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Abstract

Public investment into risk reduction infrastructure plays an important role in facilitating
adaptation to climate impacted hazards and natural disasters. Evaluating risk reduction
projects is a challenging exercise, complicated by the long life of the investment projects,
the need to consider the impacts of climate change, and the difficulty of quantifying the
risk at the local level. We propose an economic framework that allows to incorporate
the value of investment deferral flexibility and insurance market risk preferences, when
evaluating climate-related adaptation investments. The model is applied to a case study
of managing the risks from bushfires. We find that optimal timing of the investment may
significantly increase the net present value (NPV) of an adaptation project in comparison
to immediate investment, while risk preferences also have an impact on the NPV. The
optimal waiting time increases for lower levels of risk aversion, higher investment costs
and higher discount rates, while assumptions about more serious climatic change will
typically reduce the deferral of the investment.

Keywords: Climate change adaptation, Investment timing, Catastrophic risk, Risk

aversion, Real option

1. Introduction

A major concern with global warming is that the climate system may become more en-

ergetic and the frequency and severity of catastrophic events may increase in the years
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to come. The rising number of natural disasters during the last two decades has put
governments under increasing pressure to implement policies and investment projects
to facilitate climate change mitigation and adaptation (Hochrainer-Stigler et al., 2014;
Van Aalst, 2006). Mitigation requires time to yield impacts since greenhouse gases have
long life and the global climate system takes time to cool down once being heated. The
global temperature is going to increase before stabilizing, even if emission is substantially
reduced (Solomon, 2007). Therefore, the risks related to catastrophic events are expected
to increase regardless of existing and potential additional mitigation efforts, making cli-

mate adaptation an essential task.

Australia is well-known for bushfire, storm surge and flood disasters. Several studies
suggested that these events would become more frequent in many regions of Australia
and more attention should be paid to adaptation measures (Garnaut, 2011; Murphy and
Timbal, 2008; Antén et al., 2013). Climate adaptation requires input from all levels of
government and could be one of the most challenging tasks in environmental manage-
ment. While it has often been argued that action is most effective at the local level, local
government is confronted with the complex and difficult task of planning and implement-
ing mitigation and adaptation actions within existing budget constraints. This requires
an economic framework to evaluate potential climate adaptation options to facilitate de-

cision making.

Although climate adaptation is required for many sectors and in many cases involves
expensive investments, see e.g., Felgenhauer and Webster (2013), there are few empirical
studies conducting cost benefit analysis for catastrophic risk reduction projects. Stud-
ies that evaluate catastrophic risk reduction projects include Kirshen et al. (2008a,b);
Michael (2007); Symes et al. (2009); West et al. (2001) who examine storm surge risk in
coastal areas and Brouwer and van Ek (2004); Waters et al. (2003); Zhu et al. (2007);
Bouwer et al. (2010); Mathew et al. (2012) who examine flood risk in riverine regions. In
these studies, except for Michael (2007), it is assumed that the benefits of a risk reduc-
tion project are equal to the expected avoided losses. This assumption holds when the
potential losses are insured and the insurance premium is actuarially fair. However, in

practice, it is often found that full insurace uptake is rare (Kunreuther, 1996) and insur-
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ance premiums in laissez-faire markets may not be actuarially fair, especially for extreme
events. Insurers may charge unfairly high premiums when the risk cannot be accurately
estimated, for example due to the uncertain impacts of climate change, to reduce their in-
solvency risk, or when risks are highly correlated (Kunreuther and Michel-Kerjan, 2007).
Correlated risks require additional capital for insurers to protect themselves against large
losses. Further, when spatially correlated losses occur, they may drain the capital of
the insurance industry and put insurance firms under financial distress. Insurers may
therefore require an additional premium to bear the risk of financial distress (Cummins
and Trainar, 2009; Froot, 2007). Assuming risk neutrality when evaluating adaptation

projects is likely to result in an underestimation of the project benefits.

Michael (2007) is the first study that estimates the cost of increased flood damage from
storm surges under climate change based on insurance premiums. Flood damage in the
study region depends on the elevation of properties and insurance premiums are deter-
mined based on properties’ elevation. Under climate change, sea level rise reduces the
elevation of all properties in a coastal region and increases insurance premiums accord-
ingly. The cost of increased flood damage is found by aggregating additional discounted
premiums required in future years. The method is argued to provide more reliable esti-
mates of flood cost due to the detailed and accurate scheme of an insurance rate applied
at the local level. Note that by using the current insurance rate scheme for future years,
Michael (2007) assumes that the frequency and intensity of storms in future years do not

change. Such an assumption is not required for the method we propose in this paper.

In addition to the risk neutrality assumption, most studies (with the exception of West
et al. (2001) and Zhu et al. (2007)) use the NPV rule to determine the investment deci-
sion: a project is invested if its NPV is positive. However, investing (now) when the NPV
is positive is not optimal if investing in a future time provides an even higher NPV. This
occurs when the NPV of the project is increasing in investment time (see e.g. Firoozi and
Merrifield (2003)), what may often be the case for projects that deal with risk reduction of
climate impacted hazards. Annual benefits of such a project typically increase over time
due to increasing catastrophic risk or growing potential losses, while annual costs such

as interest expenses on the investment cost or project maintenance costs remain rather
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constant. Deferring (instantaneous) investment to a future period may then help to avoid
the initial years’ negative impact on the NPV, when annual benefits of the project are
lower than the occurred costs. Overall, in such a situation a deferral of the investment
would be expected to increase the NPV of the project. Therefore, in order to obtain the
optimal investment decision, one also needs to determine the investment time that gives

the highest NPV of a project.

