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Abstract

This manuscript addresses the quantification of effects from an extreme outcome in

an explanatory variable on a dependent variable. The effect is approximated with the so-

called asymptotic elasticity of a conditional quantile function, linking the dependent and

explanatory variable. A closed form expression for this asymptotic elasticity is presented

which is independent of the exact relation between explanatory and dependent variable.

By interpreting the asymptotic elasticity as a spill-over measure for tail-risk, we detect

statistically significant effects from Lehman Brothers to other financial institutions during

the subprime mortgage crisis before Lehman Brothers was obviously in distress. Likewise,

the effect from a credit default in case of Greece on the solvency of countries within the

Euro-area is briefly studied.
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1. Introduction

The subprime mortgage crisis of 2007-2008 has revealed the need to appropriately model

and measure interconnectedness between financial institutions. Recent research on systemic

risk illustrates that increased connectivity among financial institutions causes additional risk

through a complex and time-varying network of relationships, see, e.g., Billio, Getmansky,

Lo, and Pelizzon (2012); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015). As a result, risk

managers have a strong interest in the risk transmitted to their institution from other insti-

tutions, as it happened, for example, during the global financial crisis. This additional risk

exposure is typically characterized by high uncertainty and is difficult to control, since it orig-

inates in the failure or distress of related financial institutions. Moreover, policy makers and

regulators aim at identifying risk factors that will enable them to react to situations of market

stress in a suitable manner. Thus, following recent crises in financial markets many concepts

for quantifying the transmission of risks and measuring systemic risk have been proposed in

the literature, see, e.g., Brunnermeier and Oehmke (2013) for a summary of the empirical

literature, Bisias, Flood, Lo, and Valavanis (2012) for a survey on quantitative approaches

to the measurement of systemic risk, and Benoit, Colliard, Hurlin, and Pérignon (2017) for a

comprehensive structural review of the extensive literature.

Particular interest lies in addressing questions such as: “How is a financial institution affected

by a bad outcome or extreme event related to another financial institution?”. The likelihood

and magnitude of such an extreme event can be quantified by knowing the tail of the dis-

tribution of the corresponding risk factor. Likewise, the stability or fragility of an affected

institution can be assessed by examining the tail of its own risk factor distribution. Thus, a

conditional quantile linking the tails of both distributions is a natural candidate to describe

how the tail-risk of one risk factor depends on the tail-risk of another risk factor.

Conditional quantiles have become a standard tool for modeling the tail-risk of a dependent

variable through the tail-risk of an explanatory variable, see, e.g., the seminal paper of Adrian

and Brunnermeier (2016) as well as the references therein. The authors propose the ∆ CoVaR

measure which is the difference between the conditional quantile given that the explanatory
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variable is at its Value at Risk (VaR) and the conditional quantile given that the explanatory

variable is at its median. The literature, yet, offers a wide range of approaches for mea-

suring the corresponding spill-over from tail-risks. For example, a number of studies utilize

the marginal effect of a function linking dependent and explanatory variables as a spill-over

measure for tail-risk, see, e.g., Hautsch, Schaumburg, and Schienle (2015); Härdle, Wang, and

Yu (2016); Betz, Hautsch, Peltonen, and Schienle (2016).

Extending the ideas of the above-mentioned studies, we propose the use of the normalized

derivative of a conditional quantile with respect to its explanatory variable as a spill-over

measure, that is a well-known concept in economics referred to as elasticity. Compared to

elasticities, plain marginal effects do not allow categorizing a spill-over effect as weak or strong

which follows from the fact that marginal effects have no reference value for comparison. An

elasticity, however, measures the magnitude of a function’s responsiveness and has a simple

interpretation due to its natural reference value, e.g., see Sydsæter and Hammond (1995).

To quantify effects from an extreme event, e.g., a drastic drop in the share price of a com-

pany, a slightly modified version of an elasticity is needed though. An ordinary elasticity of a

conditional quantile with the explanatory variable being at its limit defines a so-called asymp-

totic elasticity, which is by definition properly designed to quantify effects from a worst-case

scenario. Thus, our spill-over measure for tail-risk is defined by an asymptotic elasticity of a

conditional quantile. Note that the asymptotic elasticity is particularly suitable for addressing

hypothetical questions of the type “What if ...?”. In the considered economic context, this

translates into “What is the effect on the tail-risk of financial institution A, if the share price

of financial institution B drops substantially?”.

In the developed framework, we provide a simple representation for the asymptotic elasticity

by imposing two local requirements on the conditional quantile: (i) The distributions of the

dependent and explanatory variable exhibit tail-monotone densities. Distributions of this

class are endowed with a tail-exponent controlling the decay of the tail. (ii) The underlying

conditional quantile is required to be monotonically increasing with bounded derivatives.

If these conditions are met in the tail-area under investigation, a simple formula for the

asymptotic elasticity is obtained as the ratio of the tail-exponents of the dependent and
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explanatory variable. This representation is independent of the specific functional form of the

conditional quantile except for the imposed requirements.

To get a more intuitive understanding of the asymptotic elasticity, consider the returns of

two financial institutions A and B with different levels of risk. Let the returns of financial

institution A be the dependent variable, and the returns of the institution B be the explanatory

variable. Given that both companies belong to the same financial sector, the corresponding

conditional quantile can be reasonably assumed to have a positive slope. Moreover, if the

distribution of the returns of institution A is relatively heavy-tailed compared to that of

institution B, the slope of the conditional quantile appears steep. This is simply because

there is more “dispersion” in the dependent than in the explanatory set of stock returns. In

such a setting, the impact of an extreme event in the returns of institution B can be quantified

via the ratio of measures for the stock returns’ marginal behaviors in extremes in terms of

the tail-exponents. This relation is the asymptotic elasticity.

To appreciate possible benefits of the simple representation for the asymptotic elasticity, note

that the ordinary elasticity can in fact be estimated by replacing the underlying conditional

quantile through a corresponding estimate. Confidence intervals of estimated conditional

quantiles, however, become usually wider as the level of the conditional quantile becomes

more extreme. This unfavorable property is obviously transferred to the confidence intervals

of the corresponding elasticity. In contrast, the simple formula for the asymptotic elasticity

results in a convenient situation, where a point instead of a curve is to be estimated. Even

though the approximated distribution for the estimated asymptotic elasticity is based on a

parametric assumption on the distributions of the dependent and the explanatory variable,

the conditional quantile itself does not need to be specified.

In an empirical study, we apply the developed modeling approach to measure the tail-risk

transferred to other financial institutions as consequence of the collapse of Lehman Brothers.

Overall, we conclude that the bankruptcy of Lehman Brothers was an outstanding big event,

since originally it seemed like Lehman Brothers had mastered the subprime crisis relatively

well compared to other financial institutions. One of our main findings reveals that Lehman

Brothers became systemically relevant for the list of other financial institutions only in July
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2008. Before this date the shock emitted in case of a collapse of Lehman Brothers was not

significantly stronger than the shock Lehman Brothers had received in case of a collapse of

other institutions. We also illustrate the differences between the newly developed measure

and traditional measures of spill-over effects from tail-risks such as CoVaR. To do this, in

our empirical study, we compute a version of the ∆ CoVaR measure based on the same time

period and estimated models.

In a second case study, our approach is applied to the European sovereign debt crisis. Lucas,

Schwaab, and Zhang (2014) estimate probabilities of a credit default for countries of the

Euro-area conditional on the extreme event that Greece defaults. The authors find that the

conditional default probability due to a credit event in Greece decreases while the default

probability for Greece increases. As the asymptotic elasticity is derived from a conditional

quantile instead of a conditional probability, our results are in some way complementary to

those of Lucas et al. (2014). For the period of decreased conditional default probability, we

confirm the findings of Lucas et al. (2014) by revealing a reduction in the spill-over of tail-risk

from Greece to the other countries, based on underlying differenced prices of credit default

swaps on sovereign debt.

The remainder of the paper is organized as follows. Section 2 introduces the basic notation

and briefly reviews some of the existing approaches that have been proposed in the literature

to measure spill-over effects for tail-risk relying on a conditional quantile function. Section 3

is devoted to the concept of asymptotic elasticity and provides the underlying ideas as well

as some theoretical results to illustrate the main intuition for applications of the developed

measure. Note that most of the technical details such as discussions of assumptions as well

as the proofs of the results of Section 3 have been moved to Appendix A. Section 4 presents

empirical results from applying our measure to returns of financial institutions during the

subprime crisis, while Section 5 examines the European sovereign debt crisis. Section 6

concludes.
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2. CoVaR and related concepts

Let the random variables X1, X2 ∈ R refer to two risk factors of financial institutions, where

“good events” like profits are on the negative part and “bad events” such as losses on the

positive part of the real line. Denote by F (x1, x2) = P(X1 ≤ x1, X2 ≤ x2) the joint cumulative

distribution function (cdf) of X1 and X2. The cdf F (x1, x2) is assumed to be continuously

differentiable and strictly increasing in both arguments. The corresponding conditional cdf is

defined by

FX2|X1=x1(x2) = P(X2 ≤ x2|X1 = x1). (1)

As FX2|X1=x1(x2) is strictly increasing in x2, the conditional quantile function is given by

QX2|X1=x1(α) = F−1X2|X1=x1
(α) for fixed α ∈ (0, 1). (2)

We denote by Fj(xj) and Qj(uj) = F−1j (uj), uj ∈ (0, 1), the marginal cdf of F (x1, x2) and

quantile function, j = 1, 2.1

To put these formulas in an economic context, in the following we relate them to the CoVaR

approach and similar concepts, where conditional quantiles are used as risk measures. Adrian

and Brunnermeier (2016) measure the contribution from risk factor X1 to risk factor X2 via

∆ CoVaR = QX2|X1=Q1(α)(α)−QX2|X1=Q1(0.5)(α)

for α being close to one. For instance, if the risk factors refer to negative log-returns of a

financial institution, ∆ CoVaR denotes the effect on the VaR for X2 from a change in the

riskiness of X1 from the median to an extreme level of risk.

