Space 2.0 views of the high redshift** universe

Karl Glazebrook

CENTRE FOR ASTROPHYSICS AND SUPERCOMPUTING

JWST AUSTRALIAN DATA

Intline

• Weird stuff JWST is finding at high-z (z>5) & it's incredible sensitivity

Science motivations for new space wide field NIR spectroscopic surveys at z>5 (rare objects in the early universe

Thoughts on 'Space 2.0' approaches to this and opportunities for Australia

Numbers of z>10 star forming galaxies

#1

Bouwens+2022

Spectroscopy of super-luminous z>10 galaxies

Bunker et al 2022; Carniani et al 2024

See also: Curtis-Lake+22, Arrabal Haro+23, Harikane+23, Wang+23, Atek+23, Hainline+24

GN - z11:

Originally claimed via HST Lyman break (Oesch et al 2016)

 $z_{spec} = 10.60$ M_{UV} ~ -21.5 radius ≈ 100pc $M^* \sim 10^{8.7} M_{\odot}$ SFR ~ 25 M_☉ yr⁻¹

JADES-GS-z14.0: current record holder

Originally disfavoured by the JADES team as it's 0.4 arcsec from a foreground z~3.5 galaxy, but perseverance paid off!

 $z_{spec} = 14.32$ M_{UV} ~ -20.81 radius ≈ 200pc M* ~ 10^{8.7} M_☉ SFR ~ 20 M_☉ yr⁻¹

Spectroscopy of super-luminous z>10 galaxies

Bunker et al 2022; Carniani et al 2024

See also: Curtis-Lake+22, Arrabal Haro+23, Harikane+23, Wang+23, Atek+23, Hainline+24

Key questions:

What are their abundance? (Need > handfuls)

What are their stellar masses? (Need mid-IR ~20µm photometry)

What is their dark matter halo masses (need clustering thousands of galaxies)

What's going on?

The discovery of four spectroscopically-confirmed z>10 super-luminous galaxies in such small cosmic volumes is a tantalising indication that **new time-specific physical** processes are responsible, perhaps related to the onset of cosmic dawn

Many explanations!

- ejected dust?
- (Ferrara+23)
- ineffective feedback? (Dekel+23)
- biased detection via bursty SF?
- (Shen+23,24, Gelli+24,Kravtsov+24)
- Very massive stars? (Harikane+23, Menon+24, Schaerer+24))

Massive optically dark SFGs

Xiao+2024 (FRESCO slitless survey)

Need 50% baryons→stars

Karl Glazebrook, SUT

A massive old galaxy at z=3.2 #3

Glazebrook et al. 2024: "Forms at z~11, no **ACDM** halos exist to host it even if 100% of **baryons**→**stars**" (paraphrasing myself...)

Pushing standard models to the limits...

- with near-perfect efficiency.'
- galaxies at later times'

• Carnall et al. 2024: 'However, these objects roughly align with the most massive galaxies expected under the assumption of 100 per cent conversion of baryons'

• De Graaff et al. 2024: '...implies a high efficiency of star formation of ϵ >0.2, and the low-metallicity model even suggests that the galaxy is converting baryons to stars

Turner e t al.2024: 'The inferred SFH is consistent with a high stellar fraction f* ~100% at z=7–12 implying an extremely high integrated star-formation efficiency'

• Xiao et al. 2024: 'would require, on average, about 50% of the baryons in their halos to be converted into stars-two to three times higher than even the most efficient

Another surprise: Little Red Dots - Dust-obscured AGN?

Matthee et al (2023): H α -selected sample at 4.2<z<5 finds majority are compact "**little red dots**" with broad lines (1200-3700 km s⁻¹) suggesting a hitherto unknown population of dust-attenuated AGN. Broad H α component is consistent with fraction of flux in point source

Greene et al (2023): Spectra of 17 compact red sources finds 11 broad line AGN with 4.5<z<8.5 (60%). Adopting **red optical + blue UV colour selection** yields 80% success rate for locating AGN.