West et al. (2001) and Zhu et al. (2007) departed from the NPV rule to examine the op-
timal time to invest. In Zhu et al. (2007), simulation techniques are used to compute the
expected avoided losses. Time series of future climate variables for the studied region are
simulated from a climate model, which are then used as inputs to a vulnerability model
to generate losses. In contrast, West et al. (2001) derives the expected avoided losses
using a statistic model called the Loss Distribution Approach (LDA)!. The simulation
approach used in Zhu et al. (2007) is computationally intensive due to the time required
to run complex climate simulation models and vulnerability models. The LDA, on the
other hand, is tractable and can give rise to an analytical solution to the investment
problem. In practice, the two approaches can be combined, with simulation results being

used to estimate the parameters of the LDA, as suggested in our approach.

In this paper, we propose a general economic framework to determine optimal adaptation
decisions at the local level. Different from previous studies, we evaluate the investment
benefits based on optimal timing of the investment as well as the risk preference of rep-
resentative agents in the insurance market. Our model is developed in a continuous time
framework and provides a simple formula to determine the optimal time for adaptation
investment. Using a case study of bushfire risk management, we illustrate that investing
at the optimal time, determined by the model, has the potential to significantly increase
the net present value (NPV) of the project, even though the project provides a positive
NPV if invested immediately. Risk preference also has an important impact on the NPV

of the project, but tends to be less important in comparison to the impact of investment

!The Loss Distribution Approach is a term commonly used in insurance analysis, see e.g. Klugman
et al. (2008); Shevchenko and Wiithrich (2006). In this paper, it is used to refer to catastrophic risk
modelling.



timing. Factors that significantly influence investment decisions and outcomes include
climatic change scenarios, risk preferences, investment costs and the applied discount
rate. We find that a more serious scenario of climate change and higher risk aversion
increase the NPV of the project for any investment time and will reduce the optimal
waiting time. The value added by the investment model compared to a simple NPV
rule, i.e. invest immediately if the project provides a positive NPV, is lowered in these
cases. In contrast, higher investment costs and higher discount rates increase the optimal

waiting time and raise the value added by the investment model.

The remainder of the paper is organized as follows. Section 2 outlines and analyzes the
developed modeling framework. Section 3 provides an application of the framework in a
case study, using catastrophic risks from bushfires as an empirical example. The section
also examines the impacts of optimal investment timing, risk preferences, investment costs
and the applied discount rate on the results. Section 4 concludes and gives suggestions

for future work.

2. Modeling framework

We adapt the standard LDA to quantify potential losses from extreme events and apply
the Bithlmann (1980) framework to convert a loss distribution into insurance premiums.
Then, a dynamic investment model is constructed to determine the optimal investment

time.

2.1. Frequency and Severity of Climate Impacted Hazards

The LDA is commonly used to model catastrophic losses in the insurance and banking
sector as well as losses arising from operational risks, see e.g. Klugman et al. (2008);
Shevchenko and Wiithrich (2006). There are also a few applications of the framework
to modeling losses related to natural or climate impacted hazards such as, e.g. storms,
earthquakes and flooding (West et al., 2001; Hardle and Lépez Cabrera, 2010; Mathew
et al., 2012). With this approach, the total loss over a period (0,¢] is modeled as a

compound Poisson process:
N(1)
S => X, (2.1)
n=1

bt



where N () is the number of catastrophic events occurring from time 0 up to time ¢, X,
is the loss caused by the n'* event. In this standard model, N(t) is assumed to follow a
homogeneous Poisson process with intensity A > 0, X, is assumed to be independently
and identically distributed according to a distribution H(X) and X, is independent from
N(t). A realization of two catastrophes with severities x, x, over period (0, t] corresponds

The standard model (2.1) can be extended to allow for growing loss severity and frequency.
We allow loss severity to grow over time by modeling the catastrophic loss X, as a product

of the catastrophic loss under zero growth X, and a growth component:
X, = X" (2.2)

In Equation (2.2), v is the growth rate of the risk prone asset values, and 7, is the random
time when the n'* climate impacted event occurs, which is determined by the Poisson
process. A growth in the value of risk prone assets may, for example, be due to increases
in the number of properties in a region, investment in additional infrastructure, or due to
improvements in a properties’ or assets’ condition as the economy grows.? The random
variable X, is the catastrophic loss when the values of the assets at risk do not grow
over time, which can also be interpreted as a measure of the destruction force of the
catastrophe. It is assumed that X is identically, independently distributed and X, is

independent from N(t¢) and therefore 7.