Different to the CoVaR approach, the concepts of Hautsch et al. (2015) as well as Härdle

et al. (2016) combine marginal effects derived from the conditional quantile with arguments

from network theory to determine spill-over effects and systemic risk measures. For instance,

1While the major parts of this manuscript concentrate on the case of two random variables, we offer a short
discussion on the multivariate setting in Section 3.4 which is formally inspected in Appendix A.
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Härdle et al. (2016) construct a (d×d) adjacency matrix consisting of marginal effects from d

conditional quantile curves representing a systemic risk network. By importing the interpre-

tation of Diebold and Yilmaz (2014), so called systemic risk emitters and receivers are then

derived from this adjacency matrix.

As we illustrate in Appendix A, the partial derivative of a conditional quantile with respect to

(wrt) the explanatory variable can be disentangled into three major components: one contri-

bution stemming from the distribution of the dependent variable, one from the explanatory

variable and one from their dependence structure. The conceptual advantage of the ap-

proaches of Hautsch et al. (2015) and Härdle et al. (2016) over ∆ CoVaR is that measuring

the spill-over of tail-risks via marginal effects takes all three components into account. In

contrast, the ∆ CoVaR is entirely unrelated to the distribution of the explanatory variable.

Remark 1. A critical conceptual discussion of the CoVaR approach is provided by Mainik

and Schaanning (2014). Statistical shortcomings of the CoVaR approach such as the omitted

variables bias and the linear specification of the conditional quantile are addressed in Hautsch

et al. (2015) and Härdle et al. (2016) respectively. The link between ∆ CoVaR and multivariate

GARCH models is analyzed in Girardi and Ergün (2013).

3. Quantifying effects from extreme events

As illustrated above, marginal effects can be considered as a rewarding concept as it comes

to the quantification of the spill-over effects for tail-risk. However, conclusions about the

strength of spill-over effects are difficult to be drawn from these marginal effects. Even if

a marginal effect is statistically found to be different from zero, it is not clear whether the

effect is weak or strong. In this section we introduce a new measure for spill-over effects that

overcomes some of these drawbacks.

3.1. Asymptotic elasticity

Let us define a spill-over measure by normalizing the derivative of the conditional quantile
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Figure 3.1: Illustration of elasticity functions. The left panel illustrates the mapping f(x) =√
x (solid), the tangent at x0 = 3/2 as well as a straight line from the origin to the point

(x0, f(x0)) (both thin-dashed), the derivative f ′(x) (dashed-dotted) and the elasticity function
E(x) = xf ′(x)/f(x) (dashed). The right panel shows corresponding curves for f(x) = log(1 +
x).

∂
∂ x1

QX2|X1=x1(α) through division by QX2|X1=x1(α)/x1, i.e.,

E(x1) =
x1

QX2|X1=x1(α)

∂

∂ x1
QX2|X1=x1(α) for fixed α ∈ (0, 1), (3)

where the normalizing factor is the slope of the line from the origin to the point (x1,

QX2|X1=x1(α)). Functions of form (3) are commonly considered as elasticity, see Sydsæter

and Hammond (1995).

To get a better understanding of the elasticity function, consider the mapping f(x) =
√
x

defined on the positive real line and depicted as solid curve in the left panel of Figure 3.1. The

thin-dashed lines refer to the tangent at x0 = 3/2 as well as the extended chord connecting

the origin of the coordinate plane and the point (x0, f(x0)). Intuitively, the derivative f ′(x) -

depicted as dashed-dotted line - can be determined by the slope of the tangent for any point

x. Likewise, the corresponding elasticity function E(x) = xf ′(x)/f(x) - depicted as dashed

(horizontal) line - can be determined by the ratio of the slopes of the tangent and the extended

chord line for any point x. While f ′(x) measures the absolute change in f(x) due to a (small)

absolute change in x, the elasticity E(x) measures the relative change in f(x) due to a (small)

relative change in x. This allows the following interpretation: (i) If |E(x)| < 1, the function
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f(x) is called inelastic or robust wrt x; (ii) if |E(x)| > 1, the function f(x) is called elastic

or responsive wrt x; (iii) if |E(x)| = 1, the function f(x) is called proportionally elastic wrt

x. Note that for both examples in Figure 3.1, f(x) is inelastic wrt x. However, while the

elasticity function E(x) is constant for f(x) =
√
x, it is decreasing in x for f(x) = log(1 + x).

To interpret the elasticity of a conditional quantile E(x1) from (3) in terms of the considered

economic context, keep in mind that X1 and X2 represent risk factors such as negative log-

returns of financial institutions. To study the responsiveness of the tail-risk of X2 wrt to

the tail-risk of X1, the level α ∈ (0, 1) in the definition of the elasticity is typically chosen

close to one. Moreover, let x0 be a value related to the tail-risk of X1, e.g., the VaR of X1.

Using the interpretation for marginal effects of Härdle et al. (2016), the elasticity E(x0) can

be interpreted as a measure for the tail-risk emitted from financial institution with risk factor

X1 to the tail-risk of institution with risk factor X2.

Analogously to the example above, we obtain the following interpretation for the considered

application: (i) If the spill-over measure for tail-risk tends to zero |E(x0)| << 1, the tail-

risk of financial institution with risk factor X2 is said to be robust wrt the tail-risk of X1.

Equivalently, the institution with risk factor X1 cannot be categorized as a risk emitter. (ii) If

|E(x0)| >> 1, the tail-risk of institution with risk factor X2 is said to be responsive or fragile

wrt the tail-risk of risk factor X1. Equivalently, X1 can be categorized as a risk emitter wrt

X2. (iii) If |E(x0)| ≈ 1, the tail risk of X2 is proportionally elastic wrt the tail-risk of X1.

According to (3), the presented elasticity E(x1) can be derived from the conditional quantile

for fixed α ∈ (0, 1) being usually close to one. However, interesting cases such as extreme

conditioning events, where x1 → ∞, are difficult to study. For instance, if X1 refers to a

negative log-return, an extreme event in X1 reflects a drastic drop in the stock price of a

company to zero. An elasticity related to such an extreme conditioning event is given by

E = lim
x1→∞

E(x1). (4)

An expression of form (4) is called asymptotic elasticity and has been introduced in a different

context by Kramkov and Schachermayer (1999). Given that in financial applications we
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would typically be interested in the spill-over effects of extreme losses, for convenience, in the

following we concentrate on the “right tail” (x1 →∞) of the loss distribution and neglect the

“left tail” (x1 → −∞).

Note, however, that for empirical applications, (4) has to be interpreted as an approximation

of the spill-over from an extreme event. For instance, even in the event of default, a stock

price typically does not drop to zero, but rather to a relatively small value. Hence, the spill-

over effect for tail-risk is eventually quantified too large in certain situations. We would argue

though, that for the purpose of risk management, an overestimation of the transferred risk

between financial institutions can be seen as less harmful than its underestimation.

Remark 2. The proposed approach based on the asymptotic elasticity and the line of argu-

ments we present below are rather unrelated to methods dealing with extremal dependence such

as conditional extreme value theory and extremal quantile regression, see, e.g., Heffernan and

Tawn (2004) and Chernozhukov (2005), respectively.

3.2. Properties of the asymptotic elasticity

To characterize properties of the asymptotic elasticity E , we import the concepts of a tail-

monotone density function with associated tail-exponent and conditional tail-(in)dependence

discussed in Appendix A.

Definition 1 (Tail-monotonicity, see Parzen (1979)). Let F (x) and f(x) = F ′(x) be the cdf

and density function of a random variable X ∈ R. The density f(x) is called tail-monotone,

if it is non-decreasing on an interval to the right of a = sup{x : F (x) = 0} and non-increasing

on an interval to the left of b = inf{x : F (x) = 1}, with −∞ ≤ a ≤ b ≤ ∞; and if f(x) > 0

on x ∈ (a, b) and supx∈(a,b) F (x){1 − F (x)}|f ′(x)|/f(x)2 ≤ γ, where the tail-exponent is

γ = limx→∞ log f(x)/ log{1− F (x)} > 0.

In the considered context, the density of a random variable is intuitively called tail-monotone

if it is positive and strictly decreasing on an interval (x0,∞) for some x0. The associated

tail-exponent γ ≥ 1 characterizes (i) exponential- and (ii) long tails for (i) γ = 1 and (ii)

10



γ > 1. Numerous probability laws have tail-monotone densities such as the Gaussian (γ = 1),

Cauchy (γ = 2), Pareto (γ = 1 + 1/β) and Student’s-tν (γ = 1 + 1/ν) distributions, where

β ∈ (0,∞) and ν ∈ [1,∞) denote the parameters of the respective distribution. Density

functions which oscillate in the tails are not tail-monotone, see Parzen (1979, p. 117) for

an example. The remainder of the manuscript is restricted to tail-monotone densities whose

tail-exponents satisfy γ ≥ 1. The tail-exponent of a distribution with a short-tailed and tail-

monotone density satisfies 0 < γ < 1, but the corresponding random variable might not be

suitable for our modeling purpose, e.g., the distribution has eventually bounded support, see

Parzen (1979, p. 115).

Remark 3. The considered tail-exponent γ is different from the classical tail-index, e.g., see

Embrechts, Klüppelberg, and Mikosch (1997). Relations between both are studied in Holan

and McElroy (2010, Section 2) who observe that densities with exponentially decaying tails

are not covered by the definition of the classical tail-index but by that of the tail-exponent γ.

Let the notation z(x) ∼ y(x), x → a, mean limx→a z(x)/y(x) = K, with K being a positive

finite constant.

Definition 2 (Conditional tail-(in)dependence). The random variables X2 ∈ R and X1 ∈ R

are called conditionally independent in the right tail, if QX2|X1=x1(α) ∼ g(α), x1 →∞, where

g(α) is a constant depending on α ∈ (0, 1). Likewise, X2 and X1 are called conditionally

tail-dependent if QX2|X1=x1(α) → ∞ as x1 → ∞ such that the derivative of QX2|X1=x1(α)

wrt x1 is strictly positive and bounded on an interval (x0,∞) for some x0.

