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Vermorken et al. (2012) introduce a new measure of diversification, the Diversification Delta

based on the empirical entropy. The entropy as a measure of uncertainty has successfully been

used in several frameworks and takes into account the uncertainty related to the entire statistical

distribution and not just the first two moments of a distribution. However, the suggested

Diversification Delta measure has a number of drawbacks that we highlight in this article.

We also propose an alternative measure based on the exponential entropy which overcomes

the identified shortcomings. We present the properties of this new measure and illustrate its
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1. Introduction

Vermorken et al. (2012) introduce a new measure of diversification, which is based on higher

moments of the return distribution of a portfolio. The proposed measure, called Diversification

Delta (DD), is based on the concept of Shannon entropy, or information entropy, that can

measure the uncertainty related to the entire statistical distribution and not just the first two

moments of a distribution.

Investors typically diversify their portfolios with the aim of reducing their exposure to idio-

syncratic risks of individual assets, while the correlation matrix of asset returns is regarded

as the common metric for measuring portfolio diversification. However, the correlation matrix

provides a quantification of the pairwise relation between two or more stochastic processes. As

pointed out by Statman and Scheid (2008), the correlation matrix does not account for the im-

pact of individual assets on the variance of the portfolio. Furthermore, modern portfolio theory

quantifies the level of diversification by using the first two moments of the return distribution

only.

As mentioned in Vermorken et al. (2012), different diversification measures have been pro-

posed in the financial literature. Various researchers consider the use of the correlation matrix,

as well as alternative measures such as clustering based methods, the portfolio diversification

index, and the return gaps. For a detailed analysis of these methods, see, for example, Dop-

fel (2003), Brown and Goetzmann (2003), Rudin and Morgan (2006) and Statman and Scheid

(2008). These models come as a response to the classic portfolio optimization model introduced

by Markowitz (1952). Other models include indexes based on mean-variance analysis (MVA)

such as the Sharpe ratio by Sharpe (1966) and indexes based on risk measures, such as the

diversification index defined by Tasche (2006) which is based on the value at risk. Although

the use of these indexes has been successful to a large extent, the diversification delta has the

advantage of not being restricted to the first two moments of the return distribution. It also

captures diversification by comparing return distributions of the assets before and after the

portfolio is constructed. At the same time, it is relatively easy to calculate and interpret.

As argued by Vermorken et al. (2012), entropy captures the reduction in uncertainty as a

portfolio of various assets becomes more diversified. Increased portfolio diversification reduces

uncertainty and lowers entropy. The proposed DD measure has the advantage of straightforward

application and interpretation for portfolios consisting of different asset classes. Based on an

empirical example, using returns from different infrastructure indexes, the authors argue that
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the application of DD [..] gives the portfolio manager a much clearer picture of the reality in the

market than the correlation coefficient. Therefore, DD presents an interesting contribution to

the study of portfolio theory and diversification. However, the way the measure is constructed,

based on the entropy of individual asset returns and the portfolio return distribution, leads

to some issues that will be examined in this study. For example, it is easy to illustrate that

the proposed measure does not provide a range of 0 ≤ DD ≤ 1 as suggested by the authors.

This is true, in particular, when assets with a different level of risk or variance are being

combined, and makes appropriate interpretation of the measure quite difficult. Further, in

some instances, the measure provides results that contradict what one would intuitively expect

from a diversification measure.

The remainder of the paper is structured as follows. Section 2 analyzes the DD presented

in Vermorken et al. (2012) and illustrates some shortcomings of the proposed measure. In

Section 3, we present a revised measure that is also based on the entropy of a random variable

but overcomes several of the problems of the original DD. Section 4 provides an empirical

application of the original DD and the newly proposed measure. Conclusions and suggestions

for future work are presented in Section 5.

2. The Diversification Delta

The diversification delta is based on the entropy as a measure of uncertainty. Originally, the

entropy was defined in a statistical mechanics framework and it was introduced in information

theory by Shannon (1948). Since then, entropy has successfully been used in measuring uncer-

tainty in several areas such as applied mathematics, electrical engineering, computer science,

physics and neuroscience among many others.

In econometrics, the discrete entropy is often maximized to fit probability functions, see,

for example, Maasoumi (1993) and Ullah (1996). In the context of financial economics, the

entropy and the conditional entropy have been used to define convex risk measures (Laeven and

Stadje, 2010; Föllmer and Knispel, 2011), while entropy measures have been used to estimate

distributions associated with financial data (Kitamura and Stutzer, 1997; Robertson et al.,

2005).

Although the use of entropy has not become a widespread measure in the portfolio optim-

ization literature or amongst practitioners, interesting studies can be found. In the seminal

work of Philippatos and Wilson (1972), entropy is used for the first time in a portfolio optim-
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ization framework. Following this, Hua and Xingsi (2003) and Bera and Park (2008) reported

that entropy can be an effective alternative to the MVA. More recently, entropy has received

increased attention as it can capture heavy tails that are often present in financial return data

(Urbanowicz et al., 2012; Dey and Juneja, 2012). Regarding the use of entropy to build diversi-

fication measures, Bera and Park (2008) and Meucci (2009) developed diversification measures

based on maximizing the entropy.

The framework by which entropy is used in the definition of the diversification delta differs

from the way it is used in other portfolio analysis methods. In this case, entropy plays the central

role and is evaluated in both the assets and the portfolio with no further analysis needed. Also,

as suggested by Campbell (1966), the exponential entropy is used to avoid singularities of the

entropy while still letting the uncertainty speak for itself. The exponential entropy is also

mentioned as a risk measure in Fabozzi (2012).