Increasingly frequent catastrophes can be modelled by allowing N(t) to follow a non-
homogeneous Poisson process with intensity A(¢) increasing over time. Following previous
studies on climate change (Garnaut et al., 2008; Quiggin et al., 2010), we assume that the
climate changes over time but due to mitigation efforts, it will stabilize eventually. We
also assume that the frequency of catastrophes is increasing in global temperature. As

a result of these assumptions, the probability of a catastrophe occurring during a small

2The exponential growth of loss severity is consistent with the pattern of natural disaster losses
observed in Australia, see, e.g., Crompton and McAneney (2008), Crompton et al. (2006), and the
pattern of flood losses in Netherlands, see, e.g., Brouwer and van Ek (2004).
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time interval grows over time, but converges to a limit as time becomes large:
At) = M0)e ™ + A(1 —e™). (2.3)

In Equation (2.3), ¢ represents time that can take any value from 0 to infinity, A\(0) is the
Poisson intensity at time 0, A is the Poisson intensity when the climate system stabilizes
and « is the rate at which the Poisson intensity A(t) grows towards its limit (Figure 1)3.

A higher Poisson intensity A(t) means a higher expected frequency of catastrophic events.
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Figure 1: Time path of Poisson intensity. Poisson intensity drives the frequency of
catastrophic events. We assume that Poisson intensity increases with global warming. It
converges to a long run level corresponding to the new equilibrium of the climate system.

The function A(t) in Equation (2.3) is concave and is consistent with the projected global
temperature provided by Nordhaus (2007) and many of IPCC emission scenarios, see e.g.
Meehl et al. (2007)* In practice, estimates of the equilibrium level of global temperature
and therefore \ are quite uncertain and we follow the literature in using sensitivity analysis
to examine the impact of different estimates (West et al., 2001; Waters et al., 2003;
Brouwer and van Ek, 2004; Zhu et al., 2007; Michael, 2007; Kirshen et al., 2008b,a;
Symes et al., 2009).

3Note that since the functional form assumed in Equation (4) mirrors the projected global temperature
change, it is appropriate for catastrophes whose frequency is increasing in global temperature. These
include flood, drought, bushfire and storm surge, see e.g. Symes et al. (2009).

“Note that one could further extend the suggested approach, by modeling the frequency of catastrophic
events using a doubly stochastic Poisson process (also called Cox process), where the time-dependent
intensity A(t) is itself a stochastic process. See, e.g., Hardle and Lépez Cabrera (2010) for an application
of doubly stochastic Poisson processes to modeling the frequency of earthquakes.
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2.2. Insurance Premium

To determine the value of the project, we need to determine the premium p, that is paid
at time t = 0 to insure loss L; = Sy 4 — S; that occurs during a small time period (¢, t+dt].
Insurance markets, however, do not exist for risk in the far future, and to overcome this
incomplete market problem, we use the market equilibrium model proposed by Biithlmann
(1980) to determine the risk premium. The Bithlmann model has been used widely to
price insurance products (Aase, 1999; Christensen and Schmidli, 2000; Dassios and Jang,
2003; Muermann, 2008; Cox et al., 2010) as well as financial products (Embrechts, 2000;
Gerber and Shiu, 2000). According to this model, assuming that the risk preferences of
economic agents in the insurance market can be represented by exponential utilities, the

premium p; paid at time ¢ = 0 to insure a loss L; is given by:

€9Lt

P o
Pt = € E{WLt}’

(2.4)
where 0 is an aggregate measure of the risk aversion of economic agents in the market.®
Note that the premium given in (2.4) depends only on the probability distribution of the
loss and the risk aversion parameter. When insurers are uncertain about the estimation
of the loss distribution and charge an additional premium to cover the uncertainty, such
prudent action is reflected by an increase in the risk aversion parameter. A high risk aver-
sion parameter may also reflect high transaction costs in the market, or it may reflect the
additional premium required to compensate for financial distress caused by catastrophic
events. The risk aversion parameter 6 can be calibrated using data on observed premiums

in the market.

Equation (2.4) is also known as the Esscher transform pricing rule which states that

the premium required to insure a loss L, is the discounted expected value of L, under a

efL

transformed probability measure Py. In Equation (2.4), E[e—,ji] is the state price density

used to transform the original (or physical) measure P into Py. When 6 = 0, i.e. the rep-

resentative agent is risk neutral, the transformed measure Py is the same as the physical

5The aggregate risk aversion, 6, is related to the risk aversion 6, ...,60,, of individual agents 1, ..., n
via 0=t =" 6 1 As such, adding more agents to the market will reduce the aggregate risk aversion
and makes the market less risk averse.



measure P and the risk premium is equal to the discounted expected loss under P.

