

The risk and reliability of hydrogen as a sustainable energy source

A/Prof Rouzbeh Abbassi

Dr Fatemeh Salehi

School of Engineering, Macquarie University, Australia

Outlines

- \checkmark Introduction
- $\checkmark\,$ Risk and Reliability in Engineering Operations
- ✓ Hydrogen safety
- \checkmark Cases studied

Sustainable Energy Research Centre

Photovoltaics and Solar Energy	Hydrogen		Grid integration	Energy Economics
Director, Shujuan Huang	Director, Fatemeh Salehi		Director, Sara Deilami	Director, Stefan Trueck
 development of photovoltaic materials for next generation high efficiency solar cells development of device fabrication technologies to reduce the cost of power generation 	 Production and Utilisation bio-hydrogen production to increase the rate and yield of hydrogen production with minimal by- products Chemical production of hydrogen using a sustainable chemical looping process 	 Application and Safety provide scientific and technical knowledge in understanding the safety aspects related to hydrogen energy applications risk analysis and consequence modelling regarding hydrogen applications 	 energy management and distribution for commercial and residential systems, micro grid and grid integration integration of electrical vehicles into the grid for charging and supply 	 Financial innovation strategies to stabilise energy markets transitioning from fossil-fuel fired power generation to a renewable energy model

Introduction

Introduction

International Partnership for Hydrogen and Fuel Cells in the Economy

Introduction

- The Council of Australian Governments (COAG) Energy Council
- National Hydrogen Strategy Taskforce

7

<u>Risk</u>

Scope of Our Research

Risk, Safety and Reliability Engineering

Hydrogen dispersion Chamber at Macquarie University

Inspection & Maintenance Planning

Optimization of repair/service schedule with an aim to minimize cost and maximize safety & availability 9

Risk-Based Maintenance

Dynamic Fatigue Crack Modeling

Crack Size and Cost

Initial crack size distribution (a_0)

Utility functions of decision alternatives

Year	1	2	3	4	5
Case A	No Detection	State 15	-	-	-
Case B	No Detection	No Detection	State 11	-	-
Case C	State 8	State 12	State 14	-	-

Comparison Results

Hydrogen accidents

230 accidents over the last two decades: (H2Tool database)

Major causes

- Human errors ٠
- Equipment failures
- Design issues

Consequences

- Property damage •
- Injury to human ٠
- Loss of human life

Hydrogen safety

Gaseous Hydrogen

Hydrogen Safety: Challenges with Current Modeling

- \checkmark Safety of hydrogen infrastructures are vital in the growth of hydrogen economy
- ✓ Several risk models have been developed to assess the safety of hydrogen infrastructures, however, most of them have the shortcomings of:
 - Being static in nature, not properly observing the variability occurring in operation via time
 - Lack of enough precise data of young emerging technologies like hydrogen which leads to uncertainty in input and output parameters
 - Lack of considering the dependencies among the root failures of complex systems
 - Attending to mechanical failures without paying enough attention to human and organizational failures

Failures considered in:

- Chemical section
- Mechanical section
- Storage section

Cause-effect model of the hydrogen release accident scenario

- Failure and causes:
 - \checkmark Identify all possible failures of the main equipment, leading to a hydrogen leak,
 - \checkmark How failures are connected and how they can logically lead to the accident scenario
- Likelihood values for each cause
 - Background history
 - Expert judgment (use conventional methods)

Hydrogen safety – production site

X81

X82

X83

X84

X85

X86

Hydrogen safety - Production site

 ✓ A significant change in the system reliability within a year confirms the system degrades dramatically during the considered time interval

- $\checkmark\,$ Dynamic modelling of hydrogen release probability and the system reliability
- Safety barriers
- Backward analysis: find critical cause of accident

Hydrogen Accidents: Consequence Modelling

Computational fluid dynamics

Hydrogen refuelling station

Hydrogen dispersion

Hydrogen fire

(Fuel Leak Simulation. Swan et al., 2001)

Simulation set	Inlet ventilation velocity (m/s)	Fuel type	Slope (%)	Storage capacity (%)
	0, 1.2	Hydrogen		100
1	0, 1.2	Propane	0	
Ш	0, 0.6, 1.2	Hydrogen	0, 3, 6, 9	100

Fuel type	Burner Size	HRRPUA	⊿H _c	HRR
Hydrogen	0.09 m ²	8,900 kW/m ²	119.7 MJ/kg	801 kW
Propane		4,564 kW/m ²	45.8 MJ/kg	410 kW

Hydrogen versus propane fire

Multiple hydrogen fire

Distance from the tunnel entrance (m)

R. Abbassi & F. Salehi

Multiple hydrogen fire

Ventilation velocity

- Air quality in the tunnel.
- Impacts of heat and smoke
- The egress of tunnel users
- Support firefighting

- Enhance the dispersion rate of hydrogen away from the combustion zone: lowering of the combustion rate
- Better mixing of the hot vaporized fuel particles and oxygen: enhance combustion rate

Multiple hydrogen fire

- Increasing the slopping clears the upstream from the hot gas, while spreading and covering them downstream
- The tilting of the flames in the direction of the slope: the shift of the peak ceiling temperature
- The rapid dispersion of the leaked hydrogen reduced the ceiling temperatures

Sprinkler - hydrogen fire

Thank you for your attention.

- ✓ Rouzbeh Abbassi (<u>rouzbeh.abbassi@mq.edu.au</u>)
- ✓ Fatemeh Salehi (<u>fatemeh.salehi@mq.edu.au</u>)