The intuition of this notion of conditional tail-(in)dependence is as follows: The risk factors

are basically called conditionally tail-independent, if the conditional quantile QX2|X1=x1(α)

becomes flat for large values in the explanatory variable. Conversely, the risk factors are called

conditionally tail-dependent, if the conditional quantile steadily increases in the explanatory

variable, but not too fast. It should be noticed that the technical requirement that the

derivative of QX2|X1=x1(α) wrt x1 is bounded on the specified interval is required for the

identification of effects arising from extreme events. If this derivative is not bounded on
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the considered interval, the conditional quantile QX2|X1=x1(α) approaches infinity for non-

extreme outcomes in X1. In this situation however, the effect of an extreme outcome in X1

cannot be uniquely identified.

Proposition 1. Let F (x1, x2) be continuously differentiable and strictly increasing in x1 and

x2. Let X2 and X1 have tail-monotone densities with tail-exponents γ2 and γ1.

(a) If X2 and X1 are conditionally tail-independent and γ2 ≥ 1, γ1 ≥ 1, then E = 0.

(b) If X2 and X1 are conditionally tail-dependent and γ2 > 1, γ1 = 1, then E =∞.

(c) If X2 and X1 are conditionally tail-dependent and γ2 ≥ 1, γ1 > 1, then E = γ2−1
γ1−1 .

As expected and summarized in part (a) of Proposition 1, if X2 and X1 are conditionally

tail-independent, there is no effect from an extreme event in the explanatory variable on the

dependent variable. Even though this stresses the importance of conditional tail-dependence

for analyzing the relation between tails of univariate distributions, the more interesting results

are documented in part (b) and (c) of Proposition 1.

On an abstract level, part (b) of Proposition 1 implies that an extreme event in the explana-

tory variable entails an extreme event in the dependent variable. Let us now consider this

relationship in an economic context: Let X1 refer to the negative log-return of a financial

institution which has never been in distress, so that the right tail of the probability law of

X1 can be assumed to decay exponentially, i.e., γ1 = 1. Let X2 refer to the negative log-

return of a financial institution which is occasionally in distress, such that the right tail of

the probability law of X2 satisfies γ2 > 1. Now, part (b) of Proposition 1 can be interpreted

as follows: If the “low-risk” financial institution is in distress, the tail-risk of the “high-risk”

financial institution reacts sensitive wrt the distress of the low-risk institution.

Conditional quantiles per definition depend on the joint distribution between dependent and

explanatory variables which can be uniquely determined by marginal distributions and the so

called copula function. Figures 3.2 and 3.3 show in total four pairs of copula-based conditional

quantiles and corresponding elasticities. Even though the construction of conditional quantiles

from copulas is formally introduced in Appendix A, copula-based quantiles are not required
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to be known for the interpretation of Figures 3.2 and 3.3. This follows simply from the fact

that they are neither required to be known for the understanding of Proposition 1. Thus,

we content ourselves with knowing that the four presented conditional quantiles link the risk

factors X1 and X2 in fairly different ways. However, the tail-exponents are required to be

known for the interpretation of Figures 3.2 and 3.3.

The situations explained above referring to part (a) and (b) of Proposition 1 are illustrated in

the left and right panels of Figure 3.2 respectively. Since a coordinate plane cannot approach

infinity, the abscissae of the elasticity graphics in Figures 3.2 and 3.3 refer to the respective

cdf of X1, which offers a simple way to show how the elasticity function from (3) approaches

the corresponding limit from Proposition 1.

The left panels of Figure 3.2 rely on conditionally tail-independent risk factors X1 and X2.

Risk factor X1 is Gaussian distributed with γ1 = 1 and X2 is Cauchy distributed with γ2 = 2,

so that the conditions of Proposition 1(a) are fulfilled. Even though the conditional quantile

curves in the upper-left panel of Figure 3.2 suggest some dependence between X1 and X2,

the elasticity functions in the lower-left panel of Figure 3.2 illustrate that there is no effect

to the corresponding α-quantile of X2 in case of an extreme event in X1. The right panels of

Figure 3.2 are based on conditionally tail-dependent risk factors X1 and X2 being still Gaus-

sian and Cauchy distributed. Since this setup satisfies the requirements of Proposition 1(b),

the corresponding elasticity functions become infinite as x1 →∞.

The most useful result of Proposition 1 is part (c) stating the exact value of the asymptotic

elasticity in case that the probability laws of X1 and X2 are long-tailed. The intuition formed

for part (b) applies here as well: A risk factor X2, whose distribution is relatively long-tailed

compared to that of X1, reacts responsive to the tail-risk of X1. Conversely, a risk factor X1,

whose distribution is relatively long-tailed compared to that of X2, transfers merely small

proportions of tail-risk.

For instance, let the risk factors X2 and X1 be Student’s-tν distributed with parameters

ν2 ≥ 1 and ν1 ≥ 1 respectively and suppose they are linked with a conditional quantile having

a positive slope. If we agree on measuring the effect from an extreme event in the explanatory

13



x1

Q
X

2 l
X

1=
x 1
(α

)

0.00 0.67 2.33

0
5

10
15

20
25

x1

Q
X

2 l
X

1=
x 1
(α

)

0.00 0.67 2.33

0
5

10
15

20
25

0.90 0.94 0.98

0
5

10
15

F1(x1)

E
(x

1)

0.90 0.94 0.98

0
5

10
15

F1(x1)

E
(x

1)

0.90 0.94 0.98

0
5

10
15

Figure 3.2: Conditional quantiles and elasticities from Equations 2 and 3. The Gaussian (X1)
and Cauchy (X2) distributed margins are coupled with a Frank copula in the left panels and
with a Student’s-t copula in the right panels. The lines refer to the levels α = 0.75 (solid),
α = 0.90 (long-dashed), α = 0.95 (dashed) and α = 0.99 (dotted).
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Figure 3.3: Conditional quantiles and elasticities from Equations 2 and 3. The left panels are
based on Student’s-tν distributed margins with ν1 = 4 and ν2 = 2 coupled with a survival
Clayton copula. The right panels rely on Pareto distributed margins with β1 = 2 and β2 = 4
coupled with a Cauchy-type copula. The lines refer to the levels α = 0.75 (solid), α = 0.9
(long-dashed), α = 0.95 (dashed) and α = 0.99 (dotted).
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variable via the asymptotic elasticity, it can be approximated by ν1/ν2. Note that the smaller

the parameter of the Student’s-tν distribution the longer are its tails. Hence, a large (small)

value of the fraction ν1/ν2 refers to a situation where pairs of observations stretch rather

vertically (horizontally) in the coordinate plane.

Figure 3.3 shows the asymptotic behavior of the elasticity function related to part (c) of

Proposition 1. In the left panels, the risk factors X1 and X2 are conditionally tail-dependent

and follow a Student’s-tν distribution with ν1 = 4 and ν1 = 2 degrees of freedom yielding

γ1 = 5/4 and γ2 = 6/4 respectively. Thus, Proposition 1(c) results in E = 2. As shown in

the graphic, E = 2 is exactly the limit of E(x1) as x1 →∞. The conditionally tail-dependent

risk factors X1 and X2 underlying the right panels of Figure 3.3 are Pareto distributed with

parameters β1 = 2 and β2 = 4 which imply the tail-exponents γ1 = 6/4 and γ2 = 5/4

respectively. Thus, Proposition 1(c) leads to the result E = 1/2. As depicted in the lower

right panel of Figure 3.3, E = 1/2 is the limit of the ordinary elasticity E(x1) as x1 →∞.

These graphics illustrate remarkably that the asymptotic elasticity does not depend on the

function linking the risk factors, apart from the requirements on the conditional quantile

which are discussed in Appendix A for this example. However, the imposed requirements on

the conditional quantile might depend on the value α ∈ (0, 1) and other parameters of the

function linking the risk factors, see Appendix A.

Overall, we conclude that in order to quantify the effect arising from an extreme event, the

relation of the tails of the risk factors’ distributions is more important than the specific

functional dependence between these risk factors.

3.3. Weights

So far, the risk factors X2 and X1 have not been weighted, e.g., according to market capi-

talization of corresponding financial institutions. Some studies highlighted above try to take

effects arising from different importance of financial institutions via weights into account, see,

e.g., Adrian and Brunnermeier (2016); Härdle et al. (2016). We do not include weights in

our analysis for a simple reason: Elasticities derived from conditional quantiles are invariant

wrt the scaling of the underlying risk factors. An alternative representation of the asymp-
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totic elasticity immediately reveals that the consideration of weights does not influence the

asymptotic elasticity, see Formula 11 in Appendix A. Note also that López-Espinosa, Moreno,

Rubia, and Valderrama (2012) find empirical evidence that the size of international banks is

of weak relevance for systemic risk.

3.4. Several explanatory variables

Up to now, the analysis has concentrated on the case of one dependent and one explanatory

variable. Extending the framework to a multivariate setting including d risk factorsX1, . . . , Xd

raises the question how the asymptotic elasticity involving two risk factors is affected by

ignoring the remaining risk factors.

Let E(x`) be the elasticity from (3), measuring the effect from X` to the α-quantile of Xk,

where other risk factors exist but are excluded from the analysis. In a multivariate setting

that includes all risk factors in the analysis, the elasticity measuring effects from X` to the

α-quantile of Xk is denoted by

Ek`(x−k) =
x`

QXk|X−k=x−k(α)

∂

∂ x`
QXk|X−k=x−k(α), α ∈ (0, 1), (5)

where the conditional quantile with several explanatory variables QXk|X−k=x−k(α) can be

analogously defined as in the bivariate case, see Appendix A, and the variable xk is not

included in x−k = (x1, . . . , xk−1, xk+1, . . . , xd)
>.