The premium or the discounted expected value of L; under Py is calculated using moment
generating functions. As a result of (2.4), the moment generating function My g(u) of
the loss L; under the transformed measure P, can be expressed in terms of the moment

generating function M (u) of the loss L; under the physical measure P:

Mol = ")

(2.5)

If the project is not invested, the loss L; = S; 4 — S; that occurs during a small time
period (¢,t + dt] follows a compound Poisson process with intensity A(¢)dt and severity
density h;. The moment generating function of L; under the measure Py can be written

as

Mpg(u) = exp{)\(t)dt/[(e“x) — 1] hy(2)dz}, (2.6)

which shows that under the transformed measure, the density of loss size is changed from
hi(z) to e’ hy(x). Since § > 0, a higher probability is assigned to a larger loss size under
the transformed measure. The adjustment in the loss size distribution usually leads to
an adjustment of the Poisson intensity as well. For example, if h; follows a normal distri-
bution N(u, o), then under the transformed measure, it becomes N(u + 602, o) and the

. . . 192 2
Poisson intensity becomes \;dtet?T2977"

The effects of an Esscher transform for commonly used severity distributions are pre-
sented in Table 1. Note that other more flexible, but more complex distributions such as
Variance Gamma, Generalized Hyperbolic, Meixner, or Carr-Geman-Madan-Yor distri-
butions can also be used to model loss severities using the Esscher transform method. For
details on these distributions, see e.g. Lopez Cabrera et al. (2013); Dinge¢ and Hérmann

(2012).



Table 1: Esscher transform for selected loss severity distributions

Severity distribution Transformed severity Transformed Poisson
intensity

Normal, N(u, o) N(u+ 602, 0) A dtefntaf™o?

Gamma, G(a, s) G(a,s/(1—0)) Aedt(1 —60)*

Normal-inverse Gamma,

NIG(p, «, 3,9) NIG(p, o, 5+ 6,0) \dte*

Given the lack of data on losses, in this paper, we will use a Gamma distribution to

model the loss severity. When X follows a Gamma distribution with density ho(z) =

1
T'(a)s®

2% 'e~*/* the insurance premium p; in (2.4) can be denoted by
pe = e "I\(t)dtsae (1 — se'f) L (2.7)

2.3. Investments into Climate Change Adaptation

In the next step, the costs and benefits of investments into climate change adaptation are
determined. We consider an investment project with investment cost I and maintenance
cost flow C. As in other real option studies (Baranzini et al., 2003; Dixit and Pindyck,
1994; Fisher, 2000; Gollier and Treich, 2003; Pindyck, 2002), we assume that the project
lasts infinitely and the investment cost is sunk once committed. In practice, an infinitely
lasting project is constructed as a series of finite lifetime projects, where a new finite

lifetime project is put in place whenever the previous project is fully depreciated.

Investment projects may reduce losses by reducing loss frequency or loss severity, depend-
ing on the type of catastrophes. For bushfires, where fire is contained if it is discovered
and suppressed in time, the main impact of investment projects such as construction of
fire trails or fire stations is to reduce the frequency of house damaging events. For flood
and storm surges, dams and dykes weaken the destruction force, and losses are reduced
through a reduction in loss severity. In investigating bushfire risk management strate-
gies, we use a non-decreasing, linear function k of Poisson intensity A(f) to model the risk
reduction impact of the project. With the project in place, bushfire events occur with
Poisson intensity kA(t) and severity Xoe?. The model can be adjusted for uses in flood
and storm surge risk management by assuming k as a piece-wise linear function of the

destruction force Xy as illustrated by Figure 2. Computation of the optimal investment



time in this case would involve the simulation of the mitigated loss severity distributions.
In the following, we present the model applied to bushfire management for which, no

simulation is required.
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Figure 2: Examples of possible risk mitigation functions. The functional form of risk
mitigation should depend on the type of risk considered. We assumed an increasing,
linear risk mitigation function for the case of bushfire risk. In the case of flood, a piece-
wise linear function is more suitable.

The benefit of the investment project is the total discounted value of the reduction in the
insurance premium due to the project. With the project in place, the Poisson intensity
of the loss L; (under measure P) is reduced to kA(t)dt and the premium is reduced to
kp;, where p; is given in (2.7). The premium reduction due to the project over period
(t,t + dt] is therefore (1 — k)p;. Integrating this premium reduction from time 7', when
the project is invested, to infinity gives the benefit B(T') of the project:

B(T) = /Too(l — k)e " A(t)sae? (1 — sfe?) " Lt (2.8)

The NPV of the project invested at time T, V(T'), is obtained by subtracting the present

value of the project’s investment and maintenance costs from its benefits:
V(T) = / (1 —k)e " A(t)sae™ (1 — s0e) " tdt — e (1 + C/r). (2.9)
T

Equation (2.9) allows us to examine the optimal time for a considered investment into
11



climate change adaptation. Clearly, the optimal time to invest is the time when V(T is
maximized. It can be shown that the maximal value of V(T") is obtained from the first

order condition:
(1 —E)XNT)sae™ (1 — s0eT)y~ " = r(I +C/r). (2.10)

The right hand side of Equation (2.10) is the marginal benefit of deferring the investment
by a small time period dt, which is the interest expense on the investment cost and the
maintenance cost of the project that would have incurred if the project was invested
instantly. The left hand side is the marginal cost of investment deferral, which is the
insurance premium that would be avoided should the project be in place. Intuition about
the first order condition is provided in Figure 3, where at the current time, the marginal
benefit of investment deferral is higher than the marginal cost and deferring investment
by a small time period will increase the NPV of the project. Increasing deferral time
continues to improve the NPV of the project until the point where the marginal cost is
equal to the marginal benefit, while longer deferral beyond that point reduces the NPV
of the project. The optimal deferral time or investment time is therefore attained when
the marginal benefit of deferral is equal to the marginal cost. The optimal investment

time can be found by solving Equation (2.10) numerically.

