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A transparent parameterization of the Lee–Carter model

based on “Needed Exposure”

Abstract

An alternate parameterization of the Lee–Carter model is introduced, called the

Transparent Lee–Carter (TLC) model. The TLC model facilitates direct and trans-

parent interpretation of fitted parameters in terms of “needed–exposure” (NE) quan-

tities. The NE is the number required in order to get one expected death and is closely

related to the “needed–to–treat” measure used to communicate risks and benefits of

medical treatments. The TLC model structures time series behaviour in terms of an

overall across–age NE. Age parameters are interpretable as age–specific elasticities:

percentage changes in the NE at a particular age in response to a percent change in

the overall NE. The TLC model is informative, intuitive and simple to apply for both

mortality analysis and forecasting.

Keywords: Mortality, Lee–Carter, needed–exposure, age–response, age–specific

elasticities, needed–to–treat
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1. Introduction

The Lee–Carter (LC) model (Lee and Carter 1992) has become the “leading statistical

model of mortality in the demographic literature” (Deaton and Paxson 2004, p.264).

It has served as a foundation for numerous related models and forecasting methods

(e.g. Booth et al. 2002; Brouhns et al. 2002; Cairns et al. 2011; de Jong and Tickle

2006; Hyndman and Shahid Ullah 2007; Hyndman et al. 2013; Lee and Miller 2001;

Li and Lee 2005; Li 2013; Plat 2009; Renshaw and Haberman 2006). Lee–Carter and

related models are used by demographers, actuaries, statisticians, economists and

others to produce forecasts that inform government decision–making, that enable the

effective operation of insurers, pension funds and financial markets, and that enhance

understanding of mortality risk (e.g. Deng et al. 2012; Hollmann et al. 1999; Janssen

et al. 2013; Li and Hardy 2011; Niu and Melenberg 2014; Stoeldraijer et al. 2013;

Tuljapurkar et al. 2000; Yang and Wang 2013; Zhou et al. 2014). Reviews, including

those by Booth and Tickle (2008), Wong-Fupuy and Haberman (2004), and Cairns

et al. (2008), outline these methodological developments and applications.

Although widely used in forecasting, the LC model is formulated in a way that

hampers interpretation and comparison between populations. The LC model ex-

presses the log–central mortality rate at age x in year t, lnmxt, as a function of age

parameters ax and bx, an underlying time series process kt, and error terms εxt:

lnmxt = ax + bxkt + εxt , x = 0, . . . , p , t = 1, . . . , N . (1)

Here there are p+ 1 ages x and N time periods t of observation. In applications the

age range may start from for example 1 or some other age.

The equations in (1) must be augmented with constraints on the ax, bx and kt to

ensure bx and kt are identified. The usual constraints (Lee and Carter 1992) are∑
x

bx = 1 ,
∑
t

kt = 0 . (2)

These two constraints together with
∑

t εxt = 0 imply the estimated ax is the average

log mortality at age x across time.
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Lee and Carter (1992) used the constraints (2) in conjunction with the singular

value decomposition (SVD) for estimation. They also advocated a second stage ad-

justment whereby kt is re–estimated to equate observed and estimated total deaths

in each year so as to avoid large discrepancies that may result from modeling the

log–rates. Alternative adjustments have been proposed by Booth et al. (2002) and

Lee and Miller (2001). Brouhns et al. (2002) apply the same constraints and avoid

the need for kt adjustments and SVD through direct use of a Poisson model for deaths

fitted by maximum likelihood estimation.

With the constraints (2), kt is interpreted as an index of the level of mortality at

time t, and bx represents the response at age x to changes in the overall level of mor-

tality over time. These constraints imply the kt and bx parameters are interpretable

only in combination with or in relation to other values. For example, while the change

in kt over time reflects the overall change in mortality, the meaning of the value of

kt at a single point in time and the way that different ages have been combined in

its calculation are not made obvious.1 Likewise, a large absolute value of bx indi-

cates that the relevant age group is highly–responsive to changes in overall mortality

levels, but the actual mortality change over time can only be determined by combin-

ing information about bx and the change in kt. The parameter values have meaning

only relative to or in conjunction with other values and a different but equally valid

normalization would result in completely different parameter values.

