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Outline

■ Background on the human microbiome and its role in obesity

■ Weight loss intervention 
– DRIFT2: Daily caloric Restriction (DCR) versus Intermittent Fasting (IMF) trial 

■ Changes in gut microbiota (GM) during the first three months of the intervention

■ Gut microbiota and weight loss outcomes

■ Current / future work

vs.



What is the human microbiome?

■ Definitions
– Probiotics: Live beneficial or “healthy” bacteria/microorganisms
– Microbiota: Community of commensal, symbiotic and pathogenic 

microorganisms that live in & on the body 
– Microbiome: the combination of these microbes, their genomes, 

and their interactions with the environment
■ Bacteria, archaea, fungi and viruses

■ Different regions of the body all have characteristic microbiota
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Human microbiome

■ Hot topic in research
– Advances in DNA sequencing techniques
– Research connects disparate fields
– Human microbiome is changing
★ Potential for disease prevention 

and/or treatment

Diet

Medications

Early life 
exposuresDelivery mode 

Exposure to 
environment



Disease Treatment / Prevention 
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Disease Treatment / Prevention 
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Gut microbiome & obesity
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Source: Turnbaugh, 2009, Nature 457.7228: 480; Ridaura, 2013, Science 341.6150; Davie, 2014, Feel Better Already! Microbiome Health.
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**Unhealthy diet

Diet interacts with gut microbiota in relation to obesity
→ Two individuals may have a similar diet, but one may be more/less prone to obesity due to differences in gut microbiota
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Gut microbiome & obesity

What mechanisms link microbes to obesity?

§ Influence energy extraction / nutrient absorption (Jumpertz, 2011)

§ Effects on inflammatory pathways through interactions with 
immune system or effects on gut permeability which drives 
systemic inflammation (Janssen , 2015; Gauffin, 2012)

§ Metabolites that affect metabolic system –
short chain fatty acids/bile acids (Janssen , 2015)

Mechanisms



How do you lose weight?
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Daily caloric Restriction vs Intermittent Fasting Trial

Baseline 3-months 6-months 12-months

Randomization

IMF

DCR

Intervention

18-months

Follow-up

5 recruitment 
cohorts over 

6 years

Epigenetic and microbiome responses to a weight loss intervention
AHA innovative project: First two cohorts @ baseline and 3 months;  N~70

DRIFT2



DCR and IMF

DCR
■ Daily reduction of caloric intake by ~30%

IMF
■ Fasting on 3 non-consecutive days/week, reduction of caloric 

intake to ~25% of weight maintenance requirements
àweekly deficit of ~30%

■ Every other day fasting; Time restricted feeding, etc.



Drift2 Study Goals

DRIFT2 is a comprehensive group-based behavioral intervention
– Powered to establish non-inferiority of IMF compared to DCR
– Clinician bias against skipping meals during weight loss
■ Shift clinician perspective in order to offer a broader range 

of options for people who want to lose weight



Response to intermittent fasting 
involves:
• Effects similar to those of 

regular aerobic exercise
• Impacts glucose and lipid 

metabolism, inflammation
• Enhances stress resistance
• Possible benefits in terms of 

satiety & appetite regulation
Ø Benefits of IMF are hard to 

separate from benefits of 
caloric restriction 
generally or weight loss

De Cabo, N Engl J Med 2019;381:2541-51.
Di Francesco et al. Science 2018;362:770-775



IMF & Gut microbiota
■ Effects of fasting that may impact the gut microbiota

– Changes in acetic acid (↑), secondary bile acids (↑), gut pH (↑)
– Fasting animals produce less mucus on gut lining, return to 

feeding increases mucus lining
– Reduction in size of intestines à housing crisis
Ø Alter diversity
Ø Growth of different types of microorganisms

■ Fasting may lead to metabolic improvements through changes in 
adipose tissue composition

– These changes may be mediated by the gut microbiota

Kohl, 2014; Patterson,  2017; Thompson, 2006; Banas, 1988; Sonnenburg, 2005; Martens, 2008; Hooper, 2001; Marcobal, 2013; Ward, 1987; Palframan, 2002; Karasov, 2004