BUT! Williams et al (2023), Pérez-González et al (2024) claim a dusty AGN hypothesis overpredicts MIRI data and SED is more consistent with an old stellar population. Such systems would have high stellar masses ~ 10^{11} M_o NIRCam $2-4\mu$ m colour images

NIRCam $3-5\mu$ m slitless grism H α

 $\beta_{\text{opt}} = +1$

 $\beta_{\rm UV} = -2$

Lensed LRD µ~3 r<30pc – no host galaxy? Furtak et al(2023)

[Slide by Richard Ellis, IAU 2024]

Little Red Dots - Dust-obscured AGN?

Figure 8. The UV luminosity function of our sample measured at rest-frame 1450Å in two redshift bins: 4.5 < z < 6.5 (*left*) and 6.5 < z < 8.5(right). We find good agreement with previous photometric and spectroscopic compilations of LRDs (Matthee et al. 2023; Greene et al. 2023; Kokorev et al. 2024). We find LRDs are ~ 4 and ~ 10 times more numerous at $M_{\rm UV} = -19$ than X-ray AGN at $z \sim 5$ (Parsa et al. 2018) and UV-selected AGN at $z \sim 7$ (Kulkarni et al. 2019), respectively. We also note fair agreement with the model predictions of Li et al. (2023).

More exotic models...

The Excess of JWST Bright Galaxies: a Possible Origin in the Ground State of Dynamical Dark Energy in the light of DESI 2024 Data

N. MENCI¹, A. A. SEN², M. CASTELLANO^{11,2}

of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **533**, 3923–3936 (2024) Advance Access publication 2024 September 13

https://doi.org/10.1093/mnras/stae1932

Early galaxies and early dark energy: a unified solution to the hubble tension and puzzles of massive bright galaxies revealed by *JWST*

Xuejian Shen[®],¹* Mark Vogelsberger[®],^{1,2} Michael Boylan-Kolchin[®],³ Sandro Tacchella^{®4,5} and Rohan P. Naidu¹[†]

A smooth filament origin for prolate galaxies "going bananas" in deep JWST images.

Alvaro Pozo,¹ Tom Broadhurst,^{2,1,3} Razieh Emami,⁴ Philip Mocz,^{5,6} Mark Vogelsberger,⁷ Lars Hernquist,⁴ Christopher J. Conselice,⁸ Hoang Nhan Luu,¹ George F. Smoot,^{1,9,10,11} and Rogier Windhorst¹²

¹Donostia International Physics Center (DIPC), Basque Country UPV/EHU San Sebastian, E-48080, Spain ²Department of Physics, University of Basque Country UPV/EHU, Bilbao, Spain

³Ikerbasque, Basque Foundation for Science, Bilbao, E-48011, Spain

⁴Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

⁵Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ, 08544, USA

⁶Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave., New York, NY, 10010, USA

⁷Dept. of Physics, Kavli Institute for Astrophysics & Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

⁸ Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester, UK

⁹Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong

¹⁰ Paris Centre for Cosmological Physics, APC, AstroParticule et Cosmologie, Universit 'e de Paris, CNRS/IN2P3, CEA/lrfu, 10,

rue Alice Domon et Leonie Duquet, 75205 Paris CEDEX 13, France emeritus

¹¹Physics Department, University of California at Berkeley, CA 94720, Emeritus

¹²School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA

ABSTRACT

We compare the abundant prolate shaped galaxies reported in deep JWST surveys, with the predicted *stellar* appearance of young galaxies in detailed hydro-simulations of three main dark matter contenders: Cold (CDM), Wave/Fuzzy (ψ DM) and Warm Dark Matter (WDM). The observed galaxy images closely recemble the clongeted stellar appearance of young galaxies predicted by ψ DM and

THE ASTROPHYSICAL JOURNAL LETTERS, 937:L30 (7pp), 2022 October 1 © 2022. The Author(s). Published by the American Astronomical Society. https://doi.org/10.3847/2041-8213/ac927f

Accelerating Early Massive Galaxy Formation with Primordial Black Holes

Boyuan Liu^{1,2}⁽¹⁾ and Volker Bromm¹⁽¹⁾

¹ Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; boyuan@utexas.edu ² Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK *Received 2022 August 28; revised 2022 September 13; accepted 2022 September 16; published 2022 September 27*