The Lee–Carter model is usually applied for the purpose of forecasting, and in this

context, the lack of interpretability of the individual parameter values is not generally

of concern. Provided that the time parameter kt is forecast in a way that is invariant

to the chosen normalization, the forecast rates will be appropriate. However, selec-

tion of a normalization that does allow interpretability would bring the advantage of

clarifying the meaning of model parameters, assisting in the appropriate application

of the model for forecasting. More importantly, interpretable Lee–Carter parame-

1The constraints (2) and
∑

x εxt = 0 imply kt is the sum over all ages of the excess of lnmxt over
the average (over time) lnmxt.
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ters would facilitate the potential use of Lee–Carter models to encompass mortality

modeling, analysis and comparison in addition to forecasting.

A further barrier to interpretability of Lee–Carter, and indeed many mortality

indices and models, is that these are often based on measures of the mortality rate or

probability of death. It is well–known that people find probabilities, particularly when

low, difficult to interpret (Camerer and Kunreuther 1989; Kunreuther et al. 2001).

Although demographers are intimately familiar with the use of rates and generally

regard them as the fundamental unit of analysis in their study of mortality (Wilmoth

2000), “even an expert in the mortality field has difficulty interpreting the meaning of

an improvement in the mortality rate” (Pollard 1988, p. 265). It is therefore worth

exploring whether Lee–Carter can be reformulated in terms of alternative mortality

measures that are more intuitive, more readily interpretable and transparent.

In this paper, we propose a reformulation and normalization of the Lee–Carter

model to make its parameters more transparent and interpretable. The Transparent

Lee–Carter (TLC) model based on needed–exposures is introduced in section 2 and

interpreted in section 3. Applications are presented in sections 4 and 5, and are

discussed in section 6.

2. Transparent Lee–Carter (TLC) model parameterization

The reparameterization of the LC model proposed in this paper consists of three

changes. Each change is, in and of itself, trivial. Together they permit more trans-

parent and insightful analysis of the LC output.

The first change is to replace mxt by nxt = 1/mxt. The quantity nxt is the “needed

exposure” (NE) or population size at age x in year t to produce one expected death

aged x. In terms of NE, (1) is

lnnxt = −ax − bxkt − εxt . (3)

The second change is to replace the usual constraints (2) with flexible constraints
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which can be tailored to suit. For any scalars µ and σ 6= 0

−ax − bxkt = −ax − µbx − σ
(
kt − µ
σ

)
bx = αx + βx lnnt , (4)

where

αx = −ax − µbx , βx = σbx , nt = e−(kt−µ)/σ . (5)

Combining the first and second changes results in

lnnxt = αx + βx lnnt + εxt . (6)

The third change is to chose µ and σ in lnnt = (µ−kt)/σ so that nt is interpretable

as an average (across-age) nxt measure. There are a number of possibilities with the

actual choice guided by the aims of the mortality analysis. The choice of µ and σ is

conveniently cast in a weighted least squares framework:

min
µ,σ

∑
x,t

wxt(lnnxt − lnnt)
2 , lnnt =

µ− kt
σ

, (7)

where the wxt ≥ 0 are weights. Since kt is independent of age x the least squares

criterion in (7) reduces to

min
µ,σ

∑
t

wt

{
E(lnnxt)−

µ− kt
σ

}2

, (8)

where E(lnnxt) is the weighted average of the lnnxt at time t using the weights wxt

and wt =
∑

xwxt is the total weight at time t.