For a given portfolio P consisting of N assets (X1, ..., XN) and weights (w1, ..., wN), with
N∑
i=1

wi = 1, Vermorken et al. (2012) define the diversification delta as

DD(P ) =

exp

(
N∑
i=1

wiH(Xi)

)
− exp

(
H

(
N∑
i=1

wiXi

))
exp

(
N∑
i=1

wiH(Xi)

) , (1)

where f is the density of X and H(X) = −
∫
x
[f(x)] log(f(x))dx is the differential entropy.

The differential entropy is used as a measure of uncertainty. The estimator of the entropy they

consider is the one developed in Stowell and Plumbley (2009). Given that we do not consider

the discrete entropy, we refer to it simply as entropy. The higher the level of entropy, the higher

the uncertainty and vice-versa. The DD is designed to measure the diversification effect of a

portfolio by considering the entropy of the assets and comparing it with the entropy of the

portfolio.

The diversification delta is defined as a ratio that compares the weighted individual assets

and the portfolio. The use of such ratio constitutes an interesting idea which quantifies the effect

of diversification. Also, the use of the entropy to measure uncertainty in this context is in itself

an important contribution. However, the way the entropy is used to measure uncertainty entails

a number of issues. First, the measure of uncertainty used in equation (1) must satisfy a number

properties for the ratio to adequately measure portfolio diversification. Artzner et al. (1999),

Rockafellar et al. (2006) and McNeil et al. (2005), among others, have thoroughly analyzed
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desirable properties for measures of risk and uncertainty in a portfolio optimization framework.

In the case of the entropy, although it has proven to be very effective in measuring uncertainty,

it is well known that it is not homogeneous, is not left-bounded and is not subadditive, see,

for example, Cover and Thomas (1991). In the definition of the diversification delta, the

exponential function is used to account for these issues, however, it is not achieved in an

adequate framework, as we now discuss in further detail.

Recall that the diversification delta compares the individual assets with the portfolio using

the measure of uncertainty. The first characteristic we notice is that, for the diversification delta

to be positive, the measure of uncertainty must satisfy some kind of subadditivity that ensures

that the numerator in (1) is positive. As noted by Artzner et al. (1999) and McNeil et al. (2005),

subadditivity is a crucial feature for measures of uncertainty or risk as it reflects the fact that

risk can be reduced by diversification. The authors also comment on the shortcomings of the

use of measures that do not account for this, the most notable example being VaR (McNeil et

al., 2005). Subadditivity is not satisfied in the definition of the diversification delta, which can

in fact not only be negative, but is also not left-bounded. Vermorken et al. (2012) state that

the DD should exhibit a range of outcomes between 0 and 1. The authors suggest that this

is actually one of the great benefits of the measure allowing for straightforward interpretation.

While a value of 0 represents no diversification, a ’[...] value of one indicates that only market

risk remains in the portfolio and all idiosyncratic risk has been diversified.’ (page 68) Therefore,

the measure is not meant to be negative, since this causes some difficulties with respect to its

interpretation. As we will illustrate in an example, negative outcomes for DD are likely to

occur even under very plausible scenarios. This is particularly worrying as it contravenes the

essential idea of the diversification delta.

Homogeneity is another desirable property for measures of uncertainty, as it ensures that

changes in the size of an asset or the portfolio are detected according to their magnitude1.

Given that H(aX) = H(X) + log(|a|), see Cover and Thomas (1991), the left-hand side in

the numerator of (1) is not homogeneous with respect to the asset. This means that changes

in the size of the assets are not detected in the same way as changes in the portfolio, leading

to inconsistencies in the measurement of diversification. In the following Examples 1 to 3, we

highlight the shortcomings of the diversification delta we have described. For simplicity, we

consider the bivariate case.

1A function F is homogenous if for a constant a, F (ax) = aF (x).
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In Example 1, we present a portfolio formed by two assets following a normal distribution.

We consider the particular case when one of the assets is riskier than the other, indicated by a

significantly higher variance. Such a scenario is realistic for real world portfolios, for example

when combining defensive assets (e.g. bonds) with growth assets (e.g. equities). Unfortunately,

Vermorken et al. (2012) in their analysis do not consider such a case, but rather focus on the

behavior of the diversification delta when assets with identical or very similar variance are

combined to create a portfolio.

Example 1. Assume that the expected returns of Asset 1 are normally distributed with µX1 =

0.05 and σX1 = 0.1, while expected returns of Asset 2 follow a normal distribution with µX2 =

0.01 and σX2 = 0.02.

Thus, the first asset yields a higher expected return with higher risk, measured by the stand-

ard deviation, while the second asset exhibits a lower expected return, but also a significantly

lower standard deviation. The diversification delta for a portfolio with normally distributed

assets can be expressed as (see Appendix A, equation (6)):

DD(P ) =
σw1
X1
σw2
X2
− σP

σw1
X1
σw2
X1

(2)

= 1− σP
σw1
X1
σw2
X2

.

Let us first consider the case when asset returns are independent. For a portfolio consisting of

Asset 1 and Asset 2, the diversification delta is then equal to:

DD(P ) = 1− 1

2

√
26

25
· 5

1
≈ −0.14,

which is less than zero. Furthermore, it is clear that DD(P ) becomes more and more negative

the smaller σX2 is. In fact, note that if σX2 → 0, then σP → w1σX1 = 0.1w1 and, from equation

(6), DD(P )→ 1− 0.1w1

0.1·0 = −∞.