25 o — MC of deferral
22 8 - = MB of deferral
3

ol

= M@ O

s ©

E3

- o

&5 ©

B E

o a0

GE B

c =

Do

m

= o T T T T

0 20 40 60 80 100

Deferral time (years)

Figure 3: Marginal analysis of optimal investment time. Deferring investment by one
period provides the marginal benefit in terms of saving on project maintenance and
interest expense on investment cost. The marginal cost of investment deferral is the
insurance premium that would be avoided should the project be in place. It is optimal to
defer investment to a later time if at time 7'=0, the marginal benefit exceeds the marginal
cost.

12



3. Case Study Results

In the following, the proposed model is applied to a case study of bushfire management
in a local area (Ku-ring-gai) of Southeast Australia. Climate change seems to already
show its impact as an upward trend in the historical records of Forest Fire Danger Index

(FFDI)® in various areas in Southeast Australia (see Figure 4).
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Figure 4: Time series plots of annually cummulated FFDI for Sydney, Melbourne, Can-
berra, Adelaide. Dotted lines present the linear trend. Data are obtained from Lucas
(2010).

Ku-ring-gai is an urban area with residential properties surrounded by three National
Parks. It has 89 kilometres of urban and bushland interface and ranks third in bushfire
vulnerability among the 61 local government areas in the Greater Sydney region (Chen,
2005).” The community in Ku-ring-gai recognizes bushfire as the most concerning risk
under climate change, followed by storm, water supply security and heat stress mortality

risk (KC, 2010).

Adaptation to the increased bushfire risk can be done at various levels. The Federal and

State governments can revise building codes and adjust funding for investment projects to

SFFDI is a an index created based on weather variables. It was proposed by an Australian CSIRO
scientist A.G. McArthur in the 1960s. A higher index indicates a higher risk of bushfire
"Bushfire vulnerability is defined as the number of addresses within 130 meters of bushland.
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reduce bushfire risk. Local governments can propose and implement investment projects
and provide education programs to reduce the risk. Households can purchase insurance
and upgrade their home to increase their resilience. However, adaptation at the local
government level seems to be most feasible and effective. At the household level, insur-
ance takeup is already high and improvement in fire resistance is costly in many cases.®

The adaptation benefits of revising building codes at the Federal and State government

are also limited, since revised building codes apply only to new or reconstructed houses.

A number of options has been identified by Ku-ring-gai Council to reduce the risks from
bushfires. These include, among others, building new fire-trails, constructing new fire-
stations and rezoning land, see KC (2010). Fire trails allow for controlled hazard reduction
burning, break wild fire transition and potentially allow more time for fire brigades to
respond to bushfires. Constructing more fire stations reduces the response time and, thus,
may also significantly reduce the risk of a fire to become more severe. In the following, we
will focus on evaluating an adaptation project that involves the construction of additional
fire trails to illustrate the proposed framework and provide economic insights on the

optimal timing of the investment.

3.1. Parameter Estimation

Information on the estimated and assumed parameter values for the considered investment
project are provided in Table 1. The appropriate process for the Poisson intensity of the
occurrence of bushfires in the area is derived in the following way. The current frequency
of bushfires over a one year time horizon, A(0), is estimated from historical data, i.e.
three bushfires with damage to houses over the last 100 years. To estimate the growth
rate of the catastrophic intensity, we adopt the results of Hasson et al. (2009) who used
10 general circulation models together with a low (B1) and a high (A2) GHG emission
scenario to study the changes in the frequency of extreme fire weather events in south-
eastern Australia. The authors find that on average, the frequency of the extreme events
increases from one event every two years during the 20" century to one event per year

by the end of the 215 century, while results given by different models vary significantly.

8In NSW, the building code did not reflect bushfire risk until 1997 and houses that were constructed
before 1997 may not be as fire resistant as they should be.
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Assuming that the frequency of bushfires is proportional to the frequency of extreme fire
weather events, the frequency of bushfire is therefore predicted to double by the end of
the 21% century. Equation (2.3) then becomes:

A0)e ™ + X\(1 — ™) = 0.06 (3.1)

Also, assume that the bushfire frequency in 2100 is close to the equilibrium frequency,
ie.

0.06 = 0.95), (3.2)

then \ = 0.0632 and o = 0.026.

The loss severity is the product of the number of damaged houses and the construction
cost per house. We estimate the reconstruction cost per house by subtracting the average
land value estimated by the NSW Valuer General (DOL, Department of Land (2009))
from the average property sales price in the region provided by Hatzvi and Otto (2008).
This results in an estimated reconstruction cost per house of $422,000.

The number of damaged houses in a bushfire fire event is estimated using information
provided by a local expert from the bushfire brigade. The expert suggests that for a
severe bushfire, the average number of houses being damaged is 30 and the range for
the average number of damaged houses is between 15 (the lower quartile) and 50 (the
upper quartile) houses. These figures yield an expected loss of $12,660,000, while the 25th
percentile for the severity of losses is $6,330,000 and the 75th percentile is $21,100,000.
The corresponding parameters of the gamma distribution matching these loss estimates
are a = 8242.57 and s = 1535.93.