The weights wxt determine the emphasis given to the experience at different ages

x and times t in the normalization of the overall nt. The choice of weights is guided

by the purpose of the modeling. Possible choices include:

1. If all wxt = 1 then all time periods and ages are equally important in the

determination of the lnnt and

E(lnnxt) =
1

1 + p

p∑
x=0

lnnxt , t = 1, . . . , N ,

and lnnt is the predicted average lnnxt from a least squares fit of the latter on

kt. That is kt is linearly transformed so it best predicts, in a least squares sense,

the average of lnnxt at each t.
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2. The weights wxt can be exposures at different ages. In this case E(lnnxt) is an

exposure weighted average of the lnnxt and lnnt is the linear prediction of the

exposure weighted average using kt.

3. With exposure weighting and an ageing population the weighted average E(lnnxt)

is increasingly influenced by older ages. A decline in the rate of mortality im-

provement may thus be a consequence of an ageing population rather than

changes in actual mortality. To correct for such confounding the wxt = wx

may be held constant for each t with the wx reflecting a fixed and standard

population with respect to which mortality improvement is measured.

4. In the case where mortality is compared across populations and over time, using

weights wxt from a common “benchmark population” in a single year ensures

differences can be attributed to mortality differentials rather than differences in

weights.

5. The time series lnnt can be tuned to particular ages or periods of time. For

example setting all wxt = 0 except for age x ≥ 65 aligns lnnt to the average

lnnxt at ages 65 and over. If wxt = 0 except for two time points then lnnt is

forced through the weighted average lnnxt at two time points.

The fitted nt, when based on the linear alignment of kt to E(lnnxt), is interpreted

as the NE to get one expected death where the one year mortality is the weighted

geometric mean of the mxt:

nt =
∏
x

1

m̂wxt
xt

, (9)

where the m̂xt are estimates based on the fitted LC model and it is assumed
∑

xwxt =

1 for each t.

The NE (9) is formalised by considering a population with integer wxt ≥ 0 in

age group x. Then the reciprocal of (9) is the probability the whole population dies

within one year and hence (9) is the expected number of populations required to get

one such event. Taking the
∑

xwx root of this number standardises on the population

size and hence (9) is the number of populations required to get one expected complete

population dying out, normalising on the population size.
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Different normalizations of kt, that is choices of µ and σ, will produce different

parameter values but will not affect fitted log-mortalities or – if forecasts of the time

series parameter are based on location–scale preserving models such as the random

walk with drift (Nielsen and Nielsen 2014) – forecast log-mortalities. Further the kt

can be from any estimation method and normalization basis – for example they may

be SVD estimates, Lee–Carter estimates, or Poisson Lee–Carter estimates.

Lee–Carter modeling and forecasting also typically involves fitting time series

models to kt. A usual time series model choice is the random walk with drift:

kt+1 = d+ kt + ηt , (10)

where d is the drift and ηt is zero mean noise. It follows from (10) and (5)

lnnt+1 = −kt+1 − µ
σ

= −d+ kt + ηt − µ
σ

= −d
σ

+ lnnt −
ηt
σ
,

and hence nt is a geometric random walk with drift −d/σ. From (8), −1/σ is the

weighted least squares coefficient when regressing E(lnnxt) on kt. The drift −d/σ

is thus a more cogent index of mortality improvement than d since nt is aligned to

actual mortality experience.

3. Interpreting the parameters of the TLC

A large value of nt indicates low mortality and vice versa while increasing nt indicates

improving mortality, that is, fewer deaths. A linear increase in lnnt indicates a

constant percentage improvement in mortality. In particular if lnnt+1 − lnnt ≈ δ ,

independent of t, then nt is increasing by percentage δ per time period t. In other

words weighted geometric mortality is declining by percentage δ. Note that percentage

increases in nt are equivalent to percentage decreases in weighted geometric average

mortality and vice versa.

From (4) and (5)

n̂xt = eαxnβxt , βx =
d ln(n̂xt)

d ln(nt)
. (11)
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Here n̂xt is the predicted NE at age x in year t, modeled as an age–specific transform

of a common nt where βx is the “elasticity” at age x: percentage change in the NE

at age x and given a one percent change in nt. Any x such that βx > 1 indicates

superior percentage improvement at the given age x while βx < 1 indicates inferior

percentage improvement. Further

d ln(ntn̂xt)

d ln(nt)
= 1 + βx

where ntn̂xt is the required population size in year t to produce one death aged x.