This issue presents complications when interpreting the diversification delta. Figure (1)

illustrates the results for the constructed portfolios using Asset 1 and Asset 2. On the left-hand

side, similar to Vermorken et al. (2012), we consider an equal weighted portfolio and determine

the coefficient of correlation ex ante from −1 to 1. On the right-hand side we consider a portfolio

consisting of independent assets by changing the weight w1 of Asset 1 from 0 to 1. The figure

illustrates that the DD becomes negative once the coefficient of correlation is greater than −0.8.

Note that we still observe that DD declines once the correlation coefficient increases, i.e. when
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the diversification is reduced. Therefore, in a relative way, the proposed measure still contains

information on the benefits of diversification when the two assets are combined into a portfolio.

However, the interpretation of DD becomes significantly more difficult in this case, since it can

take on negative values. The right-hand side shows that the DD exhibits erratic behavior when

the weights change, which further complicates its interpretation.
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Figure 1: Diversification Delta as a function of the correlation coefficient and the portfolio weight w2 for an

exemplary two-asset portfolio. Expected returns of Asset 1 are normally distributed with µX1
= 0.05 and

σX1 = 0.1, while expected returns of Asset 2 follow a normal distribution with µX2 = 0.01 and σX2 = 0.02. On

the left-hand side we assume w1 = w2 = 0.5 and an ex ante determined correlation coefficient varying between

−1 and 1. On the right-hand side we assume the assets are independent and an ex ante determined weight w2

of the second asset.

Further, as mentioned earlier, the lack of homogeneity presents issues with the consistency

of the diversification delta. It is a well-known fact that portfolios consisting of assets that are a

linear combination of one asset offer no diversification. However, the diversification delta fails

to detect this simple property and yields negative values for such portfolios. For simplicity, we

will once more consider the bivariate case in our second example and construct a portfolio of

assets which are a linear combination of each other.

Example 2. Let P be a portfolio consisting of two assets, X and aX, with a being a positive

constant. Using the property of the differential entropy, H(aX) = H(X) + log(|a|), and w1 +
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w2 = 1, the diversification delta is:

DD(P ) =
aw2 − (1 + (a− 1)w2)

aw2
.

This value does not depend on the entropy H(X) and is only zero when one of the weights is

zero and negative in any other case.

Consider for Example 2 the case where a = 2, that is, one of the assets is twice the other

one. In this case the diversification delta is DD(P ) = 2w2−(1+w2)
2w2

. In Figure (2), we illustrate

this case when the weight for Asset 2, w2, is allowed to vary from w2 = 0 up to w2 = 1. It

becomes obvious that for the illustrated example, the DD is negative for all cases except for

either w2 = 0 or w2 = 1, where the DD takes on a value of zero. The measure reaches its

minimum value for w2 = 0.4427. However, while the constructed portfolio does not provide

any diversification benefits, it is also neither less nor more diversified than the original assets

1 or 2. It is the lack of homogeneity in the left-hand side of the numerator of (1) which yields

different results for different weights. For the specified example, an appropriate measure for

diversification of a portfolio should be 0 for all constructed portfolios and should not depend

on the choice of the portfolio weights.
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Figure 2: Diversification Delta as a function of portfolio weight w2 for an exemplary two-asset portfolio with

Asset 2 equal to 2*Asset 1. The constructed portfolio will not provide any diversification.

Let us finally consider Example 3, where we illustrate the lack of homogeneity of the original
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DD leads to inconsistent results.

Example 3. Investor 1 is building a portfolio consisting of assets X1 and X2. This investor

determines that a portfolio with equal weights to be optimal, i.e. P1 = 1
2
X1+ 1

2
X2. In a different

market, investor 2 is building a portfolio from assets Y1 = 3
2
X1 and Y2 = 3

4
X2.

2 This investor

determines optimal weights of w1 = 1
3

and w2 = 2
3
, yielding the same portfolio P2 = 1

2
X1 + 1

2
X2.

Given that both portfolios are the same and have the same underlying assets, one would expect

that the two portfolios have the same diversification delta. However this is not the case (see

Appendix B) such that

DD(P1) 6= DD(P2).

This follows from the lack of homogeneity of the left-hand side of the numerator in equation

(1).

Given the drawbacks we identified in the diversification delta, we now deal with the issue

of defining an alternative measure.

3. A revised Diversification Delta (DD∗) measure

As we mentioned before, using a ratio that compares the uncertainty of individual assets

with the uncertainty of the portfolio is an interesting approach to portfolio analysis. Also, given

the ability of the entropy to measure uncertainty while taking into account higher moments, we

agree with Vermorken et al. (2012) that a measure based on the entropy will provide a useful

tool to quantify portfolio diversification. We now focus on the issue of defining a measure that

overcomes the drawbacks of the original diversification delta, while still relying on the entropy

to measure uncertainty. As we have seen, a measure of uncertainty should satisfy certain

properties to be well defined. In particular, it is desirable that the measure is homogeneous

and subadditive, see Artzner et al. (1999); McNeil et al. (2005). The measure should also be

bounded between 0 and 1, while reflecting the level of portfolio diversification.

