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Why to study High-dimensional Autocovariance Matrices
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HDTS (1): Mortality Data

Figure 1: Log death rates for Australian
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HDTS (2): Stock Returns

Figure 2: Daily returns of 160 US stocks in 2014
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Challenges of HDTS Inference (1)

The major difficulty: curse of dimensionality.

Example:

For the population covariance matrix Σ (a p × p matrix), i.e.

Σ =


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σpp


the sample covariance matrix estimator Σ̂ is inaccurate in the sense of

∣∣∣∣∣∣Σ̂− Σ
∣∣∣∣∣∣2

F
=

p∑
i=1

p∑
j=1

(σ̂ij − σij )
2 � p2

T
.

Curse appears: when T = O(p2),
∣∣∣∣∣∣Σ̂− Σ

∣∣∣∣∣∣2
F

does not converge to zero.
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Challenges of HDTS Inference (2)

1 Common approaches to curse of dimensionality: (1) dimension reduction (2)

variable selection.

Example: dimension reduction projects a p-dimensional vector yt into a

K -dimensional subspace.
y1t

y2t

...

ypt

 =


`11

`21

...

`pt

 · f1t +


`12

`22

...

`p2

 · f2t + · · ·+


`1K

`2K

...

`pK

 · fKt +


ε1t

ε2t

...

εpt

 (0.1)

2 PCA: purse the subspace where the projected data holds the most variation of the

original data.

3 Extra challenge on HDTS: the projected data from PCA may lose time-serial

dependence.
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Dimension Reduction based on Autocovariance Matrices

An ideal data structure on HDTS (for feasible dimension reduction):

yt = Lft + εt , t = 1, 2, . . . ,T ,

that satisfies (intuitively) that the low-dimensional projected data ft holds the most

time-serial dependence while the error component εt has almost independent

observations.

The autocovariance matrix Στ := E[ft ft+τ ] is helpful.

Intuition: We see that Στ = L · E[ft f>t+τ ] · L>. For the orthogonal complement matrix

B : p × (p − K ) (i.e. B>L = 0, B>B = Ip−K ), we have ΣτΣ>τ B = 0.

The (p − K ) columns of B are eigenvectors of the matrix ΣτΣ>τ corresponding to zero

eigenvalues.
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Subspace extracted from autocovariance matrices

In terms of analysis above, we conclude

1 The K columns of factor loading matrix L are eigenvectors of the matrix ΣτΣ>τ

corresponding to non-zero eigenvalues.

2 The number K (the dimension of the subspace) is also the total number of

non-zero eigenvalues of the matrix ΣτΣ>τ .

A traditional estimator for ΣτΣ>τ is the sample version Σ̂τ Σ̂>τ .

To study the dimension reduction on HDTS, it is equivalent to focus on empirical

eigenvalues and eigenvectors from the symmetrized sample autocovariance matrix

Σ̂τ Σ̂>τ
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Challenge

1 Similar to PCA under high-dimensional scenarios, the sample version Σ̂τ Σ̂>τ can

be far from the population version ΣτΣ>τ .

Example: one sufficient condition for feasible PCA is

p
Tλ1

→ 0, as p,T →∞.

2 Few literature on empirical eigenvalues and corresponding eigenvectors (from the
sample auto-covariance matrix).

1 Lam, Yao and Bathia (2011, Biometrika)
2 Lam and Yao (2012, Annals of Statistics)
3 Li, Wang and Yao (2017, Annals of Statistics)
4 Zhang, Pan, Yao and Zhou (2022, JASA to appear)
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Some simulations before we go on...

Consider the simple case where L> = (I2, 0), and

yt =


f1t

f2t

0p

+ εt , t = 1, . . . ,T ,

where (εit ) are i.i.d. standard Gaussians, and (f1t )t and (f2t )t are AR(1) processes.

Parameters are chosen so that

Σ1Σ>1 = E[yty>t+1]E[yty>t+1]> = diag(10, 3, 0, . . . , 0︸ ︷︷ ︸
p

).

T = 1000, p ∈ {100, 500, 800}.
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What the fixed p asymptotic theory tells us

Parameters are chosen so that

Σ1Σ>1 = E[yty>t+1] = diag(10, 1, 0, . . . , 0︸ ︷︷ ︸
p

).

Let λi be the (non-increasingly ordered) eigenvalues of Σ̂1Σ̂>1 . When p is fixed, we

know that as T →∞, we have λ1 → 10, λ2 → 1 and λi → 0 for all i > 2.