Hence 1 + βx is the percentage change in NE at age x given a one percent change in

NE in year t.2

The actual NE at age x is higher or lower depending on αx, interpreted as an

adjustment factor with αx > 0 indicating NE at age x is higher: that is the mortality

is lower. Using total derivatives

d ln n̂xt = dαx + lnntdβx + βxd lnnt . (12)

This is the percentage change in n̂xt given a unit change in both x and t, that is the

cohort effect. If (12) is positive then increases in mortality due to increasing age are

offset by a secular improvement in overall mortality. The separate percentage changes

with respect to age x and year t are dαx + lnntdβx and βxd lnnt, respectively.

4. Application to United States mortality data

Figure 1 shows estimated parameters of the LC model (1) with the usual constraints

(2), and of the reformulated and normalized TLC model (4) and (5), applied to male

and female United States mortality data. In both cases, estimation of parameters is

by SVD. The data used is from the Human Mortality Database (2016) and comprises

central mortality rates, mxt, and mid-year populations by sex and single years of age

x = 0, 1, . . . , 90 for years 1933 to 2014 inclusive. For the normalization of the TLC

2An actuarial interpretation of nt is the total amount payable per death over the year t to t+ 1
(ignoring interest) if everyone in the population contributes at the rate of $1 p.a. while alive over
the year t to t+ 1 to a “term insurance” fund.
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model, weights in every year are set equal to the United States combined (male and

female) mid-year population in the final year 2014, and a least squares fit is used.

The Lee–Carter kt displays the familiar downward–sloping trend indicating the

general decline in male and female mortality over the period. Although shown here

in the same panel, the male and female parameters are not comparable due to the

fact that they have been independently and arbitrarily scaled. For the same reason,

the actual values of kt do not have a direct and intuitive interpretation.

The lnnt parameter of the reformulated and normalized TLC model shows an

upward–sloping trend, indicating an increase in the exposure required to generate

one expected death, that is, declining overall mortality. In this case the model speci-

fication and normalization ensures that nt does have an straightforward and intuitive

interpretation. For example, the male n2014 = e6.066 = 431 indicates that a population

of 431, spread across all ages, is required to generate one expected death in that year.

Furthermore, the model specification and normalization in conjunction with the use

of a consistent across–age weighting in the normalization of nt ensures that results

are comparable across populations and over time. For example, the increase in male

nt from n1933 = e4.750 = 116 to n2014 = e6.066 = 431 is an interpretable and meaningful

change. The difference in male n2014 = 431 and female n2014 = e6.628 = 756 is a

meaningful measure of the overall male / female mortality differential.

The βx parameter of the TLC model is also meaningful and interpretable: as the

percentage change in the NE at age x in response to a one percent change in the

overall NE. We see here that males aged up to 15 have experienced faster rates of

mortality improvement than the average over the period, as have females aged up to

36. As indicated in (5), the TLC βx and Lee–Carter bx parameters are identical apart

from scaling. However whereas the Lee–Carter bx parameter value is arbitrary and

can be interpreted only relative to other values, the TLC normalization ensures that

the βx parameter has an absolute interpretation.

The αx parameter of the TLC model can be regarded as an adjustment factor

to pitch the NE at the right level, analagous to the intercept in regression models.
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We see here that αx is positive, that is, NE is adjusted up and mortality is lower,

at ages 15 to 51 for males and 12 to 65 for females. The TLC αx parameter has

an interpretation only in combination with other parameter values in contrast to the

LC ax parameter which is interpretable as the average log–mortality over the whole

period at each age x. In the TLC normalization the contraints have been used to

ensure that the lnnt and βx parameters have an absolute meaning whereas in the

Lee–Carter model they have instead been directed to the interpretability of the ax

intercept parameter.
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Fig. 1: Top left panel displays kt of the standard LC model fitted to United States 1933–2014 male
and female mortality. Remaining panels are lnnt (top right), αx (bottom left) and βx (bottom right)
of the TLC model fitted to the same data using a least squares normalization and 2014 combined
mid-year population weights.