The asymptotic elasticity E = limx`→∞ E(x`) relying on two risk factors Xk and X` measures

precisely the same effect as Ek`(x−k), if all included explanatory variables are subject to an

extreme event. In other words, the asymptotic elasticity E is equivalent to Ek`(x−k) given

that all components of x−k in (5) converge simultaneously to infinity. From this perspective,

the bilateral asymptotic elasticity E can always be interpreted as the effect from the `-th

explanatory variable in a worst case scenario. The underlying argument is trivial and uses

the bivariate margin of a multivariate cdf.
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3.5. Estimation of the asymptotic elasticity

Proposition 1(c) brings us to the convenient situation, where the asymptotic elasticity E can

be determined by replacing γ2 and γ1 through corresponding estimators. This is accompanied

by all advantages of estimating a point, i.e, E , compared to estimating a curve, i.e., E(x1).

Let {xij}ni=1 denote an independently and identically distributed sample of the random vari-

able Xj , j = 1, 2. Let the univariate distributions of X1 and X2 have tail-monotone den-

sities given by fj(xj ; θj), j = 1, 2. The quasi-log-likelihood function is then determined by

`(θ) = `1(θ1) + `2(θ2), where θ = (θ1, θ2)
> and `j(θj) = n−1

∑n
i=1 log fj(xij ; θj), j = 1, 2.

By definition, the quasi Maximum Likelihood (ML) estimator for θ, denoted by θ̂, is the

maximizer of the quasi-log-likelihood function `(θ).

The ML-estimator can be shown to be a consistent estimator for the point θ0 referring to the

minimizer of the Kullback-Leibler divergence between the true and assumed density for data

generating process, e.g., see White (1994, Chapter 3). The limiting distribution of
√
n(θ̂−θ0)

is also well documented in the literature. For example, White (1994, Chapter 6) demonstrates

under suitable regularity conditions that
√
n(θ̂ − θ0) −→L N{0,Σ(θ0)}, where Σ(θ0) refers to

the robust asymptotic covariance matrix.

Note the important fact that we have not imposed any specific form of dependence between

X1 and X2. This is neither required for inference about θ0 nor for the construction of approx-

imative confidence intervals for the asymptotic elasticity as we will see below. This type of

quasi-ML estimation is frequently utilized by practitioners and the first step in the estimation

method called inference functions for margins, see, e.g., Joe and Xu (1996); Joe (2005).

Let the tail-exponents γ1 and γ2 of the marginal densities be differentiable functions of θ

such that γ(θ) = {γ1(θ1), γ2(θ2)}>. For example, if the parameters θj = νj denote shape

parameters of Student’s-tν distributions, the associated tail-exponents are given by the link

function γj(νj) = 1 + 1/νj , j = 1, 2. Those link functions are available for several parametric

families, e.g., see Section 3.2, and yield a parametric estimator for the asymptotic elasticity
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from Proposition 1(c), i.e.,

Ê =
γ2(θ̂2)− 1

γ1(θ̂1)− 1
, (6)

where θ̂ = (θ̂1, θ̂2)
> is the quasi-ML estimator.

The asymptotic elasticity from Proposition 1(c) can also be non-parametrically estimated, for

example, using the non-parametric estimator of the tail-exponent from Holan and McElroy

(2010, Section 3-4). Yet, the joint asymptotic distribution of non-parametrically estimated γ̂1

and γ̂2 cannot be inferred from the results of Holan and McElroy (2010). As a consequence, we

are not able to derive approximative confidence intervals for a non-parametrically estimated

asymptotic elasticity and focus on the parametric estimator from (6) in the following.

3.6. Approximative confidence intervals

Deriving an approximative distribution of the parametric estimator from (6) is basically an

application of the delta-method to
√
n(θ̂ − θ0) −→L N{0,Σ(θ0)} and taking advantage of

the fact that the denominator of the estimated asymptotic elasticity is always positive. An

approximative distribution is shown in the subsequent result, where J {γ(·)} denotes the

Jacobian of γ(·).

Proposition 2. Let X2 and X1 have tail-monotone densities with tail-exponents γ2(θ2,0) ≥ 1

and γ1(θ1,0) > 1 with differentiable γj(·), j = 1, 2. Then, the distribution of Ê from (6) can

be approximated by

Φ

( √
n 1(x)> {1− γ(θ0)}

[1(x)>J {γ(θ0)}Σ(θ0)J {γ(θ0)}>1(x)]
1/2

)
for large n,

where 1(x) = (−x, 1)>, 1 = (1, 1)> and Φ(·) is the standard Gaussian cdf.

Under the stated assumptions, Ê is the ratio of two random variables being jointly Gaussian

distributed for large n. Thus, the cdf in Proposition 2 is an approximative distribution.

Figure 3.4 shows density functions for the approximative density of Ê from (6). Employed

parameter combinations of γ1(θ1,0) and γ2(θ2,0) yield the theoretical values E = 0.6 (solid),
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Figure 3.4: The left panel shows the theoretical densities of Ê from Proposition 2 for γ2 = 1.15
(solid), γ2 = 1.25 (long-dashed), γ2 = 1.5 (dashed) and γ2 = 2.0 (dashed-dotted), holding
γ1 fixed at γ1 = 1.25. The sample size is n = 250 and the covariance matrix coincides with
the identity. The right panel illustrates kernel density estimates (bandwidth h = 0.2) for
estimated asymptotic elasticities following (6). These estimates rely on 1,000 Monte Carlo
samples of size n = 250 for conditionally tail-dependent X2 and X1. Both risk factors are
assumed to follow Student’s-tν distributions with degrees of freedom νj = (γj−1)−1, j = 1, 2.
The tail-exponents γ2 and γ1 are chosen as for the left panel and the presented kernel density
estimates refer to the corresponding counterparts from the left panel.

E = 1 (long-dashed), E = 2 (dashed) and E = 4 (dashed-dotted). In line with expectations,

the densities are rather symmetric around the theoretical value as long as the theoretical value

E is small. Note that the densities become positively skewed for large theoretical values of

E . The exact distribution of the ratio of two jointly Gaussian random variables is given by a

Cauchy-type distribution derived in, e.g., Hinkley (1969) and Cedilnik, Kosmelj, and Blejec

(2004). Nonetheless, the proposed cdf suffices to approximate asymptotic confidence intervals

for the theoretical values of the asymptotic elasticity E . This can be inferred from the fact

that the kernel density estimates of samples of estimated asymptotic elasticities (right panel

of Figure 3.4) are fairly similar to their theoretical counterparts (left panel of Figure 3.4).

4. The subprime mortgage crisis and Lehman Brothers

By interpreting the asymptotic elasticity as a spill-over measure for tail-risk, in the following

we analyze the peak period of the subprime mortgage crisis 2007-2008, namely the prominent

bankruptcies of Lehman Brothers (LEH) and Bear Stearns (BSC). Hereby, we consider neg-
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Figure 4.1: Pairwise asymptotic elasticity as measure of spill-over from LEH to JPM, WFC,
BAC, C, USB, BK, PNC, AXP, GS, MS, FNMA, FMCC, and AIG for the sample period July
1, 2007 to June 30, 2009. For each panel, the lower solid curve refers to the 5%-quantile and
the upper solid curve to the 95%-quantile of the distributional estimate for the asymptotic
elasticity.
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LEH BSC
Date Pt − log(Pt/Pt−1) Date Pt − log(Pt/Pt−1)

Sep05 16.20 6.57% Mar10 62.30 11.77%
Sep08 14.15 13.53% Mar11 62.97 -1.07%
Sep09 7.79 59.69% Mar12 61.58 2.23%
Sep10 7.25 7.18% Mar13 57.00 7.73%
Sep11 4.22 54.12% Mar14 30.00 64.19%
Sep12 3.65 14.51% Mar17 4.81 183.05%
Sep15 0.21 285.54% Mar18 5.91 -20.59%

Table 4.1: Price Pt and negative log-return − log(Pt/Pt−1) of the stock of LEH and BSC
during their most turbulent periods.

ative log-returns of end of the day share prices for 15 major financial institutions in the U.S.

In particular, we concentrate on the 13 companies considered in Diebold and Yilmaz (2014),

i.e., JPMorgan Chase (JPM), Wells Fargo (WFC), Bank of America (BAC), Citigroup (C),

US Bancorp (USB), Bank of New York Mellon (BK), PNC Group (PNC), American Ex-

press (AXP), Goldman Sachs (GS), Morgan Stanley (MS), Fannie Mae (FNMA), Freddie

Mac (FMCC) and American International Group (AIG). While all of these institutions have

survived the turbulent times of the crisis, we enlarge this set of 13 institutions by either LEH

or BSC in order to assess the effect from the (near-)bankruptcy of these institutions on the

other 13 institutions.

The considered sample period begins in July 1, 2007 and ends in June 30, 2009. As we apply

a backward looking rolling window approach with a window length of 250 trading days, our

first estimation window begins on August 2, 2006. In other words, data from August 2, 2006

until July 1, 2007 is employed to get an estimate for the considered quantities for July 1,

2007. Then, the window is moved one day forward to estimate the quantities for July 2, 2007,

and so on.

Within each window, we filter the univariate time series with a GARCH(1,1) model, see

Engle and Bollerslev (1986), and fit Student’s-tν distributions with ν ≥ 1 degrees of freedom

to the filtered data. Goodness of fit tests indicate an appropriate description of the data by

this approach within each window.2 Moreover, this approach yields an estimate ν̂ for each

2Results for fitted GARCH(1,1) models and goodness of fit tests are not reported here, but are available
upon request to the authors.
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institution at each point in time and permits computing the asymptotic elasticity as well as

the considered alternative spill-over measure for tail-risk from the same estimates.

Let k and ` represent the institutions, where the tail-risk stems from (`) and is transmitted

to (k). We focus particularly on the case when ` equals LEH. The asymptotic elasticity can

be inferred directly from estimates of the degrees of freedom parameters of the Student’s-tν

distributions, i.e., Êk` = {γ(ν̂k)− 1} / {γ(ν̂`)− 1} with γ(ν) = 1 + 1/ν.

