in the factor model for each country

Estimated number of factors Countries
] Australia, Belgium, Bulgaria, Czechia, Finland, Greece, Hungary,
Japan, Netherlands, Sweden, Switzerland, U.K., U.S.A.
Denmark

Canada, France, ltaly, Portugal
Poland
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UK
Switzerland 0.08
Sweden 020 035
Netherlands 037 027 022

Japan 023 034 010 .
p-values
05
Hungary 024 . 039 023 023 -N
03

02

Greece 034 038 033.018 040
01

B oo

Finland 041 036 027 033 008 027
Czechia 033 033 . 024 . 037 025 0.23
Bulgaria 018 005 015 017 008 021 0.16 | 039 007
Belgium 020 037 016 024 034 015 038 027 031 013
Australia 028 039 023 007 017 021
ra(\&\{b 4 < & © e:“’(\\q’ c\§b @Q& c&d
& e & E oy
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Factor 1 Factor 2 Factor 3
Portugal Portugal Portugal pvalues
s 05
ttaly 0.14 ttaly 023 ttaly 0.09 04
03
France 032 021 France 022 015  France 021 010 02
0.1
00
Canada 025 021 . Canada 013 012 015  Canata 005 001 015
Canada France ltaly Portugal Canada France ltaly Portugal Canada France ltaly Portugal

Figure 8: p-values of the auto-covariance test for each pair of countries that have three factors in

the estimated factor model
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05
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Figure 9: p-values of the auto-covariance test of the first factor for all countries except U.S.A
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