Observations of Galaxies at $z \gtrsim 10$ Allow to Test Cosmological Models with Features in the Initial Power Spectrum

S. V. Pilipenko,^{1,*} S. A.Drozdov,¹ M. V.Tkachev,¹ A. G. Doroshkevich^{1,2}

¹P.N. Lebedev Physical Institute, Astro Space Center, Moscow, 117997 Russia ²National research centre Kurchatov institute, Moscow, Russia

The initial power spectrum of density perturbations, generated during the inflationary epoch, is now constrained by observations on scales $\lambda > 5$ Mpc and has a power-law form. The peculiarities of the inflationary process can lead to the appearance of non-power-law contributions to this spectrum, such as peaks. The exact size and shape of the peak cannot

New galaxy UV luminosity constraints on warm dark matter from JWST

BIN LIU¹, HUANYUAN SHAN^{1,2,3} AND JIAJUN ZHANG^{1,2,3}

¹Shanghai Astronomical Observatory, Chinese Academy of Sciences, Nandan Road 80, Shanghai 200030, China ²School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China ³Key Laboratory of Radio Astronomy and Technology, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing, 100101, P. R. China

ABSTRACT

We exploit the recent James Webb Space Telescope (JWST) determination of galaxy UV luminosity functions over the redshift range z = 9 - 14.5 to derive constraints on warm dark matter (WDM) models. The delayed structure formation in WDM universe

Can Early Dark Energy be Probed by the High-Redshift Galaxy Abundance?

Liu, Weiyang,^{1,2}* Zhan, Hu,^{1,3} Gong, Yan,^{1,2} and Wang, Xin^{1,2}

¹Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100101, China P.R.
²School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing, 100049, China P.R.
³The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, 100871, China P.R.

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

The Hubble tension and σ_8 tension are two of the major issues of the standard Λ Cold Dark Matter (Λ CDM) model. The analysis of the Cosmic Microwave Background (CMB) data acquired by the Atacama Cosmology Telescope (ACT) and the large-scale

Warm dark matter constraints from the JWST

Pratika Dayal^{⁰1*} and Sambit K. Giri^{⁰2}

¹Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands ²Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg, 12, SE-10601 Stockholm, Swed

²Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-10691 Stockholm, Sweden

CENTRE FOR ASTROPHYSICS AND SUPERCOMPUTING

Common themes

- Rare populations (per arcmin²) either forming or appearing at z>5
- Big uncertanties about stellar mass, dark matter content and halo abundances
- JWST samples are at most 'tens of spectra'
- JWST spectra are amazing

Always expected

Fig. 9-3

Typical "dark time" visible and infrared background emission for a ground-based telescope as measured at Mauna Kea (Hawaii). An estimate of the background for a cryogenically cooled telescope at L2 is shown for comparison (After Gillet and Mountain 1998)

JWST spectra: R=100–400

Castellano et al. 2024: z~12 LBG

wan mound when the second water and the second water and the second seco

4.0

Wavelength (μ m)

3.5

5.0

4.5

O Ammunity Multin mount

3.0

4×10⁻²⁰⊢

2×10⁻²⁰

D

Ľ,

Observed-frame Wavelength / $\mu \rm{m}$

Highlight 3 – Chemical Evolution

GHz2: z=12.34 mildly lensed μ =1.3 NIRSpec prism 15 ksec exposure Strong CIV, no [Ne V] AGN unlikely; dense gas

GHz2 z=12.3 (above):

GN-z11 z=10.6 (atypical case): $M^* \sim 5.10^8 M_{\odot}$, SFR ~ 35 $M_{\odot} \text{ yr}^{-1}$ Z_{gas}~10% solar

Curtis-Lake et al z>10 sample: M* ~ 1-4. 10⁸ M_{\odot}, SFR ~ 10-150 M_{\odot} yr⁻¹ Z_{gas}~1-4% solar

JWST has opened up the prospects of tracing evolution of the gas-phase metallicity.