The differential entropy itself is not subadditive or homogeneous. Moreover, unlike the

discrete entropy, it can be negative. The differential entropy is maximized by the normal

distribution. That is, when X is a random variable with finite variance σ2
X , we have:

H(X) ≤ log(
√

2πeσ2
X), (3)

2Note that the coefficients in these equations represent volume not weights.
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see, for example, Cover and Thomas (1991).

An interesting case for analysis is the entropy of a constant, that is when X = C and

σX = 0. Although the density is not defined in this case, it is obvious that when a random

variable tends to approach a constant, its differential entropy tends to approach −∞. Although

this is consistent with the idea that the smaller the entropy the less uncertainty there is, it makes

entropy more difficult to deal with.

The issues we just discussed can be addressed by considering the exponential entropy as a

measure of uncertainty. The exponential entropy satisfies the following properties for variables

X and Y and constants C ∈ R and λ > 0,

(1) exp(H(X + C)) = exp(H(X)),

(2) exp(H(0)) = 0 and exp(H(λX)) = λ exp(H(X)),

(3) exp(H(X + Y )) ≤ exp(H(X)) + exp(H(Y )),

The proof of (1) and (2) can be found in Cover and Thomas (1991) and (3) is verified in

Salazar (2014).

These properties imply that for random variables X1, ..., XN and weights (w1, ..., wN), with
N∑
i=1

wi = 1:

exp

(
H

(
N∑
i=1

wi (Xi)

))
≤

N∑
i=1

wi exp (H(Xi)) .

This is straightforward for N = 2 and it follows inductively for higher values. Considering this

and properties (1) to (3), we propose the following revised measure, the diversification delta

DD∗:

DD∗(P ) =

N∑
i=1

wi exp (H(Xi))− exp

(
H

(
N∑
i=1

wiXi

))
N∑
i=1

wi exp (H(Xi))

. (4)

Note that the difference with the original diversification delta proposed by Vermorken et al.

(2012) is that in the left-hand side of the numerator, we use the weighted geometric mean of the

exponential entropies of the assets, instead of the weighted arithmetic mean. The estimator of

the entropy we consider is also the one found in Stowell and Plumbley (2009). We now analyze

Examples 1 to 3 using the new DD∗ measure.
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3.1. Examples 1 to 3 revisited.

Considering Example 1, in the bivariate gaussian case, the new DD∗ is equal to3

DD∗(P ) =
(w1σX1 + w2σX2)− σP

(w1σX1 + w2σX2)
(5)

= 1− σP
(w1σX1 + w2σX2)

,

with σ2
P = w2

1σ
2
X1

+ 2ρw1w2σX1σX2 + w2
2σ

2
X2

. Note that, when the variances are the same, this

measure and the original diversification delta of equation (6) are equal to 1− σP
σX1

. In equations

(6) and (7), we see the differences between the measures exemplified. It shows why investing

in one asset with low variance affects the measures in a very different way. In Figure 3 we

replicate Figure 1 using the new diversification measure DD∗. In this figure we see that all

values are between 0 and 1 and exhibit a less erratic behavior in comparison to the original

diversification delta.

Now, considering Example 2, let P be a portfolio consisting of assets (X1, ..., XN) which are

all positive linear combinations of an asset X. Hence, Xi = aiX + bi, for constants ai > 0 and

bi with i ∈ {1, ..., N}. Using the properties of the differential entropy it is easy to show (see

Appendix C) that

N∑
i=1

wi exp (H(Xi)) = exp

(
H

(
N∑
i=1

wiXi

))
,

such that the revised measure of diversification takes on a value of zero in this case. Therefore,

the revised measure will be equal to zero for this case, where no diversification is achieved,

since only linear combinations of an individual asset x are being combined.

Finally, for Example 3 consider the same notations as previously, in particular c1 = exp(H(X1)),

c2 = exp(H(X2)) and c3 = exp(H(1
2
X1 + 1

2
X2)). It is easy to show (see Appendix D) that for

the new measure, we get

DD∗(P1) = DD∗(P2) =
c1 + c2 − 2c3
c1 + c2

.

Given the homogeneity of the exponential entropy, the same holds for similar constructions.

From the analysis, the DD∗ measure is always between 0 and 1, therefore, it is equal to 1 when

3See Appendix A, equation (7).
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Figure 3: New Diversification Delta DD∗ as a function of coefficient of correlation and portfolio weight w2

for an exemplary two-asset portfolio. Expected returns of Asset 1 are normally distributed with µX1 = 0.05

σX1 = 0.1, while expected returns of Asset 2 follow a normal distribution with µX1 = 0.01 σX1 = 0.02. On the

left-hand side we assume w1 = w2 = 0.5 and an ex ante determined correlation coefficient varying between −1

and 1. On the right-hand side we assume the assets are independent and an ex ante determined weight of the

second asset.

the portfolio is constant (no risk) and 0 when the assets are a positive linear combination of

a single asset (perfect positive dependence). Also, given the homogeneity of the exponential

entropy, changes in the size of the portfolio and the assets are detected according to their

magnitude.