5. Cross–country and male / female comparisons using the TLC model

The TLC model is applied to produce cross–country and male / female comparisons

for six countries. Data is from the Human Mortality Database (2016) and comprises

central mortality rates mxt and the United States mid-year population, by sex and

years of age x = 0, 1, . . . , 90. Different time series of data are available for each
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country and the full dataset has been used in each case: Australia (AUS) 1921 to

2011, Canada (CAN) 1921 to 2011, England and Wales (ENW) 1841 to 2013, Japan

(JPN) 1947 to 2012, the Netherlands (NLD) 1850 to 2012 and the United States

(USA) 1933 to 2014. To ensure comparability, the normalization weights for every

country, sex and year combination are set equal to the United States combined 2014

mid-year population, and a least squares fit is used.

Fig. 2 shows the fitted lnnt and βx for males and females for the six countries. For

comparison with lnnt, also shown is the logarithm of the weighted geometric mean

of the actual observed age–specific NEs in each year.

Parameter lnnt shows the expected increase over time for all countries, reflecting

declining mortality over the period. Downward spikes are evident due to the first

and second World Wars, and for England and Wales and the Netherlands in 1918

due to the Spanish influenza epidemic. In the TLC model the absolute value and

slope of lnnt are meaningful indicators of the level and rate of change in mortality.

A regression of lnnt on t over the period since 1947 gives an average growth of 0.019,

0.018, 0.016, 0.030, 0.017 and 0.014 for males and 0.021, 0.021, 0.018, 0.037, 0.018

and 0.015 for females for the six countries. The rapid improvement in Japanese male

and particularly female mortality over the period is apparent. Female mortality has

shown slightly faster improvement than male mortality in all countries for the entire

period, but it is well known that this has reversed in many countries in recent decades

(Glei and Horiuchi 2007; Thorslund et al. 2013).

A comparison of the left and middle panels reveals that nt and the calculated

weighted geometric mean of the observed age–specific nxt are very similar. That is,

normalizing the new model nt to the weighted geometric mean produces a series that

is very similar to the actual calculated weighted geometric mean over all years.

Parameter βx shows a broadly similar pattern across all countries, with the youngest

ages responding the most to the overall decline in mortality, and the oldest ages the

least. This parameter is interpretable as the percentage change in NE at age x in

response to a one percent change in overall NE. In broad terms, ages below around 40
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have been more responsive than average to mortality change (with some exceptions

for males) and ages above 40 have been less responsive than average. For the pur-

poses of this illustration, different periods have been used for each country, limiting

the extent to which conclusions should be drawn from the results. For example, the

countries with the longest time series of data, England and Wales and the Nether-

lands, have the lowest βx at the oldest ages, which is unsurprising given that declines

in mortality at the oldest ages accelerated since 1950 in many industrialized countries

(Kannisto et al. 1994).
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Fig. 2: Calculated logarithm of the weighted geometric mean of observed age–specific NEs (left),
lnnt (middle) and βx (right) for males (top) and females (bottom), for six countries

Comparisons of overall mortality in different populations can be made by tak-

ing the ratio of overall indices such as the weighted geometric mean of age–specific

mortality rates or the direct standardized mortality rate: this is discussed in section

6. The same approach is used here with the normalized nt, which is valid given its

interpretation as an overall mortality measure and the use of equal weights across

populations. Figure 3 shows the ratio of nt in Japan to nt in each country, separately

for males and females. The results therefore indicate the ratio of overall mortality

in each country to that in Japan, with a figure greater than one indicating heavier
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mortality. The rapid improvement in Japanese mortality and the low current levels,

especially for females, are again evident. The deteriorating position of the United

States relative to other developed countries is also clear.