Li et al., 2017, Cell Metabolism 26, 672–685



Research aims
■ Understand changes in gut microbiota during the first three months of the 

intervention

■ Examine associations between gut microbiota and clinical measures
– Weight, waist circumference (baseline and 3 months)
– MetS score – metabolic syndrome score (baseline)
■ Triglycerides, glucose, HDL cholesterol, waist circumference, blood pressure

■ Preliminarily examine differences in these relationships by DCR vs IMF



Assessed for eligibility (n=86)

Excluded (n=15)
• Screen fail (n=6)
• Withdrew (n=9)

Analysed (n=47 samples from 25 individuals)
• Baseline (n=25)
• 3-month (n=22)
• Both baseline and 3-month (n=22)
Excluded from analysis due to low sequencing 
quality (n=2 3-month)

Lost to follow-up (n=9)
• Discontinued intervention (n=3)
• No stool samples provided (n=6)

Allocated to DCR (n=34)
• Received allocated intervention (n=34)
• Did not receive allocated intervention (n= 0)

Lost to follow-up (n=3)
• Discontinued intervention (n=0)
• No stool samples provided (n=3)

Allocated to IMF (n=37)
• Received allocated intervention (n=37)
• Did not receive allocated intervention (n=0)

Analysed (n=64 samples from 34 individuals)
• Baseline (n=31)
• 3-month (n=33)
• Both baseline and 3-month (n=30)

Excluded from analysis due to low sequencing 
quality (n=3 baseline)

Allocation

Analysis

Follow-Up

Randomized (n=71)

Enrollment



Cohort
Overall DCR IMF p-value

N 59 25 34

Age	(mean	(SD)) 40.7	(9.8) 42.0	(10.4) 39.8	(9.3) 0.384

Female	sex	(%) 45	(76.3) 18	(	72.0) 27	(79.4) 0.725

Race	(%) >0.99

White 53	(89.8) 22	(	88.0) 31	(91.2)

Black	or	African	American 4	(	6.8) 2	(	8.0) 2	(	5.9)

Asian 2	(	3.4) 1	(	4.0) 1	(	2.9)

Hispanic	ethnicity	(%) 10	(16.9) 6	(	24.0) 4	(11.8) 0.297

Stool	collection

Stool	at	baseline	(%) 56	(94.9) 25	(100.0) 31	(91.2) 0.355

Stool	at	3	months	(%) 55	(93.2) 22	(	88.0) 33	(97.1) 0.399

Stool	at	both	times	(%) 52	(88.1) 22	(	88.0) 30	(88.2) >0.99



Follow-up measures at 3 months

60% of participants 
had lost a clinically 
significant (5%) 
amount of weight at 3 
months

Stanislawski et al. Nutrients 13.9, 2021.



Methods

■ GM sample processing
– 16S rRNA gene sequencing V3V4 region
– DADA2 run (default parameters) for denoising & finding sequence abundances 
– SEPP insertion tree using Silva 12.8

■ Alpha diversity: Linear mixed models
■ Overall composition: Permutational ANOVA (longitudinal - PermanovaFL, adonis); MiRKAT
■ Taxa

– Change in taxa during intervention: analysis of composition of microbiomes 
(ANCOM)

– Taxa predictive of change in clinical outcomes: variable selection using random 
forests (VSURF)

■ Covariates: age, sex, time, intervention group, evaluated time * intervention
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Change in gut microbiota

p<0.001

Stanislawski et al. Nutrients 13.9, 2021.



Similar overall changes in DCR vs IMF

Stanislawski et al. Nutrients 13.9, 2021.