3.2. Diversification Delta and the Sharpe Ratio

Let us now consider how the original DD and the newly derived Diversification Delta

measure DD∗ relate to the Sharpe ratio that measures reward-to-variability. Assume that

the expected returns of Asset 1 are normally distributed with µ1 = 0.05 and σ1 = 0.1, while

expected returns of Asset B follow a normal distribution with µ2 = 0.01 and σ2 = 0.02. So

the first asset yields a higher expected return with higher risk, measured by the standard

deviation, while the second asset has a lower expected return, but also a significantly lower

standard deviation. Assume that the coefficient of correlation equals ρ = 0.3 for this example

and that the portfolio only consists of these two assets, i.e. w1 + w2 = 1. We now calculate
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values of the Sharpe ratio, the original DD and the revised DD∗ for portfolios where w1 and

w2 are determined ex ante. In other words, we express the considered diversification, risk and

reward-to-variability measures as a function of w1, the weight for the more risky asset.
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Figure 4: Sharpe Ratio (upper panel), original Diversification Delta (DD) (middle panel) and revised Diversific-

ation Delta DD∗ (lower panel) as a function of the coefficient of portfolio weight w1 for the exemplary two-asset

portfolio. Expected returns r1 of Asset 1 are normally distributed with µ1 = 0.05 and σ1 = 0.1. Asset 1 is

combined with another Asset 2 with weight w2 (w1 + w2 = 1). Returns of Asset 2 are normally distributed

returns µ2 = 0.01 and σ2 = 0.02. The coefficient of correlation between returns from Asset 1 and Asset 2 is set

to be 0.3. Both the DD∗ and the Sharpe Ratio are maximized for w1=0.12

Figure 4 once more illustrates that the original DD does not really contain any information

that can be easily interpreted by an investor. The measure takes on negative values for 0.15 ≤

w1 ≤ 1 which makes it almost impossible to create meaningful results from this measure. On the

other hand, we observe that for normally distributed returns, the Sharpe ratio and the revised

Diversification Delta DD∗ are highly correlated. This makes sense, since the entropy of the

normal distribution is entirely defined by its variance, therefore, a combination of assets with

the highest Sharpe ratio will also yield a high DD∗. Both measures are initially increasing, take

on their maximum value for w1 = 0.12 and then decrease. Since, both individual assets provide

a Sharpe ratio of 0.5, this is the lowest possible outcome for the ratio when either w1 = 1

or w1 = 0. Overall, we find that for the different portfolios we obtain 0.5 ≤ SR ≤ 0.6238.
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The revised DD∗, on the other hand, takes on a value of 0 when the entire investment is

either allocated to Asset 1 or Asset 2 (no diversification) and increases when the two assets are

combined. It reaches a maximum value for w1 = 0.12 where we obtain DD∗ = 0.1936. Overall,

we conclude that when returns follow a normal distribution, DD∗ and the SR yield very similar

results with respect to the portfolio that maximizes these measures. Note, however, that unlike

the SR, the DD∗ considers the variance of the different assets (and not only of the portfolio)

and is not dependent on the expected return. In that sense, the DD∗ measures whether the

risk is diversified away by the portfolio and is only dependent on risk. It must be emphasized

that real-world asset returns are not normally distributed but will exhibit skewness, excess

kurtosis and other features that make the empirical return distribution deviate from a normal

distribution. Therefore, under real-world scenarios, the SR and DD∗-optimal portfolios may

be very different. We will now investigate the behavior of DD∗, using empirical data from U.S.

equity, bond and Treasury bill returns.

4. An Empirical Example

In this section we investigate the behavior of the revised measure DD∗ in an empirical

example. The estimator of the entropy we consider is the one developed in Stowell and Plumbley

(2009). We examine stylized portfolios containing both growth assets such as equities and

more defensive assets such as bonds. A combination of such assets is particularly interesting

for pension funds. There are a myriad of asset allocation approaches currently implemented in

approved pension funds portfolios. From defensive strategies to growth strategies. In this study,

we consider one of the most popular portfolios in pension funds analysis, namely the 60/40

default portfolio with an asset allocation of 60% equity and 40% in bonds. These empirical asset

returns exhibit very different levels of volatility, a situation where the original Diversification

Delta will fail to provide meaningful results. Instead, we employ the revised Diversification

Delta DD∗ in comparison to alternative portfolio risk or performance measures.

4.1. Static Case

We employ U.S. asset class monthly returns for the period January 1970 to December 2013.

The MSCI U.S. Equity Index is used as the proxy for broad equity returns. The proxy for

U.S. bonds is a spliced time series of three data sources, namely, returns derived from the

Robert J. Shiller bond yields from January 1970 to December 1972, the Lehman Brothers U.S.

Government Long Term Bond Index from January 1973 to December 1998, and the Citigroup
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Table 1: Descriptive statistics and performance metrics of the asset classes and investment portfolios from

January 1970 to December 2013 (consisting of 528 monthly return observations). The asset ‘Equity’ denotes

the MSCI U.S. Equity Index. ‘Bonds’ denotes the spliced time series of bond returns as a proxy for U.S. defensive

assets. The U.S. Government Treasury Bills denote the spliced time series of bank bill returns as a proxy for the

U.S. risk-free asset. ‘60/40’ denotes the 60/40 target risk fund portfolio with a constant asset allocation of 60%

equity and 40% in bonds. The second to fifth column report the moments of the distribution of returns. The

column ‘Sharpe’ denotes the monthly Sharpe ratio. The column ‘Max Draw’ denotes the maximum drawdown

which is the largest percentage loss in the value of the asset or portfolio from its highest historical peak. The

column ‘VaR’ refers to the historical 95% value-at-risk (VaR). The column ‘ETL’ refers to the historical 95%

expected tail loss (ETL).