For comparison, a version of the ∆ CoVaR is computed from the same estimates of the rolling

window GARCH(1,1) models and fitted Student’s-tν distributions. Adrian and Brunnermeier

(2016, Appendix II.A.) illustrate that ∆ CoVaR can be derived from a bivariate Gaussian

distribution as

∆ CoVaR = Φ−1(0.95)σkρk`, (7)

where σk denotes the standard deviation of risk factor Xk, ρk` denotes the correlation between

the risk factors Xk and X` and Φ−1(0.95) is the right 95% quantile of the standard Gaussian

distribution. Our robustness checks reveal that replacing the Gaussian quantile in (7) by the

estimated Student’s-tν quantile leads only to insignificant changes of the results. Hereby, the

parameter σk corresponds to the most recent estimate of the conditional volatility obtained

from the GARCH-filter, while also the correlation coefficient ρk`, estimated from the filtered

data, varies over time due to the rolling window approach.

The pairwise estimates of the asymptotic elasticities for spill-over effects from LEH to the

other 13 major financial institutions are presented in Figure 4.1. For each point in time, we

report the estimate of the asymptotic elasticity as well as the 5%-quantile (lower solid curve)

and the 95%-quantile (upper solid curve) of the distribution for the estimated asymptotic

elasticity. Recall that Proposition 2 permits the simple construction of confidence intervals

to check whether the true value of the asymptotic elasticity is significantly larger than one.

This value serves as a natural reference point because of the interpretation of an elasticity,

i.e., LEH can be categorized as risk emitter if the elasticity is larger than one. From a first

glance, we observe a very similar pattern for the pairwise asymptotic elasticities for all 13
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Figure 4.2: Estimated asymptotic elasticities (upper panels) and ∆ CoVaR (lower panels)
averaged across all pairwise measures for the 13 financial institutions. The upper left refers to
the average asymptotic elasticity for the entire sample period from July 1, 2007 to June 30,
2009, while the upper right panel refers to turbulent period of the LEH crisis from August 11,
2008 to September 26. 2008. The lower solid curves refer to the average 5%-quantile and the
upper solid curves to the average 95%-quantile, based on the distributions for the estimated
pairwise asymptotic elasticities. Likewise, the lower left and right panel refer to the ∆ CoVaR
for the entire sample period, and to the turbulent period of the LEH crisis, respectively. The
gray lines in the lower panels refer to the ∆ CoVaR relying on a Student’s-tν quantile.
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financial institutions. The panels further illustrate the significant increase in the spill-over

measure for each institution starting from July 2008 onwards, as well as the spike in the

measure in September 2008. Interestingly, there is also a significant drop for the estimated

pairwise asymptotic elasticities from mid-September 2008 onwards which we will examine

more thoroughly in the following.

As the estimated series of pairwise asymptotic elasticities and ∆ CoVaR for all financial in-

stitutions show a rather similar pattern, in the following we examine the results for both

spill-over measures averaged across the 13 financial institutions.3 Thus, we calculate the av-

erage asymptotic elasticity and ∆ CoVaR to measure the spill-over effects from LEH to the

financial institutions considered in our sample. Results for these average spill-over measures

are reported in Figure 4.2. Again, for all panels, the lower solid curve refers to the 5%-

quantile and the upper solid curve to the 95%-quantile of the distribution for the estimate of

the asymptotic elasticity. Note that also these quantiles have been averaged across the corre-

sponding quantiles for all institutions. Even though this procedure is not entirely correct from

a statistical perspective, the results may be interpreted as the spill-over effect from LEH to an

average institution.4 As the study relies on end-of-the-day prices and returns, both spill-over

measures for tail-risk also quantify the transferred risk ’end-of-the-day’.5 The gray solid lines

in the lower panels of Figure 4.2 refer to the ∆ĈoVaR relying on a Student’s-tν quantile. For

both average asymptotic elasticity and average ∆ĈoVaR, the left panels of Figure 4.2 show

the estimates of the considered spill-over measures over the entire sample period, while the

right panels focus on the most turbulent and volatile weeks of the crisis period from August

11, 2008 to September 26, 2008.

The upper-left panel referring to the asymptotic elasticity reveals one turbulent period before

the bankruptcy of LEH. The fact that the lower curve, i.e., the average 5%-quantile, is typi-

cally close to one (before July 2008) leads to the conclusion that LEH cannot be categorized

3In favor of a compact presentation of the results, the pairwise estimated ∆ CoVaR are not presented but
available upon request.

4Also recall the very similar behavior of the pairwise asymptotic elasticities and the quantiles of the esti-
mated elasticities reported in Figure 4.1.

5Up to the best of our knowledge, methods to backtest estimates of ∆ CoVaR are currently under investi-
gation but not available yet.
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as a statistically significant risk emitter before July 2008. In other words, before July 2008,

under a scenario of extreme financial distress for LEH the spill-over effects from LEH to the

other financial institutions in our sample would have been expected to be rather moderate.

The status of LEH, however, changes significantly in July 2008, when the estimated average

asymptotic elasticity increases substantially and also the average 5%-quantile clearly exceeds

the natural reference point of E = 1. Additionally, the pronounced upper curve suggests

a potentially large increase in the VaR of the other financial institutions conditional on an

extreme shock in the share price of LEH.

Let us now concentrate on the trading week September 8-12, 2008. As illustrated in the

upper-right panel of Figure 4.2, the asymptotic elasticity has a dramatic drop on September

9 and remains on that level for the remainder of the week. We interpret and explain this

fall below, after presenting some background information. As documented in Table 4.1, the

negative log-return of LEH was about 60% on September 9, due to a drop in the stock price

from $14.15 to $7.79. On September 10, LEH publicly announced that a massive loss of

$3.9 billion had to be expected for the third quarter of 2008. Hence, September 10 can be

considered as the last point in time for market participants to realize that LEH is in financial

distress. This might also lead to the following conclusion: If all market participants know

that LEH is in distress, there is only little uncertainty left which can be transferred from LEH

to other market participants. The calculated average asymptotic elasticity clearly portrays

this new market situation and exhibits a significant drop after September 9, 2008. Finally,

on September 15, LEH officially filed for bankruptcy protection.

As illustrated in the lower-left panel of Figure 4.2, the ∆ CoVaR measure does not identify

the turbulent period related to the LEH crisis as precisely as the asymptotic elasticity. Fur-

thermore, the lack of a reference value and confidence intervals for ∆ CoVaR make it more

difficult to specify an appropriate point in time, when LEH started to become systemically

relevant. Choosing a different quantile than 95% for ∆ CoVaR, or even a different quantile

function than Φ−1(·), is not a remedy, as the categorization of LEH as a risk emitter or re-

ceiver is unaffected by the position of the curve. A different quantile-level merely shifts the

curve up or down. Similar to our analysis for the average asymptotic elasticity, the lower-right
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Figure 4.3: Estimated asymptotic elasticities (upper panels) and ∆ CoVaR (lower panels)
averaged across all pairwise measures for the 13 financial institutions. The upper left refers
to the average asymptotic elasticity for the sample period from January 2, 2007 to December
30, 2008, while the upper right panel refers to turbulent period prior and post the BSC
bankruptcy from November 1, 2007 to March 31, 2008. The lower solid curve refers to the
average 5%-quantile and the upper solid curve to the average 95%-quantile, based on the
distributions for the estimated pairwise asymptotic elasticities. Likewise, the lower left and
right panel refer to the ∆ CoVaR for the entire sample period, and to the turbulent period
around the near-collapse of BSC, respectively. The gray lines in the lower panels refer to the
∆ CoVaR relying on a Student’s-tν quantile.

panel of Figure 4.2 zooms into the turbulent period prior and after the bankruptcy of LEH.

In contrast to our spill-over measure for tail-risk, the ∆ĈoVaR peaks on September 9 and

remains on about that level until the end of September. This finding is not easy to interpret

from an economic point of view, since the share price of LEH is at a penny-stock level from

September 15 onwards. Therefore, a further transfer of risk from LEH to the other financial

institutions through a further drop in the share price of LEH is rather unlikely.

We also conduct a similar analysis for the period prior and after the near-bankcruptcy and

takeover of Bear Stearns (BSC). Similar to the analysis for LEH, we are interested in measur-

ing spill-over of tail-risk from BSC to the other 13 financial institutions. Figure 4.3 provides

a plot of the estimated average asymptotic elasticity as well as the average ∆ CoVaR for the
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entire sample period and for the period prior to the near-collapse of BSC and take-over by

JPMorgan Chase. Likewise, Table 4.1 shows the course of the stock price of BSC for a number

of days in March 2008, when the bank suffered from illiquidity and was under serious financial

distress. Even though the economic reasons causing the near-collapse of BSC differ from those

causing the default of LEH, the presented line of statistical arguments for the analysis of the

LEH-crisis as well as the statistical interpretation can be transferred to the BSC-crisis. It

should be noticed though that the spill-over effect from BSC is - on average - not as strong

as in the case of LEH.

Remark 4. The drop in the asymptotic elasticity on September 9, 2008, does not coincide

with the end of the crisis caused by LEH. For instance, the strong shock on September 11,

see Table 4.1, has just less impact on the tail-risk of the other institutions than the shock

on September 9. This is due to a higher probability mass in the estimated right tail of the

distribution of LEH, when the estimation window is moved two days ahead and includes the

extreme returns for LEH on September 8 and 9. Furthermore, note that the asymptotic

elasticity does not provide any information about the propagation of the shock from September

9. The propagation of shocks has to be analyzed by different methods, e.g., White, Kim, and

Manganelli (2015) propose vectorautoregressions for quantiles in order to study dynamics of

tail-events over time.