Or in other words, we have

1
p + 2

p+2∑
i=1

δλi (dx)⇒ 1
p + 2

(δ10 + δ1) +
p

p + 2
δ0.
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Sample eigenvalues, p=100
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Sample eigenvalues, p=500
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Sample eigenvalues, p=800
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Review on Available Results for Autocovariance

16 / 48



The setting

Consider a stationary time series (yt )t=1,...,T ⊆ RK+p arising from the factor model

yt = Lft + εt , t = 1, . . . ,T ,

where the matrix (ft )t=1,...,T contains K independent factors and L>L = IK .

High dimensional setting: p = pT →∞ as T →∞ and p/T → c > 0.

Each factor (fit )t=1,...,T is itself a stationary time series of the form

fit = σi

∞∑
l=0

φilzi,t−l , i = 1, . . . ,K , t = 1, . . . ,T ,

where (zit ) are i.i.d. with zero mean and unit variance.

Normalization: take ‖φi‖`2 = 1 so that Var(fit ) = σ2
i for all i ≤ K and t > 0.

17 / 48



Analysis of Autocovariance

Autocovariance of each factor is given by Cov(fit , fi,t+τ ) = σ2
i γi (τ), τ > 0.

Under this setup, for τ > 0 we have

Στ := E[yty>t+τ ] = LE[ft f>t+τ ]L> = L


σ2

1γ1(τ)

. . .

σ2
KγK (τ)

 L>.

The spectrum of the ((K + p)× (K + p) dimensional) matrix M := ΣτΣ>τ :

σ(M) =
{
σ4

1γ1(τ)2, . . . , σ4
KγK (τ)2, 0, . . . , 0︸ ︷︷ ︸

p

}
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Asymptotics of sample eigenvalues

In practice, we often estimate the eigenvalues

σ(M) =
{
σ4

1γ1(τ)2, . . . , σ4
KγK (τ)2, 0, . . . , 0

}
using eigenvalues λ1,τ , . . . , λK+p,τ of the matrix M̂ := Σ̂τ Σ̂>τ .

The asymptotic properties of {λi,τ}i=1,...,K+p are the focus of several recent papers

including Lam, Yao & Bathia (2011), Lam & Yao (2012), Li, Wang & Yao (2017).

Main goal of our work is to establish the asymptotic normality of {λ1,τ , . . . , λK ,τ}.
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The “low dimensional” regime where p is fixed

When the dimension p is fixed, as the sample size T →∞,

M̂ := Σ̂τ Σ̂>τ
P→ ΣτΣ>τ =: M

in the operator (and hence in any) norm.

By continuity (w.r.t. the operator norm), for any k ≤ K + p and fixed τ > 0,

λk,τ
P→ σ4

kγk (τ)2

and the asymptotic fluctuation of λk,τ is Gaussian.

However, when p →∞, this is no longer true.
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The “high dimensional” regime where p diverges

Suppose now that p = pT →∞ as T →∞ and p/T → c > 0.

Σ̂τ Σ̂>τ still “consistently” estimates ΣτΣτ , but only entry-wise, so in general

lim inf
p,T→∞

‖Σ̂τ Σ̂>τ − ΣτΣ>τ ‖op > 0

and as a result, we have λk,τ 6→ σ4
kγk (τ)2. The asymptotic fluctuations of λk,τ

(around its limiting mean) may not be Gaussian either.
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Recent works in the “high dimensional” regime

Assume p/T → c > 0.

When K = 0 (the so-called null case), Li, Pan & Yao (2015) derives the limiting

spectral distribution of Σ̂Σ̂>, i.e. as p,T →∞,

K+p∑
i=1

δλi,τ (dx)⇒ some non-degenerate distribution ν.

The phase transition of {λk,τ} is shown in Li, Wang & Yao (2017): there exists a
critical threshold η > 0 such that the following dichotomy exists:

I if σ4
i γi (τ)

2 > η then λi,τ → µi > σ4
i γi (τ)

2 in probability, i.e. λi,τ is detectable,
I if σ4

i γi (τ)
2 < η then λi,τ → {max x : ν[x ,∞) > 0}, i.e. λi,τ "blends in" with all the

other small eigenvalues which are estimators of zero.
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CLT of Spiked Empirical Eigenvalues
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Conditions on Dimension, Factors and Idiosyncratic Error

Assumptions 1

1 p,T →∞ and p/T → c > 0.

2 σi →∞ and there exists C > 0 such that σi/σj < C for all i , j = 1, . . . ,K .

3 (zit )1≤i≤K ,1−L≤t≤T+1 is independent, identically distributed with E[zit ] = 0,

E[z2
it ] = 1 and uniformly bounded 4 + ε moment for some ε > 0.

4 (εit )1≤i≤p+K ,1≤t≤T+1 is i.i.d. standard Gaussian.