Also shown in Fig. 3 is the mortality sex ratio in each country. This ratio is

calculated as the female nt divided by the male nt, which represents the overall

ratio of male to female mortality. The ratio shows a general increasing trend to a

maximum during 1970 to 2000 followed by a decline. This pattern has been observed

and examined by several authors (Glei and Horiuchi 2007; Thorslund et al. 2013).
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Fig. 3: The ratio of overall mortality in each country to overall mortality in Japan for males (left)
and females (middle), and the ratio of male to female mortality in each country (right), 1947–2010

6. Discussion

The field of mortality forecasting was changed by the publication of the pioneering

Lee–Carter method in 1992 (Lee and Carter 1992). The method was quickly adopted

and extended, and Lee–Carter–based methods have now been dominant for some

time. Among the forecasting advantages are the minimal subjective judgement re-

quired (and the relative accuracy of forecasts compared to those based on methods

incorporating greater judgement), and the production of probabilistic prediction in-

tervals. The fact that the Lee–Carter parameterization is not unique is not an issue

for forecasting. As expressed by Girosi and King (2007): “This is not a conceptual

obstacle; it merely means that the likelihood associated with the model ... has an in-

finite number of equivalent maxima, each of which would produce identical forecasts.
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In practice, we merely pick an arbitrary but consistent parameterization sufficient for

identification” (p. 2). It does, however, mean that parameter values do not on their

own have an inherent meaning and interpretation, and cannot be used to compare

mortality across populations.

Another issue with the interpretability of Lee–Carter, along with other mortality

models, is that it models the logarithm of the mortality rate. Studies have established

that people have difficulties interpreting probabilities (Kunreuther et al. 2001; Reyna

and Brainerd 2008), and have suggested that extremely low probability events are

interpreted as “essentially nil risk” (Stone et al. 1994). The logarithm of small

probabilities is an even more abstract construct. While rates offer many advantages

as demographic measures and are widely used, it would be beneficial to be able to

express them in a more readily and naturally understood form.

In this paper we address both of these aspects of interpretability of the Lee–Carter

model. The proposed model is based on the needed–exposure (NE) measure as a more

interpretable alternative to the mortality rate. The reformulated model is normalized

so that the age and time parameters are meaningful, interpretable and comparable

across populations.

The NE is the reciprocal of the mortality rate and therefore simply reflects the

number of individuals that would need to be alive in a year to generate one expected

death over that year. Interpretation of NEs is intuitive and avoids difficulties associ-

ated with small probabilities. The improvement in overall (between age 0 and age 90)

female United States mortality between 1933 and 2014 can be expressed as either a

reduction in the overall mortality rate from 0.007042 to 0.001322 or, more intuitively,

as an increase in the NE from 142 to 756. Advantages are even more evident at young

ages where mortality rates are very small.

There are other convenient properties associated with the NE. Similar to the

mortality rate, it is meaningful to refer to overall, age–specific and cause–specific NE

measures whereas such variants are not as conveniently defined for other mortality

measures such as the expectation of life. Existing mortality models for the logarithm
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of the mortality rate require minimal adjustment to be based on NEs, since the

logarithm of the mortality rate is the negative logarithm of the NE. Relative mortality

risk measured by the ratio of two rates can be readily reproduced by taking the ratio

of the two NEs with numerator and denominator reversed.

The potential usefulness of the NE measure is consistent with the finding that

risk perceptions are affected by re–expressing the probability of death in terms of the

time interval during which a single death is expected (Weinstein et al. 1996). The NE

is closely tied to the “number needed to treat” (NNT) measure used to communicate

effectiveness of medical treatments. In a trial comparing a new with an existing

treatment, the NNT is the estimated number of patients who would need to receive

the new rather than the existing treatment for one additional patient to benefit, that

is, the reciprocal of the absolute risk reduction (Altman 1998). An NNT of 1 indicates

the ideal situation where all patients improve with the new treatment and none with

the existing treatment, and higher NNTs indicate declining effectiveness of the new

treatment. The NNT, introduced in the late 1980s (Laupacis et al. 1988), has been

found to be an effective tool for communication (Cook and Sackett 1995; Tramèr and

Walder 2005) and is increasingly used (Altman 1998).