Asset Mean Std Skewness Kurtosis Sharpe Max Draw VaR ETL

Equity 0.0094 0.0462 -0.5352 4.8404 0.1119 -0.5039 -0.0728 -0.1015

Bonds 0.0062 0.0197 0.2110 8.8510 0.1031 -0.1733 -0.0225 -0.0375

Risk Free Rate 0.0042 0.0027 0.5354 3.5988 n/a 0.0000 0.0000 0.0000

60/40 0.0081 0.0307 -0.3215 4.2853 0.1276 -0.3205 -0.0432 -0.0642

U.S. Broad Investment Grade Bond Index from January 1999 to December 2013. The U.S.

Government 1 month Treasury bills are employed as the proxy for the risk-free asset which

is sourced from Kenneth French’s website. Table 1 reports the descriptive statistics for these

three broad asset classes as well as the 60/40 DOA target risk fund portfolio with investments

of 60% in equities and 40% in bonds.

Figure 5 provides a plot of three measures for the entire time period, namely the Sharpe

Ratio, the standard deviation and the revised DD∗ for a portfolio consisting of investments in

equity and bonds. Similar to the exercise in Figure 4, we calculate the values of these measures

for portfolios with different allocations to the equity index (w1), ranging from w1 = 0 up to

w1 = 1. In other words, we report results for the Sharpe Ratio, the standard deviation and

the DD∗ for portfolios with allocation to equities between 0% and 100%. The coefficient of

correlation between the empirical returns from the two asset classes is estimated to be 0.2531.

Clearly, empirical data on stock and bond returns is not normally distributed as illustrated in

Table 1. We find that for empirical returns the measures provide quite different results for the

portfolio. When considering asset returns for the entire 44 year period, we estimate w1 = 0.08

in equities and w2 = 0.92 in bonds yield the minimum variance portfolio when combining the
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Figure 5: Sharpe Ratio (upper panel), Portfolio standard deviation (middle panel) and revised Diversification

Delta DD∗ (lower panel) for different allocations to equities (w1), ranging from w1 = 0 up to w1 = 1. The

portfolio consists of two asset classes only: U.S. equity and U.S. bonds. We consider monthly returns for the

time period January 1970 to December 2013, the coefficient of correlation between the empirical returns from

the two asset classes is estimated to be 0.2531. The Sharpe Ratio is maximized for w1 = 0.33, the Standard

Deviation is minimized for w1 = 0.02 and the Revised Diversification Delta DD∗ is maximized w1 = 0.32.

two asset classes. The portfolio that yields the maximum Sharpe ratio exhibits weights of

w1 = 0.33 in equity and w2 = 0.67 in bonds. On the other hand, the combination of weights

yielding the maximum Diversification Delta DD∗ = 0.22 has weights of w1 = 0.32 in equity

and w2 = 0.68 in bonds. Generally, for empirical data on asset returns, the diversification

delta, taking into account also higher moments of the distribution yields a different ’optimal’

portfolio than the Sharpe ratio, that is based on the mean and the variance only. Interestingly,

for the considered measures, the DD∗-optimal portfolio and the SR-optimal portfolio allocate

approximately one third of the portfolio to equities, when the entire 44 year period of returns

is considered.

4.2. Rolling Window Analysis

In the following section we will investigate how the 60/40 portfolio compares to portfolios

that are optimal with respect to return-to-variability, diversification or risk in a dynamic set-
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ting. Thus, we will compare the 60/40 portfolio to portfolios that are optimal with respect to

maximizing the Sharpe ratio, maximizing the Diversification Delta DD∗ or constructing the

minimum variance portfolio (MVP). Figure 6 provides results for a rolling window analysis

of the 60/40 portfolio versus optimal portfolios created according to the Diversification Delta

DD∗, the Sharpe Ratio and the Minimum Variance criterion. Rolling windows are based on

a five year period (i.e. 60 observations), such that the first window contains observations for

the period January 1970 - December 1974, while the last window contains observations for

the period January 2009 - December 2013. At each monthly time step, optimal portfolios are

constructed according to the considered criteria, i.e. we calculate the corresponding weights

for equity and bonds for the portfolio yielding the maximum DD∗, the maximum Sharpe ratio

and the minimum variance. Figure 6 provides a plot of the calculated weights for the invest-

ments in the equity index for the optimal portfolios for each of the criteria versus the 60/40

portfolio. Naturally, for the latter, in each time step, the weights are constant whereby 60% of

the portfolio is allocated to equities and 40% to bonds.
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Figure 6: Rolling window weights for optimal asset allocation to equities with respect to various criteria:

optimal weights for the maximum Diversification DeltaDD∗ (bold), maximum Sharpe Ratio (dashed), Minimum

Variance Portfolio (bold dashed) versus the default 60/40 portfolio (solid). Rolling windows are based on a five

year period (60 observations), such that the first window contains observations for the period January 1970 -

December 1974, while the last window contains observations for the period January 2009 - December 2013.
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We find that there are significant differences in the asset allocation weights for optimal port-

folios according to the three criteria. Sharpe ratio-maximizing portfolios exhibit the greatest

variability of portfolio weights through time, particularly in the first five years. Interestingly,

it usually allocates a high proportion of investments in U.S. bonds, in particular during the

periods from 1985 to 1994 and towards the end of the sample period. Over the entire period,

the average asset allocation to equities to create the Sharpe ratio optimal portfolio is 34%.

Thus, while in general the 60/40 portfolio has a very different allocation to equity and bonds

than the Sharpe ratio optimal portfolio, the average allocation for our rolling window analysis

is not too far from an allocation of 60% in equities.