5 supi‖φi‖`1 <∞.
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Conditions on Number of Factors, Auto Time-lag and Factor Strength

Assumptions 2

1 τ is a fixed, non-negative integer

2 K = o(T 1/16) and K = o(σ2
1) as T →∞.

3 the sequence (µ1,τ , . . . , µK ,τ ) is arranged in decreasing order and there exists

ε > 0 such that µi,τ/µi+1,τ > 1 + ε for all i = 1, . . . ,K − 1.

Assumptions 3

1 τ ∈ N and τ →∞ as T →∞.

2 K = o(T 1/16γ1(τ)1/2) and K = o(σ2
1γ1(τ)3) as T →∞.

3 there exists C1 > 0 such that µi,τ/µj,τ ≤ C1 for all i, j = 1, . . . ,K and τ ≥ 0.

4 there exists T0 large enough and some ε > 0 such that µi,τ/µi+1,τ > 1 + ε for all

i = 1, . . . ,K − 1 and T > T0.
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Location of Spiked Empirical Eigenvalues

Theorem 1

Under Assumption 1 and either Assumption 2 or 3, we have

λn,τ

µn,τ
− 1 = Op

(
1

γn(τ)
√

T

)
+ Op

(
K

σ2
nγn(τ)2

)
, n = 1, . . . ,K . (0.2)

where µn,τ is

µi,τ := E[yi,tyi,t+τ ]2 = σ4
i γi (τ)2, i = 1, . . . ,K , τ ≥ 0. (0.3)
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CLT of Spiked Empirical Eigenvalues

The asymptotic distribution of λi,τ remains unknown.

Our work is a first step in answering this question - we show that:

Theorem 2

Under Assumption 1 and either Assumption 2 or 3, we have

√
T
γi (τ)

2νi,τ

(
λi,τ

θi,τ
− 1
)
⇒ N(0, 1),

where θi,τ is defined implicitly as the solution to some (non-random) equation.

For generality we allow K →∞ and even τ →∞.
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Statistical Application: Equivalance Test for two HDTS’s
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Statistical applications: auto-covariance test

Hypothesis testing for comparing two populations is a traditional statistical problem

I T-test and/or Z-test for equality of two population mean
I F-test for equality of two population variance

Comparing two populations of high-dimensional time series
I Provide better inference if they share similar information (both temporal and

cross-sectional)
I Aggregated analysis for multiple populations of high-dimensional time series

Human mortality data from different countries

I Interest: spiked eigenvalues of high-dimensional auto-covariance matrices for two

populations
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Hypothesis testing for two populations

Testing for the equivalence of spiked eigenvalues for auto-covariance matrices of

two high-dimensional time series

For two high-dimensional time series
{

y(1)
t

}
and

{
y(2)

t

}
following the factor

models in canonical form under assumptions of Theorem 2,
I H0: µ(1)i,τ = µ

(2)
i,τ for all i = 1, 2, ...,K ;

I H1: µ(1)i,τ 6= µ
(2)
i,τ for at least one i , i = 1, 2, ...,K .
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Test statistic

For two HD time series, a test statistic can be considered as,

Zi,τ =
√

T
γi,τ

2
√

2vi,τ

λ
(1)
i,τ − λ

(2)
i,τ

θi,τ
, (0.4)

where

θi,τ =
θ
(1)
i,τ + θ

(2)
i,τ

2
, vi,τ =

v (1)
i,τ + v (2)

i,τ

2
, and γi,τ =

γ
(1)
i,τ + γ

(2)
i,τ

2
, (0.5)

and θ(m)
i,τ is the asymptotic centering of λ(m)

i,τ .
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Test statistic

Theorem 3

Under the assumptions of Theorem 2, for two independent high-dimensional time

series
{

y(1)
t

}
and

{
y(2)

t

}
following the same factors in canonical form , we have

Zi,τ =
√

T
γi,τ

2
√

2vi,τ

λ
(1)
i,τ − λ

(2)
i,τ

θi,τ
⇒ N (0, 1), (0.6)

as T , p →∞, where θi,τ , vi,τ and γi,τ are defined in (0.5).

Theorem 3 is a direct result of Theorem 2, since an asymptotic distribution of
λ
(1)
i,τ−λ

(2)
i,τ

θi,τ

can be derived using the independence between λ(1)
i,τ and λ(2)

i,τ .
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Test statistic

Theorem 4

Under the assumptions of Theorem 2, if we additionally assume two independent

high-dimensional time series
{

y(1)
t

}
and

{
y(2)

t

}
follow two different canonical factor

models with

K1 = K2 = K , γ(1)
i,τ = γ

(2)
i,τ = γi,τ , v (1)

i,τ = v (2)
i,τ = vi,τ , and θ

(1)
i,τ = (1 + c)θ

(2)
i,τ .