The growth rate of loss severity () is estimated based on disaster insurance claim data

provided by Insurance Council Australia (ICA) and yields a growth rate of v = 0.01.

Estimation of the risk aversion parameter 6 requires information about the loss distri-
bution and the corresponding risk premium. Without access to risk premium data for
the study region, we follow Farrow and Scott (2013) to examine the impact of risk pref-
erence on the optimal investment decision for a range of possible risk aversion values,

6 € [2x1072,107%]. We use the mid-point of the range, # = 6 x 1079, for the baseline
15



Table 2: Information on estimated and assumed parameter values, including the current
intensity of bushfires A\(0), the intensity A when the climate stabilizes, the growth rate
for the intensity «, the location (a) and scale (s) parameter of the Gamma distribution
for severity, the risk aversion parameter . The table also provides information on the
estimated growth rate of the cost of reconstruction ~, the assumed impacts on risk miti-
gation of the project 1 — k, the lifetime of the project M, the investment cost per project
Iy, project maintenance costs C' and the applied discount rate r.

Parameters Value
Current Poisson intensity (A(0)) 0.03
Steady state Poisson intensity () 0.0632
Rate of Poisson intensity growth () 0.026
Location parameter of severity distribution (a) 8242.57
Scale parameter of severity distribution (s) 1535.93
Risk aversion parameter (6) 6x107°
Growth rate of reconstruction cost () 0.01
Risk mitigation by project (1-k) 20%
Lifetime of the project (M) 50 years
Investment cost per project (1) $1.5 million
Project maintenance cost (C) $50,000
Discount rate (r) 5%

case.
Other parameters relating to the investment project, including investment cost, loss mit-
igation effectiveness and project life, are estimated using expert elicitation. Expert elici-
tation method is an effective way to overcome data scarcity problems and has been used
in many previous climate adaptation studies, see e.g. Baker and Solak (2011); Mathew
et al. (2012). The expert specifies that the conducted project is expected to reduce the
frequency of house damaging bushfire events by 20%. The estimated costs for a finite
lifetime project can be used to calculate the investment cost of an infinite lifetime project
as follows. First, we convert the investment cost I,, of a project that lasts M years into
an annuity flow, A:

1-p

A=y

where = 1/(1 + ). The annuity A is then used to calculate the investment cost of an
infinite life project:

I=A1+r)/r (3.3)

Thus, at a 5% discount rate, the present value of building a bushfire trail every 50 years,
16



each costing $1.5 million to build is $1.64 million.

3.2. Baseline Analysis

Figure 5 provides a plot for the NPV V(T') of the considered project as a function of
investment time 7". Hereby, 7' ranges from immediate investment into the project (7' = 0)
up to an initial investment into the project in 7" = 100 years. We find that immediate
investment into the project provides a positive NPV of $401,152. However, deferring the
investment to a later time can provide an even higher value for the conducted project.
Based on our model, the optimal time to invest is in year 7' = 15 and investing according
to this optimal rule will provide a NPV of $701,887 for the project, a difference of $300,735
in comparison to the value of the project for investment at 7'= 0. From 7" = 15 onwards,
postponing the investment to a later point in time will decrease the NPV of the project.
Overall, applying the developed framework to the case study, we find that the optimal
timing of the investment will have a significant impact on the NPV of the investment.
Clearly, if the project was invested at 7' = 0 based on a simple NPV, > 0 rule to guide

the investment decision, ignoring the optimal timing would lead to a lower NPV.

500
l

Project NPV ('$000)
300
|

0 100
l

I I I I
0 20 40 60 80 100

Investment time (years)

Figure 5: NPV of the considered project for different timing of the investment, starting
from an immediate investment at time 7" = 0 up to an investment in 7" = 100 years.

3.3. Impact of risk aversion

The impact of risk aversion on the results is examined by comparing the baseline case
with the case of risk neutrality (6 = 0), see Figure 6. We also provide the plots for the
case when risk aversion takes a higher value and the case when it takes a lower value

17



(than in the baseline case) in Figure 6 to examine the sensitivity of the results to changes

in risk aversion parameter.

Recall that the coefficient of risk aversion for the baseline case was estimated as 6 =
6 x 1079, We find that risk aversion significantly changes the NPV of the project. For
example, under risk neutrality, the NPV of the project invested at time 7" = 0 is below
$200,000, while under risk aversion, the NPV of the project invested at the same time
is more than twice as large. Consequently, assuming risk neutrality may severely under-
estimate the NPV of climate change adaptation projects and will possibly allocate more
public funding towards non-climate related investments where risk neutrality holds such

as, e.g., road infrastructure.

A more risk averse preference, in fact, raises the NPV of the project in a way that causes
the optimal investment to occur earlier. Assuming risk neutrality will lead to an optimal
investment time in year 7' = 19, while assuming a higher degree of risk aversion in the
market (6 = 107%) will lead to an earlier optimal investment time (7" = 13) than the

baseline case (1" = 15).