Remark 5. Recall the importance of the relation of marginal distributions to each other, i.e.,

the asymptotic elasticity is the ratio of the tail-exponents (minus one) having LEH in the

denominator and the respective other institution in the numerator. While the tail-exponent of

LEH was frequently the lowest among all financial institutions before the critical September

9, 2008, the tail-exponents of other institutions have increased enormously before September

9. This is true, for example, for FNMA, FMCC and AIG. These simple statistical facts

tell us that the collapse of LEH was like removing a stable segment from a network that was

already under stress. This situation is also graphically illustrated in the left panel of Figure 4.4

showing the estimated tail-exponent for LEH and the average over the estimated tail-exponents

for all remaining institutions. The black line referring to the tail-exponent of LEH goes down

during spring 2008 while the gray line stays almost on the same level. Similar conclusions
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Figure 4.4: Estimated tail-exponents: the gray lines in both panels refer to the average
estimated tail-exponents across the 13 financial institutions for the period July 2, 2007 to
October 31, 2008 (left panel) and the period July 2, 2007 to April 30, 2008 (right panel).
The estimated tail-exponent for LEH (left panel) and BSC (right panel) are depicted as black
lines in the left and right panel respectively.

can also be drawn for the near-collapse of BSC in March 2008, where estimated tail exponents

for the 13 financial institutions and BSC are displayed in the right panel of Figure 4.4.

5. The European sovereign debt crisis

This case study relies on five-year maturity credit default swap (CDS) contracts traded on

their reference bonds for ten countries in the Euro-zone, namely Austria (AUT), Belgium

(BEL), Germany (GER), Spain (ESP), France (FRA), Greece (GRC), Ireland (IRL), Italy

(ITA), Netherlands (NLD) and Portugal (PRT). The corresponding CDS spreads are available

for these countries at a daily frequency for the sampling period February 2009 until December

2012 and provided by Bloomberg.

Lucas et al. (2014) use a flexible econometric model to assess the probability of a condi-

tional sovereign default from observed CDS prices. The approach relies on a dynamic skew-

Student’s-t distribution which reasonably describes stylized facts of changes in CDS prices,

e.g., skewness, long-tails as well as dynamic volatilities and correlations. The model is applied

to price changes in spreads of CDS contracts ensuring the holder against the default event of

countries from the Euro-area during the period of the Euro-area sovereign debt crisis. Among

others, the authors investigate implications from a credit default event of GRC.

Our approach is complementary to the analysis of Lucas et al. (2014, Section 3.5) in the sense
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that the asymptotic elasticity quantifies effects from a possible default event on a quantile-

level. In contrast, the approach of Lucas et al. (2014) quantifies the default probability given

a credit default of another country. As in Section 4, we use a rolling window of length

250 trading days to model each univariate time series of changes in the prices of the CDS

spreads. Within each window, Student’s-tν distributions are fit to filtered data obtained

from GARCH(1, 1) models. Employing Student’s-tν distributions for the margins is close to

the specification of Lucas et al. (2014), because the marginal distributions of the underlying

multivariate skew-Student’s-t distribution have tail-exponents that are identical to those of

an ordinary Student’s-tν distribution. Recall, however, that our approach does not require a

specification of the dependence between the univariate time series.

Figure 5.1 illustrates the asymptotic elasticities for the considered Euro-countries given a

hypothetical credit event of GRC, i.e., the CDS price for Greek sovereigns takes an extremely

large value. Overall, the asymptotic elasticities are below one which indicates that a credit

event in GRC would not have led to a striking increase in the tail-risk of the other differenced

CDS price series. In other words, the tails of the distributions of changes in CDS prices for

the considered nine Eurozone countries are fairly robust with respect to a default in GRC.

Furthermore, most asymptotic elasticities decrease since January 2011 which is caused by an

increase in the price of the CDS spread for GRC by a factor of ten over 2011. This reduction

in fallout for the other Euro-countries is also observed in Lucas et al. (2014) on the basis of

conditional probabilities. They, additionally, point out the consistency of such findings with

the behavior of market participants who prepare for the possibility of a credit default as it

becomes more likely to occur. The less pronounced decline in the asymptotic elasticities for

IRL and PRT is caused by the fact that the tail-exponents of IRL and PRT are more similar

to the tail-exponent of GRC in comparison to the tail-exponents of the other countries. Note

that IRL and PRT were also supported through an EU/IMF program during 2011.

6. Conclusion

In this work we have proposed a novel approach to quantify effects of an extreme outcome in
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Figure 5.1: Estimated pairwise asymptotic elasticity as measure of spill-over from GRC to
AUT, BEL, GER, ESP, FRA, IRL, ITA, NLD, and PRT for the sample period January 18,
2010 to December 31, 2012. For each panel, the lower solid curve refers to the 5%-quantile
and the upper solid curve to the 95%-quantile of the distribution of the estimated asymptotic
elasticity.

31



an explanatory variable on a dependent variable via the asymptotic elasticity of a conditional

quantile, linking the dependent and explanatory variable. The asymptotic elasticity is an

ordinary elasticity but its argument takes the value of an extreme event. Hence, the intuitive

interpretation of the ordinary elasticity can be transferred to the asymptotic elasticity. A

closed form expression for the asymptotic elasticity is presented which is independent of the

exact relation between explanatory and dependent variable. A simple parametric estimation

and inference approach is presented.

The benefit of the proposed framework is demonstrated in two empirical examples related

to the literature on financial economics, in particular the measurement of systemic risk. By

interpreting the asymptotic elasticity as a spill-over measure for tail-risk, the estimation results

reveal statistically significant spill-over effects for tail-risk from Lehman Brothers as well as

Bear Stearns to other financial institutions during the subprime mortgage crisis. We also find

that the calculated spill-over measures show a significant increase before the default of these

institutions, while the measures drop substantially after the news of financial distress of these

institutions became public, making their share price drop enormously. We interpret these

outcomes in the following way: If all market participants are already aware that a financial

institution is in distress, there is only little uncertainty left which can be transferred from this

institution to other market participants. Moreover, the proposed methodology has confirmed

earlier empirical findings related to the European sovereign debt crisis. In particular, our

results suggest that based on the dynamic behavior of sovereign CDS spreads, a default of

Greece would not have had significant impacts on the solvency of other countries in the

Euro-area.
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A. Technical appendix

This appendix is chronologically structured as Section 3: First of all, tail-monotone density

functions, an analytical tractable form for the elasticity and conditional tail-(in)dependence

are discussed. Secondly, Proposition 1 is proven. Thirdly, Figures 3.2 and 3.3 are revis-

ited in the sense that we partly verify underlying regularity assumptions for these examples.

Fourthly, Proposition 2 is briefly proven. Last but not least, the discussion on more than one

explanatory variable is formally inspected.

Tail-monotone densities

Let Q(u) be the quantile function of a probability law with quantile density q(u) = Q′(u), cdf

F (x) and density f(x) = F ′(x). Equivalent to Definition 1, the tail-exponent γ > 0 is defined

as γ = limu→1 log f{Q(u)}/ log(1−u), where (i) γ < 1, (ii) γ = 1 and (iii) γ > 1 characterizes

(i) short-, (ii) exponential- and (iii) long tails. Holan and McElroy (2010, Section 4) argue that

the tail-control requirement of Definition 1, i.e., supx∈(a,b) F (x){1− F (x)}|f ′(x)|/f(x)2 ≤ γ,

is in this definition of the tail-exponent automatically fulfilled. Thus, the assumption of

tail-monotonicity does not seem to be restrictive for our modeling purpose.

Parzen (1979, Section 9) shows for the class of tail-monotone densities that f{Q(u)} ∼ (1−u)γ ,

u → 1, by relying on a general approximation of the tail-area of a distribution, see Andrews

(1973). Since f{Q(u)} = 1/q(u), the result of Parzen (1979) translates immediately into

q(u) ∼ (1− u)−γ , u→ 1.

Alternative representation for E

Following Sklar (1959), F (x1, x2) can be decomposed into the marginal cdfs and a copula

function C(·) describing the dependence between random variables X1 and X2 such that

F (x1, x2) = C{F1(x1), F2(x2)}. Overviews of copulae are given in Joe (1997) and Nelsen

(2006), while recent developments for mathematical and quantitative finance are presented

in Jaworski, Durante, and Härdle (2013). Based on Uj = Fj(Xj) and uj = Fj(xj) with

Uj ∼ U(0, 1) and uj ∈ (0, 1), j = 1, 2, an alternative representation of the conditional cdf (1)
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is given by

CU2|U1=u1(u2) = P(U2 ≤ u2|U1 = u1). (8)

The latter can be derived from the copula function C(·) but is not a copula for itself. The

inverse of C·|·(u2), denoted by C−1·|· (v), v ∈ (0, 1), is called C-quantile and introduced in Bouyé

and Salmon (2009). Based on the C-quantile and Qj(uj), uj ∈ (0, 1), j = 1, 2, the conditional

quantile from (2) can be rewritten as

QX2|X1=x1(α) = Q2{C−1F2(X2)|F1(X1)=F1(x1)
(α)}

= Q2{C−1U2|U1=u1
(α)}. (9)

The C-quantile representation of E(x1) relies on the derivative of QX2|X1=x1(α) wrt x1. To

analyze this derivative analytically, let qj(uj) = Q′j(uj), uj ∈ (0, 1), be the unconditional

quantile density, j = 1, 2. Based on (9), the derivative of QX2|X1=x1(α) wrt x1 is

∂

∂ x1
QX2|X1=x1(α) =

q2{C−1U2|U1=u1
(α)}

q1(u1)

∂

∂ u1
C−1U2|U1=u1

(α). (10)

Equation 10 demonstrates how the partial derivative of the conditional quantile wrt to x1 is

disentangled into components of the distribution of the dependent variable (through q2(·)),

the explanatory variable (through q1(·)) and their dependence (through C−1U2|U1=u1
(α) and

∂
∂ u1

C−1U2|U1=u1
(α)). Using (10), we obtain an alternative expression for the asymptotic elas-

ticity

E = lim
u1→1

Q1(u1)q2{C−1U2|U1=u1
(α)}

q1(u1)Q2{C−1U2|U1=u1
(α)}

∂

∂ u1
C−1U2|U1=u1

(α), (11)

which is analytically more tractable than the limit of (3). Moreover, (11) immediately reveals

that any scaling (or weighting) of the risk factors X2 and X1 vanishes. The C-quantile is

not affected by scaling either, since copulas describe dependence on a quantile-level and are

invariant under strictly increasing transformations of the risk factors X1 and X2, see Nelsen
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Figure A.1: C-quantile functions C−1U2|U1=u1
(α) for the bivariate Frank (upper-left), Gaus-

sian (upper-right), survival Clayton (lower-left) and Gumbel copula (lower-right) for a pa-
rameter referring to Kendall’s τ = 1/2. The alternating lines (solid and dashed) refer to
α ∈ {0.0001, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99, 0.9999} - bottom-up ordered.