Then, for any c such that
√

T 2c
2+c →∞ as T , p →∞ and λ(1)

i,τ 6= λ
(2)
i,τ , it holds that

Pr (|Zi,τ | > zα|H1)→ 1, (0.7)

for T , p →∞, where zα is the α-th quantile of the standard normal distribution.
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Implementation

Step 1: Estimations of the factor model
I Use symmetrized lag-τ sample auto-covariance matrix to estimate the number of

factors r̂ (·) and factor loading matrices L̂ from the two samples and then estimate the

factors.

Step 2: Standardizing the estimated factor models to the canonical form
I This can be achieved by normalizing the estimated loading matrix to a diagonal matrix

and the variance of each factors to be 1.
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Implementation

Step 3: Estimates of unknown parameters for the test statistic
I Bootstrap methods for time series such as the sieve bootstrap needs to be conducted

on the estimated factors for estimating v (·)
i,τ and θ(·)i,τ .

Step 4: Computing the test statistic and p-values
I The test statistic can be computed as

Z̃i,τ :=
(
λ
(1)
i,τ − λ

(2)
i,τ

)√ T1T2

T1 + T2

γ̃∗i,τ

2ṽ∗i,τ θ̃
∗
i,τ

,

where θ̃∗i,τ , ṽ∗i,τ and γ̃∗i,τ are bootstrap estimates.
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Simulation Studies
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Data Generating Process

DGP:
I consider a one-factor model for both populations, where the factor is generated by

f (m)
1,t = φ

(m)
1 f (m)

1,t−1 + z(m)
1,t , m = 1, 2, (0.8)

where φ(m)
1 = 0.5 and

{
z(m)

1,t

}
are i.i.d. N

(
0,
(
σ
(m)
z

)2
)

with
(
σ
(m)
z

)2
= 3/4, so that

Var
(

f (m)
1,t

)
= 1

I And the data is generated by

y(m)
t =

(
σ
(m)
1

0N−1

)
f (m)
1,t + ε

(m)
t , (0.9)

where σ(m)
1 = N1−δ ,

{
εj,t
}

are i.i.d. N (0, 1), and
{

f (m)
1,t

}
are generated by (0.8).

I Note that δ represents the factor strength and δ = 0 is the strongest case.
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Empirical Sizes

Empirical sizes

Figure 3: Empirical sizes of the auto-covariance test with T = 400, 800,

N = 100, 200, 400, 800, 1600, and δ = 0, 0.1, 0.3, 0.5.
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Empirical Powers: factor strength

Empirical powers: scenario 1 - study the effect of different variances
I Consider different groups of data generated with σ2(2) set as

1.1
(
σ
(1)
1

)2
, 1.3

(
σ
(1)
1

)2
, 1.5

(
σ
(1)
1

)2
, 1.7

(
σ
(1)
1

)2
, and 1.9

(
σ
(1)
1

)2
, respectively.

Figure 4: Empirical powers of the auto-covariance test in the first scenario with T = 400,

N = 200, 400, 800, and δ = 0, 0.1, 0.3, 0.5.
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Empirical Powers: Spikeness

Empirical powers: scenario 2 - study the effect of different auto-covariances
(auto-correlations) of fi,t

I Consider different groups of data generated with φ(2)i,1 set as

0.9φ(1)1 , 0.8φ(1)1 , 0.7φ(1)1 , 0.6φ(1)1 , and 0.5φ(1)1 , respectively.

Figure 5: Empirical powers of the auto-covariance test in the second scenario with T = 400,

N = 200, 400, 800, and δ = 0, 0.1, 0.3, 0.5.
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Empirical Application on Clustering Mortality Data
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Human mortality data across countries

Figure 6: Log death rates for Australian
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Human mortality data across countries

We study total death rates from selected countries where the data is available

from 1957 to 2017

The data is prepared by taking first order difference on the log death rates as the

original data is not stationary

Table 1: Estimated number of factors in the factor model for each country

Estimated number of factors Countries

1
Australia, Belgium, Bulgaria, Czechia, Finland, Greece, Hungary,

Japan, Netherlands, Sweden, Switzerland, U.K., U.S.A.

2 Denmark

3 Canada, France, Italy, Portugal

5 Poland
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Figure 7: p-values of the auto-covariance test for each pair of countries that have one factor in the

estimated factor model
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Figure 8: p-values of the auto-covariance test for each pair of countries that have three factors in

the estimated factor model
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Figure 9: p-values of the auto-covariance test of the first factor for all countries except U.S.A.
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Thank you !
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