For the minimum variance portfolio, as expected, we find a high asset allocation in bonds

over the full sample period. For some periods the minimum variance portfolio exhibits a 100%

allocation in bonds. Between 1979 and 1987 as well as for the end of the sample period, we

find that the minimum variance portfolio yields a higher allocation to equity assets, however,

the optimal weight in equity investments never exceeds 22%. For the entire period, the average

asset allocation in equities in the MVPs is 5%.

Finally, we examine the behavior of the revised Diversification Delta DD∗ through time.

Recall that unlike the Sharpe ratio and the minimum variance portfolio, DD∗ also takes into

account higher moments of the return distribution for the individual assets and the portfolio.

Interestingly, in comparison to constructed Sharpe ratio optimal portfolios, DD∗-optimal port-

folios seem to exhibit a clearly lower variation in portfolio weights. The average allocation to

equity is approximately 40%.

4.3. Performance Analysis

The final part of this paper investigates the performance of different strategies over the 44

year time horizon. Thus, we examine the performance of strategies that involve constructing

Sharpe ratio optimal portfolios, DD∗-optimal portfolios or the MVP in each monthly time step

against the performance of the 60/40 target risk fund portfolio.

To create the portfolio, in each monthly time step we consider a five year period (60 months)

of historical returns for the assets and then select the optimal portfolio weights such that they

(i) maximize the SR, (ii) maximize DD∗ or, (iii) yield the MVP, or (iv) are always 60% equity

and 40% in bonds. Then we calculate the return of each strategy for the next month before

the portfolios are restructured. We ignore transaction costs for restructuring the portfolios at

each time step.
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Figure 7: Performance of the portfolios using optimal asset allocation to equities with respect to different

criteria: optimal weights for maximum Diversification Delta DD∗ (bold), maximum Sharpe Ratio (dashed),

Minimum Variance Portfolio (bold dashed) versus the default 60/40 portfolio (solid). Rolling windows are

based on a five year period (60 monthly observations), such that the first window contains observations for the

period January 1970 - December 1974, while the last window contains observations for the period January 2009

- December 2013. Portfolios are reconstructed every month.

Figure 7 illustrates a plot for the growth in portfolios based on the different strategies.

As could be expected the MVP strategy yields the lowest overall return among all strategies,

however, it is the least volatile. The strategy that uses SR optimal portfolios seems to perform

quite well from the beginning but exhibits a significant drop afterwards. On the other hand,

the DD∗ optimal strategy exhibits a less severe decrease in the value of its portfolio during

the 2008 crisis than the 60/40 portfolio and creates an overall much higher return than the SR

optimal and MVP optimal strategies. The DD∗ optimal strategy provides an overall higher

return than the SR optimal strategy, but also yields a lower standard deviation of returns.

One could argue that according to these criteria, portfolios that are created with respect to

maximizing DD∗, outperform SR optimal portfolios. Interestingly, none of the strategies are

able to outperform the 60/40 target risk fund portfolio in terms of the overall growth of the

portfolio.
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Table 2: Descriptive statistics and performance metrics of the various investment strategies across the out-of-

sample performance period from January 1975 to December 2013 (consisting of 468 monthly return observa-

tions). All strategies employ the previous 60 months of returns to construct the following portfolios: optimal

Diversification Delta (DD*), optimal Sharpe Ratio, minimum variance portfolio, 60/40 target risk portfolio with

an asset allocation of 60% equities and 40% bonds, 100% equities and 100% bonds. The second to fifth column

report the moments of the distribution of returns. The column ‘Sharpe’ denotes the monthly Sharpe ratio. The

column ‘Max Draw’ denotes the maximum drawdown which is the largest percentage loss in the value of the

asset or portfolio from its highest historical peak. The column ‘VaR’ refers to the historical 95% value-at-risk

(VaR). The column ‘ETL’ refers to the historical 95% expected tail loss (ETL).

Strategy Mean Std Skewness Kurtosis Sharpe Max Draw 95% VaR 95% ETL

DD∗ 0.0079 0.0238 -0.2581 5.4359 0.1591 -0.2236 -0.0305 -0.0476

Sharpe Ratio 0.0072 0.0269 -0.1247 9.5278 0.1153 -0.1739 -0.0297 -0.0545

MVP 0.0065 0.0167 0.4065 9.0341 0.1515 -0.1505 -0.0165 -0.0291

60/40 DOA 0.0091 0.0293 -0.4322 4.4852 0.1702 -0.3151 -0.0395 -0.0598

Equity 0.0109 0.0453 -0.6506 5.1599 0.1497 -0.5039 -0.0683 -0.0991

Bonds 0.0064 0.0165 0.3862 9.3061 0.1395 -0.1505 -0.0175 -0.0288

However, as indicated by Table 2, the returns of the 60/40 portfolio are more volatile

than those ofthe DD∗-optimal strategy. On the other hand, the 60/40 portfolio also achieves

higher mean returns but higher standard deviation of returns than the DD∗, the MVP and the

SR optimal strategies. This emphasizes the risky nature of the 60/40 portfolio against other

alternatives. The highest returns (but also highest risk measured by the variance of the created

returns) would have been achieved by a fund that invests 100% in equity, while the lowest

average returns (coinciding with the lowest risk) would have been achieved for an investment

of 100% in bonds.