(2006, Theorem 2.4.3).

Conditional tail-(in)dependence

According to Definition 2, X2 and X1 are conditionally tail-independent, if QX2|X1=x1(α) ∼

g(α), x1 → ∞. This definition is equivalent to C−1U2|U1=u1
(α) ∼ F2{g(α)}, u1 → 1. It

should be noticed that this notion of conditional tail-independence is not equivalent to the

generic definition of tail-independence based on the tail-dependence coefficient, see Bernard

and Czado (2015, Section 4). Figure A.1 presents four sets of C-quantile curves derived from

parametric copulas. For these copulas, there exists a mapping between the parameter of the

underlying copula and Kendall’s τ measuring the strength of dependence in a non-parametric
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way. The copula parameters employed below are chosen to refer to τ = 1/2.

The formula for the C-quantile curves of the Frank copula presented in the upper-left panel

of Figure A.1 is given by

C−1U2|U1=u1
(α; δ) = −1

δ
log

[
1− α{1− exp(−δ)}

exp(−δu1) + α{1− exp(−δu1)}

]
with δ ∈ R\{0}, (12)

where Figure A.1 uses δ ≈ 5.74. As the quantile curves do not converge towards one as

u1 → 1, the C-quantile implied by the Frank copula exhibits conditional tail-independence,

see Bernard and Czado (2015, Proposition 4.3). Moreover, the derivative of (12) wrt u1

can be straightforwardly shown to be zero as u1 → 1. In other words, the value of the

implied conditional quantile QX2|X1=x1(α) does not change if x1 is increased irrespective of

the employed marginal distributions for X1 and X2. The formula for the C-quantile curves

of the Gaussian copula presented in the upper-right panel of Figure A.1 is given by

C−1U2|U1=u1
(α; ρ) = Φ

{
Φ−1(α)

√
1− ρ2 + ρΦ−1(u1)

}
with ρ ∈ (−1, 1). (13)

The C-quantile in Figure A.1 relies on ρ ≈ 0.71 and approaches one as u1 → 1. Thus, the

C-quantile of the Gaussian copula does not exhibit conditional tail-independence.

Our notion of conditional tail-dependence in the right tail relies on asymptotic properties of

the conditional quantile, i.e., QX2|X1=x1(α) → ∞ as x1 → ∞ such that ∂
∂ x1

QX2|X1=x1(α)

is positive and bounded on an interval (x0,∞) for some x0. These requirements rule out

conditional tail-independence as x1 → ∞ and ensure that the conditional quantile does not

converge too fast to infinity. The equivalent properties in terms of the C-quantile are given

by C−1U2|U1=u1
(α) → 1 as u1 → 1 such that ∂

∂ u1
C−1U2|U1=u1

(α) is positive and bounded on an

interval (u0, 1) for u0 = F1(x0). The latter equivalence, however, is only true if the densities

f1(x1) and f2(x2) are strictly positive on the considered support. To see this, we refer to (10)

where qj(·) must be replaced by 1/fj{Qj(·)}, j = 1, 2.

Denoting the density function of the standard Gaussian distribution by φ(·) permits writing
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the derivative of the C-quantile of the Gaussian copula wrt u1 as

∂

∂ u1
C−1U2|U1=u1

(α; ρ) = ρ
φ
{

Φ−1(α)
√

1− ρ2 + ρΦ−1(u1)
}

φ {Φ−1(u1)}
, (14)

which can be shown to converge to infinity as u1 → 1. Therefore, the C-quantile of the

Gaussian copula fails to describe conditional tail-dependence. Figure A.1 also reveals that

the derivative of the C-quantile of the Gaussian copula is unbounded as u1 → 1.

Any C-quantile of the survival Clayton copula supports conditional tail-dependence in the

right tail, since the C-quantile converges to one and the derivative is positive as well as

bounded. To verify that the derivate of the C-quantile derived from the rotated Clayton

copula is bounded, note that it admits the representation

C−1U2|U1=u1
(α; δ) = 1−

[{
(1− α)−

δ
1+δ − 1

}
(1− u1)−δ + 1

]− 1
δ

with δ ∈ R+\{0}. (15)

The derivative of (15) wrt u1 can be calculated as

∂

∂ u1
C−1U2|U1=u1

(α; δ) = (1− u1)−(1+δ)
{

(1− α)−
δ

1+δ − 1
}

(16)

·
[
1 + (1− u1)−δ

{
(1− α)−

δ
1+δ − 1

}]− 1+δ
δ
,

with corresponding limit

lim
u1→1

∂

∂ u1
C−1U2|U1=u1

(α; δ) =
{

(1− α)−
δ

1+δ − 1
}− 1

δ
, (17)

which is obviously bounded for α ∈ (0, 1). This is graphically demonstrated in the lower-left

panel of Figure A.1 which is based on δ = 2.

The implied C-quantile of the Gumbel copula exhibits conditional tail-dependence only for

some values of α which is shown in the lower-right panel of Figure A.1. An analytical formula
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for this C-quantile is given by

C−1U2|U1=u1
(α; δ) = exp

[
−

{
− (− log u1)

δ

+

(δ − 1) W0

{−αu1(− log u1)
−δ log u1

}− 1
δ−1

δ − 1

δ


1
δ

 with δ > 1.

where W0(x) denotes the upper branch of the Lambert-W function. The derivative of

C−1U2|U1=u1
(α; δ) wrt u1 has an untractable form and is, thus, not presented here. Further-

more, this derivative cannot be shown to be bounded for all α ∈ (0, 1). As illustrated in the

lower-right panel of Figure A.1 which uses δ = 2, the derivatives are not bounded in the right

tail for too small values of α ∈ (0, 1) as u1 → 1. Nonetheless, numerical experiments can be

used to show that ∂
∂ u1

C−1U2|U1=u1
(α; δ) is positive and bounded, as u1 → 1, for δ >> 1 and

α >> 1/2.

Proof of Proposition 1

Let Q(u), u ∈ (0, 1), be the quantile function for random variable X ∈ R having a tail-

monotone density function. If Q(u) → ∞ as u → 1, there is a function a(u) satisfying

Q(u) ∼ a(u), u → 1. This follows from the fact q(u) = Q′(u) ∼ (1 − u)−γ , u → 1. Without

loss of generality, we can work with the centered random variable X = X − E(X) such

that E(X) = 0. As a consequence, the constant of integration K of the indefinite integral∫
q(u)du = Q(u) +K can be assumed to be zero, i.e., K = 0. Therefore, a(u) can be defined

by a(u) = (γ − 1)−1(1− u)1−γ in case γ > 1 and by a(u) = − log(1− u) in case γ = 1. Note

that Q(u) = − log(1− u) is the quantile function of the standard Exponential distribution.

To prove part (c) for γ1, γ2 > 1, recall that the asymptotic elasticity E can be expressed in

terms of u1 = F1(x1) ∈ (0, 1) according to (11), so that

E(u1) =
γ2 − 1

γ1 − 1

(1− u1)1−γ1{1− C−1U2|U1=u1
(α)}−γ2

(1− u1)−γ1{1− C−1U2|U1=u1
(α)}1−γ2

∂

∂ u1
C−1U2|U1=u1

(α)

=
γ2 − 1

γ1 − 1

1− u1
1− C−1U2|U1=u1

(α)

∂

∂ u1
C−1U2|U1=u1

(α) as u1 → 1. (18)
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Since ∂
∂ x1

QX2|X1=x1(α) is positive and bounded on (x0,∞) for some x0,
∂
∂ u1

C−1U2|U1=u1
(α) is

positive and bounded on (u0, 1), u0 = F1(x0), as well. As the limit (18) is not well defined,

we apply l’Hôpital’s rule to the middle part to obtain

E(u1) =
γ2 − 1

γ1 − 1

1
∂
∂ u1

C−1U2|U1=u1
(α)

∂

∂ u1
C−1U2|U1=u1

(α) =
γ2 − 1

γ1 − 1
as u1 → 1.

Now, let γ1 > 1 and γ2 = 1 to obtain

E(u1) =
1

1− γ1

(1− u1)1−γ1{1− C−1U2|U1=u1
(α)}−1

(1− u1)−γ1 log{1− C−1U2|U1=u1
(α)}

∂

∂ u1
C−1U2|U1=u1

(α) (19)

=
1

1− γ1
1− u1

{1− C−1U2|U1=u1
(α)} log{1− C−1U2|U1=u1

(α)}
∂

∂ u1
C−1U2|U1=u1

(α) as u1 → 1.

L’Hôpital’s rule yields

E(u1) =
(1− γ1)−1

[1 + log{1− C−1U2|U1=u1
(α)}] ∂

∂ u1
C−1U2|U1=u1

(α)

∂

∂ u1
C−1U2|U1=u1

(α) as u1 → 1.

As C−1U2|U1=u1
(α)→ 1 as u1 → 1 under conditional tail-dependence, E(u1) = 0 as u1 → 1.

To prove part (b), instead of (19), we obtain

E(u1) = (1− γ2)
(1− u1) log(1− u1)
1− C−1U2|U1=u1

(α)

∂

∂ u1
C−1U2|U1=u1

(α) as u1 → 1. (20)

Since the limit of (20) is not well defined, we apply l’Hôpital’s rule and get

E(u1) = (1− γ2)
1 + log(1− u1)
∂
∂ u1

C−1U2|U1=u1
(α)

∂

∂ u1
C−1U2|U1=u1

(α) =∞ as u1 → 1.

To prove part (a) for γ2, γ1 > 1, note that C−1U2|U1=u1
(α) ∼ F2{g(α)}, u1 → 1, by the definition

of conditional tail-independence, so that (18) can be rewritten

E(u1) =
γ2 − 1

γ1 − 1

1− u1
1− F2{g(α)}

∂

∂ u1
F2{g(α)} = 0 as u1 → 1.