We find that immediate investment at time 7" = 0 will always result in a significantly
lower NPV than investing at the optimal time, regardless of the coefficient of risk aversion.
The loss in investment value is highest in the case of risk neutrality ($397,265 or 81% of
the investment value) and lowest in the case of high risk aversion ($243,310 or 28% of the
investment value). This result is not surprising given that more risk averse preferences
will lead to an earlier investment, such that the difference between immediate and optimal

timing of the investment are not as significant as for the risk neutral case.

3.4. Impact of climate change

The impact of climate change is examined by comparing the baseline scenario with the

case where the frequency of bushfire triples (instead of doubles) by 2100, corresponding

to A = 0.0947, and o = 0.029, see Figure 7. We find that the more serious climate change

scenario results in significant increases for the NPV of the project. For example, in the

baseline case, the NPV of the project invested at time T = 0 is below $500,000, while
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Figure 6: Impact of risk preference on the NPV of the examined investment. The baseline
scenario corresponds to a coefficient of risk aversion of § = 6 x 107, while for the risk
neutral case we set § = 0. We also consider the case of a lower (§ = 2 x 107?) and a
higher (6 = 1 x 107%) coefficient of risk aversion. For all cases we plot the NPV of the
project for different timing of the investment, starting from an immediate investment at
time 7' = 0 up to an investment in 7" = 100 years.

under a more serious scenario for climatic change, the NPV of the project invested at the
same time is about three times as large. In addition, the more serious climate change
scenario also changes the relationship between timing of the investment and NPV of the
project. Given that a faster increase in the frequency of bushfires, we would expect an
earlier optimal time to invest than under the base scenario. Indeed, we find that the
optimal investment time is reduced from 7" = 15 in the baseline case to T' = 8 under the
assumption of a more serious scenario for climatic change and the frequency of bushfires
in the considered area. Therefore, we also find that investment in T = 0, based on a
simple NPV rule, is much closer to the optimal timing of the investment under a more
serious climate change scenario. The reduction in NPV due to an investment in 7" = 0 is
smaller under the more serious scenario for climate change scenario ($182,322 compared

to $300,735) than in the baseline case.
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Figure 7: Impact of climate change scenarios. The baseline scenario corresponds to a
Poisson intensity path given by A(0) = 0.03, A = 0.0632, a = 0.026 (solid line), while the
case of more serious climatic change corresponds to A(0) = 0.03, X = 0.0947,a = 0.029
(dashed line). The Poisson intensity given by the latter is 3 times as large as the Poisson
intensity given by the former in year 2100. For all cases we plot the NPV of the project
for different timing of the investment, starting from an immediate investment at time
T = 0 up to an investment in 7" = 100 years.

3.5. Impact of investment cost

The impact of investment cost on the results is examined by allowing investment costs to
range between $1 million and $2 million. Figure 8 provides a plot that illustrates how the
investment costs will impact on the NPV of the project. Hereby, for the entire range of
possible investment costs from $1 million - $2 million, we plot the maximal possible NPV
that is obtained when the project is conducted (i) under optimal timing of the investment,
and (ii) the NPV for the project under immediate investment in 7" = 0. As expected
investment cost has a significant impact on the NPV of the project. Interestingly, higher
investment costs seem to decrease the NPV of the project under immediate investment in
T = 0 even more than when the project is conducted under optimal timing. For example,
an increase in investment cost by 10% (from $1.5 million) reduces the NPV of the project
under immediate investment by 41%, while it reduces the maximal NPV (under optimal
timing) by only 10%. The Figure also illustrates that the difference between the NPV
of the project under optimal timing and the NPV for immediate investment in 7" = 0
becomes larger for increasing investment costs.

Investment cost also has an impact on the optimal investment time. When investment

cost increases by 10% from $1.5 million to $1.65 million, the optimal time to invest
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increases by 16% from T = 15 to approximately 7' = 17. On the other hand, for a lower
investment cost of $1 million, the waiting time for optimal investment is reduced and to
less than ten years. The higher the investment cost, the more important becomes the
optimal timing of the investment, since it is more valuable to avoid the interest expense
on the investment costs in the initial years, when the benefits of the project are still
lower. Thus, when investment costs for the project increase, so does the waiting time for

optimal timing of the investment.
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Figure 8: Impact of investment cost on NPV of the project. We provide a plot of the
NPV of the project under optimal timing of the investment (solid line), and, when the
investment is conducted immediately in 7' = 0 (dashed line) for a range of investment
costs between $1 million and $2 million. The difference between the NPV of the project
under optimal timing 7™ and the NPV for immediate investment in 7" = 0 becomes
larger for increasing investment costs. The Figure also illustrates the positive relationship
between investment cost and the optimal time to invest (dotted line).

3.6. Impact of discount rate

The impact of discount rate on the results is examined by calculating the NPV under
optimal timing of the investment and for immediate investment in 7" = 0 as well as the
optimal investment time for different discount rates. Figure 9 provides the results for a
range of discount rates between 3% and 9%.