Change in gut microbiota taxa
Consistent findings with prior 
weight loss literature
• Increased abundance of 

Bacteroides in hypocaloric weight-
loss diets and of Alistipes following 
surgical weight loss interventions

• Higher baseline Alistipes
abundance correlated with greater 
success in long-term weight-loss 
maintenance following a 
diet/lifestyle intervention 

• Reduction in Collinsella abundance 
observed during a hypocaloric 
weight loss program in type 2 
diabetics with obesity and in a 
reduced carbohydrate intervention 
of overweight men

Nadal, I. Int. J. Obes. 2008; Santacruz, A. Obesity 2009; Simões, C.D. 
Eur. J. Nutr. 2014; Louis, S. PLoS ONE 2016; 
Frost, F. PLoS ONE 2019; Walker, A. ISME J. 2011; Seganfredo, F.B. 
Obes. Rev. 2017.

Stanislawski et al. Nutrients 13.9, 2021.



Akkermansia increases in IMF 
• Akkermansia Muciniphila is most common 

species in this genus
• Mucin-degrading bacterium causally 

linked in animal models to lowering 
body fat mass, improving glucose 
homoeostasis, decreasing adipose 
tissue inflammation and increasing gut 
integrity, as well as cardiometabolic 
improvements during dietary energy 
restriction (Dao et al., 2016; Everard et al., 2013; Shin 
et al., 2014)

• Akkermansia important producer of acetate
• Linked to microbiota-mediated  

cardiometabolic improvements during 
IMF in animal models (Li et al., 2017)

Stanislawski et al. Nutrients 13.9, 2021.



Association with clinical measures

Cross-sectional associations between gut 
microbiota composition and clinical measures

Associations with change in clinical 
measures

Stanislawski et al. Nutrients 13.9, 2021.



Less 
weight 

loss

Greater 
weight 

loss

Less waist 
circumference  

loss

Greater waist 
circumference  

loss

• Subdoligranulum has only one species, S. variabile, which was predictive of greater improvements in insulin 
sensitivity during an FMT intervention study from lean donors to men with metabolic syndrome

• Higher baseline levels of Coriobacteriaceae were also identified as contributing towards the beneficial effects of 
Roux-en-Y gastric bypass among people with type 2 diabetes

• Slackia may help to increase the bioavailability of polyphenols, with possible benefits for cardiometabolic health 

Taxa predictive of clinical outcomes



Conclusions
■ During the first three months of a lifestyle weight loss intervention involving an 

energy restricted diet and increased physical activity
– Gut microbiota of participants changed significantly
– Baseline gut microbiota composition – and change in composition from 

baseline to 3 months - were predictive of change in waist circumference at 
three months

– Numerous bacterial taxa (at baseline and their change) were associated with 
improvements in weight and waist circumference measures

■ Growing body of literature demonstrates that gut microbiota play an important role 
in body weight regulation and may contribute towards responsiveness during a 
weight loss intervention

■ Critical area for further research because gut microbiota profiles are alterable 
through various means, such as probiotics/prebiotics, personalized dietary changes 
or targeting gut microbiota pathways and metabolites

Kunnackal John et al., 2018; Zeevi et al., 2015; Joyce and Gahan, 2016



Related Work

A network of multiomic relationships 
informed predictive models for change 
in 10 clinical measures. The models 
identified specific DNA methylation 
sites, gut microbes, and metabolites 
that were predictive of variability in 
weight loss, waist circumference, and 
circulating triglycerides and that are 
biologically relevant to obesity and 
metabolic pathways.

Siebert, Janet C., et al. "Multiomic Predictors of 
Short-Term Weight Loss and Clinical Outcomes 
During a Behavioral-Based Weight Loss 
Intervention." Obesity 29.5 (2021): 859-869.



Epigenetic / Gut microbiota

■ Interplay between epigenetics and gut microbiota virtually unknown in any disease 
context

– Evidence that epigenetics can influence the gut microbiota 
– Gut microbiota or related metabolites may elicit changes in DNA methylation 



Current Work

■ Relationships among diet, gut microbiota taxa and DNA 
methylation

– Numerous associations between gut microbes and 
CPGs

– No significant associations with dietary food groups or a 
targeted panel of CVD-associated metabolites

Hill E, Konigsberg, I, et al. In Preparation for Nutrients.