M* ~ 5. 10₈ M_☉, SFR ~ 5 M_☉ yr-1 Z_{das}~3-7% solar

Castellano et al 2024 [Slide by Richard Ellis, IAU 2024]

Clustering

Tanaka et al. 2024 z=4.01 protocluster in SXDS field 5 QGs within 1 pMpc

Karl Glazebrook, SUT

Halo mass > 1E13 Msun from QG stellar mass

Comparison with TNG300: no such structure or close pairs at z=4.01

Clustering and Dark Halo Mass

Magliocchetti et al. 2023 3<z<5 mean log M* ~ 10.4

r₀ ~ **12 Mpc**

Karl Glazebrook, SUT

CENTRE FOR ASTROPHYSICS AND SUPERCOMPUTING

Wide field photo-z surveys

Karl Glazebrook, SUT

The growth of baryons in the cosmic DM web

SIMULATIONS for the JWST OutThere 1<z<4 redshift survey (~50,000 objects)

Wide field space spectroscopy

Rare populations need wide field targeting and clustering measures: probe dark matter halos in early universe (new physics?)

Smaller mirror wider field could have same $A\Omega$ as JWST: but many more examples of rare objects per shot ~ 1000 deg⁻²

Euclid – 1m mirror, 0.7 deg FOV 600M EUR mission

JWST NIRSPEC

Field of View

250,000 100µm x 200µm 'Micro Shutter Array'

- A 1m telescope with a 20 arcmin FOV ≈ 6.5m telescope with 3 arcmin FOV
- Say 1m (0.6 arcs PSF at $3\mu m$) with f/15 would give the same physical size focal plane (~7cm) as MSA for 20 arcmin
- Fast beams (e.g. f/5) would result in a very compact focal plane (0.3 arcsec= $10\mu m$)
- Plenty of input imaging (Euclid/Roman NIR surveys)

Design thoughts

- 1–2m telescopes, proven heritage ground/space
- Slits ~500x more sensitive than slitless, and much cleaner data
- Space X claims 100 kg to LEO for several million \$.
- c.f. Euclid (~2000 kg, 1.2m f/20.4) Space X charged \$70M (Falcon 9 launch)
- What about slit technology?

Product Index

Image shown is a repres specifications should be data sheet

Product Attribu

- 12º mirror tilt
- Would need 4x4 array
- Space?
- Matched detector would be 4096x4096

(ey	Enter keyword or part #		📜 土 Upload a List		Login or REGISTER ~	
	Products ~ Manufacturers ~	Resources ~ Request a Quote			FREE SHIPPING on Orders over	r \$6
egrated Circuits (ICs	s) > Specialized ICs > Texas Instrume	ents DLP7000BFLP			Dark Mo	de
	DLP7000BFLP			In-Stock: 13 Can ship immediately QUANTITY Add to List Add to C All prices are in AUD		
	DigiKey Part Number	296-46487-ND				
	Manufacturer	Texas Instruments				
	Manufacturer Product Number	DLP7000BFLP				
	Description	IC DIG MICROMIRROR DEV 203LCCC				
	Manufacturer Standard Lead Time	18 Weeks				
entation only. Exact obtained from the product	Customer Reference					
	Detailed Description	Digital Micromirror Device (DMD) 203-LC (40.64x31.75)	gital Micromirror Device (DMD) 203-LCCC Tray			
	Datasheet	por Datasheet		QUANTITY	UNIT PRICE	
	EDA/CAD Models	DLP7000BFLP Models		1	\$2,305.22000	
				Manufact	urers Standard Package	
tes				Note: Due to Di change when p standard packa	igiKey value-add services the packaging product is purchased at quantities benea age.	typ ath 1
TYPE	DESCRIPTION	SI		Unit Price withou	nt GST: \$2,305.22000	
Category	Integrated Circuits (ICs) Specialized ICs		() ()	Unit Price with G	\$1: \$2,535.74200 (?)	

1024x768 device 13µm pitch

Final thoughts

- Space 2.0 launch often and break things. **Budget for several missions!**
- Could start small?
- A lot of the key discoveries of JWST only needed < 1 hour spectroscopic exposures!
- Wide field: NIR slit spectroscopy is my favourite idea – test early formation of galaxies in DM halos, and exotic DM models.
- Tons of other applications in galaxy evolution/cosmology.
- Test DMD in space (or other novel slit tech) would be the first step.