We find that discount rate has a significant impact on the NPV of the project. Again,
the impact on the NPV under immediate investment is more significant than when the
project is conducted under optimal timing. For example, an increase in discount rate
from 5% to 5.5% reduces the NPV of immediate investment by 71% while it reduced the

NPV under optimal timing of the investment by 32% only. Also, the difference in the
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NPV of the project under optimal timing and for immediate investment becomes more
significant when the discount rate is higher.

Discount rate also has an important impact on the optimal investment time. We find
a positive linear relationship between discount rate and the optimal time to invest. An
increase in the discount rate by 10% results in an increase in the optimal investment
time by 13%. This also illustrated that the optimal timing of the investment becomes
more important for higher discount rates, since it is more valuable to avoid the interest
expense in initial years when investment benefits are still low. With higher discount rates,
the waiting time becomes longer and the difference between the NPV of the project for
investment under optimal timing in comparison to investment at 7" = 0 becomes larger.
We also find that for an assumed discount rate greater than 5.75%, immediate investment

into the project will provide a negative NPV.
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Figure 9: Impact of discount rate. We plot the value obtained when the project is invested
at the optimal time, the value obtained when it is suboptimally invested according to the
NPV rule and the optimal time of investment for a range of discount rate (3% - 9%).

4. Conclusion

In this paper, we have introduced a new modeling framework that allows to analyze
the optimal investment time when evaluating climate change adaptation strategies. In-
vestment into climate change adaptation is potentially one of the most important tasks
in upcoming years and decades, given the imminent prospect of more frequent and se-
vere extreme climate impacted events. With existing budget constraints and uncertainty

about these events, adaptation requires a simple and applicable economic framework



for decision-making, that includes various important aspects of investment into climate

adaptation.

Our model is developed in a continuous time framework and allows for flexible timing of
the initial investment into a climate change adaptation project. In particular, our ap-
proach provides a formula to determine the optimal timing for the adaptation investment.
Using our framework, we illustrate that when the marginal benefit of a deferral of the
investment is higher than the marginal costs, deferring the investment to a later point
in time will increase the NPV of the project. Under these circumstances, deferring the
investment continues to improve the NPV of the project until the marginal cost of the
investment is equal to the marginal benefits. From this point onwards, longer deferral
of the adaptation investment will reduce the NPV of the project such that the optimal
investment time is attained when the marginal benefits are equal to the marginal costs.
We illustrate the framework in a case study on managing catastrophic risks from bushfires
and examine the impact of major factors such as timing of the investment, risk preference,
climatic change, investment costs and discount rates on the net present value of the
project. We find that optimal timing of the investment will significantly increase the net
present value of the considered adaptation project, while immediate investment based
on a simple positive NPV > 0 rule does not maximize the net benefits of the project.
The difference between the NPV of the considered project under optimal timing of the
investment and immediate investment further increases for higher discount rates, higher
investment costs and for lower levels of risk aversion. However, the difference decreases
for a more serious scenario of climatic change that is expected to increase the frequency
of bushfires, what also yields greater benefits for early or immediate adaptation.

We also find that risk preference has a significant impact on the net present value of
the considered adaptation project. The higher the assumed level of risk aversion among
agents, the higher is the corresponding NPV of the considered adaptation investment.
Assuming risk neutrality may therefore result in a significant underestimation of the ac-
tual economic net benefit of a project. However, the reduction in NPV of an adaptation
project caused by ignoring optimal timing of the investment is potentially much larger
than the loss caused by wrong assumptions about risk preference. These results are

important for research prioritization and suggest that optimal timing of an adaptation
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investment is potentially more important than assumptions about risk preference.

We also found that climate change scenarios have an impact on investment decisions,
under both the NPV rule and the model for optimal timing of the investment. Scientific
knowledge improvement that helps reduce the uncertainty in climate change prediction
can therefore make an important contribution towards increasing investment efficiency
and values. When climate change prediction is significantly uncertain, the attitude of a
decision maker towards uncertainty has significant impact on the investment decision. A
decision maker who wants to maintain a reasonable level of risk under the extreme and
less likely scenario of climate change will choose to invest in the project at an earlier time

than a decision maker who considers the most likely scenario of climate change.

In applying the model, we have used expert opinions to estimate parameters of the loss
severity distribution and the impacts of the investment project on catastrophic losses.
These parameters could alternatively be estimated using models developed in previous
studies, when feasible. For example, for the case of flooding, the simulated data on flood
losses obtained from climate Models or vulnerability studies could be used for parameter
estimation. As such, the proposed model can also be applied in a straightforward manner

to enrich existing studies to examine the optimal timing of suggested adaptation measures.

Note that in our analysis we have assumed that the impact of climate change is known
and, as a result, parameters of the assumed Poisson process are deterministic. Although
the uncertainty about climatic change has been partially considered through sensitivity
analysis, a better approach would be to incorporate the impacts of uncertainty directly
in the modeling framework. Future studies could extend the framework to allow the
catastrophic intensity to change stochastically over time and allow new observations on
the climate or catastrophic events to be incorporated into investment decision making.
According to the theory of investment under uncertainty, incorporating future information
into decision making will enhance the value of investment timing. Therefore, when the
model’s parameters are uncertain, it is even more important to consider the value of

investment timing into cost benefit analysis.
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