After re–expressing the Lee–Carter model in terms of the NE, it is normalized to

ensure interpretability of parameters. This normalization is made possible by first

replacing the Lee–Carter parameter kt by the parameter lnnt. A consequence of this

reformulation is that the parameter nt can now – with appropriate normalization – be

interpreted as a measure of the same type as the age–specific measure being modeled,

a needed–exposure. In the original model the kt parameter is instead related to the

log of the modeled measure. With normalization, nt can be interpreted as an overall

(across–age) combination of the age–specific nxt.

In this paper, we have implemented the normalization by aligning nt with the

weighted geometric mean of the nxt, using least squares regression. This approach

replaces the usual two arbitrary Lee–Carter constraints
∑

x bx = 1 and
∑

t kt = 0. In

both models, the time parameter is an indication of overall mortality in each year, but
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the Lee–Carter kt is related to the age–specific log–mortality rates in a non-intuitive

and indirect way whereas the normalized nt approximates the weighted geometric

mean of the age–specific nxt. Because the NE is the reciprocal of the mortality rate,

this is equivalent to the overall mortality rate approximating the weighted geometric

mean of the age–specific mortality rates.

The (weighted or unweighted) geometric mean is one of a number of measures used

for condensing age–specific mortality rates into a single overall measure (see Hinde

1998, Schoen 1970, Smith 2013 and Wunsch 2012 for a discussion of various indices

and their advantages and disadvantages). It offers a number of advantages in this

context which have been discussed by Schoen (1970). The geometric mean is “the

kind of average . . . which best reflects the nature of the underlying mortality function”

(Schoen 1970, p. 318), namely, exponential. It addresses the shortcoming of the

widely–used direct standardized rate of attaching too much weight to the older ages

(Yerushalmy 1951). Geometric means – or weighted geometric means with common

weights – can be compared across populations. Further, the ratio of two (weighted)

geometric means is a valid and meaningful way to compare overall mortality in two

populations, and the ratios are themselves comparable across populations.

The proposed time parameter nt therefore has a clear interpretation as an overall

mortality measure normalized to the (weighted) geometric mean. Comparisons of nt

parameters across populations are meaningful, and give similar results to direct com-

parisons of calculated (weighted) geometric means, as illustrated in Fig. 2. Relative

mortality in two populations can be calculated as the ratio of the nt parameters, as

illustrated for cross–country and male / female comparisons in Fig. 3.

The βx parameter of the normalized model is also interpretable. It represents the

elasticity at age x: that is, the percentage change in the NE at age x given a one

percent change in the overall NE. As in the original Lee–Carter, it is a measure of the

responsiveness of age–group x to overall time trends in mortality in the population,

but in this case it has a clearly defined value rather than being an index on an

arbitrary scale. A βx less than (greater than) one indicates that age x is less (more)
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responsive than average to overall time trends in mortality in the population. The αx

parameter of the proposed model has a relative interpretation whereas the comparable

Lee–Carter parameter has an absolute interpretation as the across–time average of the

log–mortality rate at age x, as illustrated in Fig. 1. In the proposed model, constraints

have been used to ensure the interpretability of nt and βx, which is considerably more

useful than ensuring interpretability of αx.

7. Conclusion

We have replaced the arbitrary constraints used in the estimation of Lee–Carter pa-

rameters with constraints that ensure that the time and age-response parameters

are meaningful, interpretable, and comparable across populations. Further, we have

recast the model to be based on the needed–exposure as a more interpretable alter-

native to the mortality rate. Forecasts are unchanged but the time and age-response

parameters now have a clear and intuitive definition and can be compared across pop-

ulations. The same approach can be used to confer interpretability on parameters of

many other mortality models. The advances pave the way for widely–used mortality

forecasting models to be used for mortality modeling, analysis and comparison.
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