The other three cases when (i) γ2 = γ1 = 1, (ii) γ2 > 1, γ1 = 1 and (iii) γ2 = 1, γ1 > 1 follow
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along similar lines. �

Figures 3.2 and 3.3 revisited

In the examples of Figures 3.2 and 3.3, the conditional quantiles are built from the C-quantile

representation given in (9). The marginal distributions include the cdfs of the standard

Gaussian, Cauchy, Pareto and Student’s-t laws. Among these, only the quantile density

and tail-exponent of the Student’s-t distribution are not documented in the literature yet.

The others are reported in Parzen (1979). In the subsequent paragraphs, we verify that the

tail-exponent of the Student’s-tν density equals γ = 1 + 1/ν and show that the C-quantile

C−1U2|U1=u1
(α) implied by the Cauchy-type copula has non-zero and bounded derivatives as

u1 → 1. Furthermore, we present the derivative for the C-quantile implied by the Student’s-t

copula. The requirements that the derivative of the corresponding C-quantile is bounded

might depend on the parameters and value of α ∈ (0, 1) though. Properties of the C-quantiles

(and their derivatives) related to the Frank- and survival Clayton copula have been discussed

above. The corresponding graphics in Figure 3.2 and 3.3 use parameters δ = 18.19 and δ = 1,

which refer to values of Kendall’s τ of τ = 4/5 and τ = 1/3 respectively.

Denote by Iz(a, b) the regularized incomplete beta function. Solving s = Iz(x, y) wrt z for

s ∈ (0, 1), gives the inverse of the regularized incomplete beta function denoted by I−1s (a, b).

Elementary calculations determine the quantile density of a Student’s-tν distribution by

q(u; ν) =
√
ν B

(
ν

2
,
1

2

)
I−1v(u)

(
ν

2
,
1

2

)− 1+ν
2

for v(u) =


2(1− u) if u ∈ (1/2, 1)

2u if u ∈ (0, 1/2)

1 if u = 1/2

, (21)

with beta function B(·, ·). From the definition of the tail-exponent we get γ = 1 + 1/ν, i.e.,

γ = lim
u→1

log f {Q(u; ν); ν}
log(1− u)

= lim
x→∞

log f(x; ν)

log {1− F (x; ν)}
= 1 +

1

ν
.

For Cauchy-distributed X2 and X1, i.e., Xj ∼ Cauchy(µj , σj), j = 1, 2, Bernard and Czado

(2015, Section 3.3) derive a conditional cdf under the assumption that the quantile of X2

40



conditional on X1 is linear and σ2 > |b|σ1 for dependence parameter b ∈ (−1, 1). The implied

dependence is called “Cauchy copula” whose C-quantile is determined by

C−1U2|U1=u1
(α;σ1, σ2, b) =

1

2
+

1

π
arctan

[
cot(απ)(σ1|b| − σ2) + σ1b tan

{
π
(
u1 − 1

2

)}
σ2

]
.

The derivative of C−1U2|U1=u1
(α;σ1, σ2, b) wrt u1 can be explicitly computed as

∂

∂ u1
C−1U2|U1=u1

(α;σ1, σ1, b) =
σ1b sec

{
π
(
u1 − 1

2

)}2
σ2 + σ−12

[
(σ1|b| − σ2) cot(απ) + σ1b tan

{
π
(
u1 − 1

2

)}]2 .
Interestingly, the limits for this derivative are identical in the left and right tail. The latter

is given by limu1→1
∂
∂ u1

C−1U2|U1=u1
(α;σ1, σ2, b) = b · σ2/σ1 which is bounded and non-zero for

b 6= 0. Figure 3.3 uses b = 1/2, σ1 = 1 and σ2 = 3.

For ease of notation denote by tν(·) and t−1ν (·) the cdf and quantile function of the Student’s-

tν distribution with ν degrees of freedom. Following Bernard and Czado (2015, Table 2), the

C-quantile of the Student’s-tν copula having correlation parameter ρ and ν > 2 is given by

C−1U2|U1=u1
(α; ρ, ν) = tν

[
t−1ν+1(α)

√
1− ρ2
1 + ν

{
ν + t−1ν (u1)2

}
+ ρ t−1ν (u1)

]
.

The derivative of C−1U2|U1=u1
(α; ρ, ν) wrt u1 has a less appealing formula given by

∂

∂ u1
C−1U2|U1=u1

(α; ρ, ν) = t′ν

[
t−1ν+1(α)

√
1− ρ2
1 + ν

{
ν + t−1ν (u1)2

}
+ ρt−1ν (u1)

]
(22)

·
ρ+ t−1ν+1(α)

√
1−ρ2
1+ν

t−1
ν (u1)2

ν+t−1
ν (u1)2

t′ν
{
t−1ν (u1)

} ,

where t′ν(·) denotes the density of the Student’s-tν distribution. Figure 3.2 uses the parameters

ρ = 0 and ν = 5. For the more general case, where ρ = 0, ν > 2 and α ∈ (0, 1)\
{
1
2

}
, the

limit of (22) is given by

lim
u1→1

∂

∂ u1
C−1U2|U1=u1

(α; 0, ν) = ±

√{
I−1v(α)

(
1 + ν

2
,
1

2

)}−1
− 1

{
I−1v(α)

(
1+ν
2 , 12

)
1− I−1v(α)

(
1+ν
2 , 12

)} 1+ν
2

,
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having the positive sign for v(α) = 2(1−α), α ∈ (1/2, 1), and the negative sign for v(α) = 2α,

α ∈ (0, 1/2). Even though we do not present a general analytical form for the case ρ ∈ (−1, 1),

we would like to emphasize that numerical experiments have shown that the limit of (22)

usually deviates from zero in case ρ 6= 0.

Proof of Proposition 2

Having the
√
n-consistent and asymptotically Gaussian estimator θ̂, the Delta-method yields

√
n
[
{γ(θ̂)− 1} − {γ(θ0)− 1}

]
−→L N

[
0,J {γ(θ0)}Σ(θ0)J {γ(θ0)}>

]
.

Using γ1(θ̂1) > 1, the distribution of Ê can be approximated by

P
(
Ê ≤ x

)
= P

{
γ2(θ̂2)− 1

γ1(θ̂1)− 1
≤ x

}

= P
[
(1,−x){γ(θ̂)− 1} ≤ 0

]
= P

(√
n 1(x)>

[
{γ(θ̂)− 1} − {γ(θ0)− 1}

]
≤ −
√
n 1(x)> {γ(θ0)− 1}

)
≈Φ

( √
n 1(x)> {1− γ(θ0)}

[1(x)>J {γ(θ0)}Σ(θ0)J {γ(θ0)}>1(x)]
1/2

)
for large n.

�

Several explanatory variables revisited

Last but not least, let us revisit the situation when d risk factors X1, . . . , Xd are involved in

the analysis. The subsequent paragraph provides the technical foundation for the claim stated

above that the asymptotic elasticity Ek` relying on two risk factors Xk and X` is equivalent

to Ek`(x−k) relying on d risk factors X1, . . . , Xd given that all components of x−k converge

simultaneously to infinity.

Formally, let the Rd valued random variable X = (X1, . . . , Xd)
> refer to d risk factors and

define X−k = (X1, . . . , Xk−1, Xk+1, . . . , Xd)
>, i.e., random variable Xk is not included in X−k.

Denote by F (x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd) the cdf of X and by C(u1, . . . , ud) the
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corresponding copula. The corresponding conditional cdf is denoted by

FXk|X−k=x−k(xk) = P(Xk ≤ xk|X−k = x−k), (23)

with x−k = (x1, . . . , xk−1, xk+1, . . . , xd)
>. As FXk|X−k=x−k(xk) is strictly increasing in xk,

the conditional quantile is

QXk|X−k=x−k(α) = F−1Xk|X−k=x−k
(α) with α ∈ (0, 1). (24)

Based on Uj = Fj(Xj) and uj = Fj(xj) with Uj ∼ U(0, 1) and uj ∈ (0, 1), j = 1, . . . , d, the

conditional cdf (23) can be expressed in terms of the conditional copula by

CUk|U−k=u−k(uk) = P(Uk ≤ uk|U−k = u−k),

where {U−k = u−k} = {F−k(X−k) = F−k(x−k)} refers to the event {F1(X1) = F1(x1), . . . ,

Fk−1(Xk−1) = Fk−1(xk−1), Fk+1(Xk+1) = Fk+1(xk+1), . . . , Fd(Xd) = Fd(xd)}. Using the

corresponding C-quantile C−1Uk|U−k=u−k
(α) and unconditional quantiles, (24) can be rewritten

as

QXk|X−k=x−k(α) = Qk{C−1Uk|U−k=u−k
(α)}.

Using this C-quantile representation, the asymptotic elasticity is given by

Ek` = lim
u−k→1

Q`(u`)qk{C−1Uk|U−k=u−k
(α)}

q`(u`)Qk{C−1Uk|U−k=u−k
(α)}

∂

∂ u`
C−1Uk|U−k=u−k

(α), α ∈ (0, 1), (25)

where limu−k→1 means that each component of u−k converges to 1 and 1 is vector of ones con-

sisting of (d− 1) components. Since C(1, . . . , 1, uk, u`, 1, . . . , 1) = D(uk, u`), where D(uk, u`)

is the copula between Uk = Fk(Xk) and U` = Fk(X`), (25) is - due to the continuity of
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underlying functions - equivalent to

Ek` = lim
u`→1

Q`(u`)qk{D−1Uk|U`=u`
(α)}

q`(u`)Qk{D−1Uk|U`=u`
(α)}

∂

∂ u`
D−1Uk|U`=u`

(α), (26)

where D−1Uk|U`=u`
(α) refers to the C-quantile derived from the bivariate copula of Uk and U`.

Note that the right hand side of (26) brings us back to the pleasant situation used for the

proofs of Proposition 1, see Equation 11.
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