Current/Future Work

■ Microbiota for all participants & all timepoints
– Baseline, 3, 6, 12 months & 6 months post-intervention
– 16S rRNA + shotgun metagenomic sequencing of subset
– What drives changes in microbiota? How do microbiota relate to 

outcomes?
– Weight loss maintenance

■ Metabolomics
– Metabolites may mediate GM effects on weight loss

■ Genetics
– Does genetic propensity for obesity impact weight loss success?
– Genetic relationships with GM/metabolites



Aims

■ Understand changes and patterns in longitudinal 
microbiome/metabolomic data: baseline, 3, 6, 12 & 18 months
– Assess effects of intervention, diet, physical activity
– Evaluate longitudinal association with outcomes

■ Mediation analysis
– Microbiome as mediator of intervention effects
– Microbial metabolites as mediators of intervention effects



Methodological Issues

■ Challenges of microbiome data
– High-dimensional
– Compositional
– Phylogenetic tree structure
– Sparse
– Often non-normally distributed
– Often have large portion of zero values à skewed
– Heteroscedastic and overdispersed
– Microbes can play a lot of roles (exposure, mediator, outcome)



Methodological Issues

■ Challenges of microbiome data
– High-dimensional
– Compositional
– Phylogenetic trees structure
– Sparse
– Often non-normally distributed
– Often have large portion of zero values à skewed
– Heteroscedastic and overdispersed
– Microbes can play a lot of roles (exposure, mediator, outcome)

■ Many tools and methods addressing these issues are not designed for 
longitudinal data



Methodological Approaches

■ Understand changes and patterns in longitudinal microbiome data: 
baseline, 3, 6, 12 & 18 months

– Assess effects of intervention, diet, physical activity
■ Microbial Trend Analysis (Wang, Huilin Li)
■ Identifies dominant taxa contributing to common trends; a microbial trend group 

differential test to confirm the statistical significance of group comparison and 
identify key taxa contributing to the group differential trend; a distance-based 
classification algorithm to assign a group label to a given subject

■ Integrates spline-based method for time-course data analysis with principal 
component analysis for dimension reduction. Matrix decomposition and lasso 
technique used to address high-dimensionality, and graph Laplacian penalty 
additionally used to incorporate phylogenetic tree structure.

Wang, et al. BMC genomics 22 (2021): 1-16.



Methodological Approaches

■ Understand longitudinal association of microbiome/metabolites with 
outcomes

– Correlated sequence kernel association test (Zhan, Jun Chen) 
■ Detect longitudinal association of overall microbiome with outcomes using a 

linear mixed model approach with small sample correction (recalibrate the null 
distribution)

– Adaptive Microbiome Association Test (Banerjee, Xiang Zhan) – feature 
selection and association testing
■ Distance correlation learning followed by data-adaptive association test under 

flexible generalized linear model framework

Zhan, et al. Genetic epidemiology 42.8 (2018): 772-782;
Banerjee, et al. NAR Genomics and Bioinformatics 4.1 (2022): lqab120.  



Methodological Approaches

■ Mediation analysis
– SparseMCMM – counterfactual approach (Wang, Huilin Li) uses linear log-contrast 

regression models and Dirichlet regression models to: identify key causal microbes 
using regularization; incorporate control variables; assess treatment-mediator 
interactions; evaluate the overall and taxon-level effects; account for the 
compositional nature of microbiota data
■ Not currently designed for longitudinal data - authors plan to extend w/  microbial 

dynamic system modelling
– LDM-Med - Linear Decomposition Model mediation approach based on inverse 

regression (Yue, Hu)

■ Understand relationship between genetics / microbiome / 
metabolomics

– Dual dual kernel based association (Zhan, Wu)
Wang, et al. Bioinformatics 36.2 (2020): 347-355.
Yue and Hu. Bioinformatics 38.12 (2022): 3173-3180. 
Zhan, Xiang, et al. Genetics 206.4 (2017): 1779-1790.
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