Table 2 reports the implementation of the various investment strategies from January 1975

to December 2013. The DD∗ portfolio yields return and standard deviation metrics which are

less risky than 100% equities but riskier than 100% bonds. We can also observe that the DD*

portfolio exhibits a higher Sharpe Ratio in the out-of-sample period than the Sharpe optimal

portfolio. The DD∗ portfolio reports the second highest Sharpe ratio and is only marginally

lower than the 60/40 portfolio. Furthermore, the DD* portfolio exhibits the lowest maximum
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drawdown statistics of all the investment strategies. Finally, the DD∗ reports the third lowest

95% VaR and 95% ETL statistics behind the MVP and U.S. bonds. The key findings from

Table 2 suggest that the DD* portfolio offers desirable portfolio characteristics to an investor

without the sudden changes in asset allocation associated with classic portfolio optimization.

Overall, our results indicate that the revised Diversification Delta DD∗ offers an alternative

criterion that can be used to construct portfolios. For our simple empirical example, the DD∗

portfolio yields different allocations to equity and bonds in comparison to SR optimal portfolios

or MVPs. Portfolios that are constructed based on optimizing DD∗ perform quite well and the

application of the Diversification Delta should be investigated in future applications to portfolio

management.

5. Conclusions

Vermorken et al. (2012) introduce a new measure of diversification, the Diversification Delta

based on the empirical entropy of financial returns for individual assets or a portfolio. The

entropy as a measure of uncertainty has successfully been used in several frameworks and takes

into account the uncertainty related to the entire statistical distribution and not just the first

two moments of a distribution. We illustrate that the suggested Diversification Delta measure

has a number of drawbacks in particular when risky assets such as equities are combined with

asset classes which exhibit a lower risk profile. We also propose a revised measure that is based

on the exponential entropy which overcomes some of the identified shortcomings of the original

diversification delta metric.

We present and demonstrate the properties of this new measure and illustrate the usefulness

of the revised Diversification Delta (DD∗) in an application to a portfolio of U.S. stocks and

bonds. Our findings suggest that the revised Diversification Delta offers an alternative criterion

that can be used to construct optimally diversified portfolios. Portfolios that are optimal with

respect to maximizing the Diversification Delta yield very different allocations to equity and

bonds in comparison to portfolios that are constructed by optimizing the Sharpe Ratio or cre-

ating Minimum Variance portfolios. In an out-of-sample analysis, Diversification Delta optimal

portfolios outperform Sharpe Ratio-optimal portfolios by creating higher average returns with

lower standard deviation. Based on this evidence, we recommend the application of the revised

Diversification Delta metric in future applications to portfolio management.

Interestingly, none of the created strategies are able to outperform the 60/40 portfolio in
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terms of the overall growth rate over a 39 year time horizon. This also illustrates that a simple

asset allocation of 60% equity and 40% in bonds as it is the case for several pension funds

performs quite well when a longer time horizon for the investment is assumed.

Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath.”Coherent Measures of Risk.” Mathematical

Finance, Vol. 9 (1999) ,pp. 203-228.

Bera, A.-K., and S.-Y. Park.”Optimal Portfolio Diversification Using the Maximum Entropy

Principle.” Econometric Reviews, Vol. 26, No. 4-6 (2008), pp. 484-512.

Brown, S., and W. Goetzmann.”Hedge Funds with Style.” The Journal of Portfolio Manage-

ment, Vol. 29, No. 2 (2003), pp. 101-112.

Campbell, L. ”Exponential Entropy as a Measure of Extent of a Distribution.” Z. Wahrschein-

lichkeitstheorie verw., Vol. 5 (1966), pp. 217-225.

Cover, T.-M., and J.-A. Thomas. Elements of Information Theory. New York, NY: John Wiley

and Sons, 1991.

Dey, S., and S. Juneja.”Incorporating Fat Tails in Financial Models Using Entropic Divergence

Measures.” Working Paper, Tata Institute of Fundamental Research, 2012.

Dopfel, F. ”Asset Allocation in Lower Stock-Bond Correlation Environment.” The Journal of

Portfolio Management, Vol. 30, No. 1 (2003), pp. 25-38.

Fabozzi, F.-J.. Encyclopedia of Financial Models. New York, NY: John Wiley and Sons, 2012.
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Appendices

A. Diversification Delta (DD) and revised Diversification Delta (DD∗) for a bivari-

ate portfolio normally distributed assets

Let P = (w1X1+w2X2) be a portfolio where the two assets are normal, X1 ∼ N(0, σ2
X1

) and

X2 ∼ N(0, σ2
X2

) and the weights are positive and satisfy w1+w2 = 1. In this case P ∼ N(0, σ2
P ),

with σ2
P = w2

1σ
2
X1

+ 2ρw1w2σX1σX2 + w2
2σ

2
X2

, where ρ is the correlation between the assets.

Note that the entropy of a normally distributed variableX, with variance σ2
X , is log(

√
2πeσ2

X)

(see Cover and Thomas (1991)). Therefore,, considering equations (1) and (3), the Diversific-

ation Delta (DD) and the revised Diversification Delta (DD*) in this bivariate normal case

are

DD(P ) =
exp

(
w1 log

(√
2πeσ2

X1

)
+ w2 log

(√
2πeσ2

X2

))
− exp

(
log
(√

2πeσ2
P

))
exp

(
w1 log

(√
2πeσ2

X1

)
+ w2 log

(√
2πeσ2

X2

)) (6)

=

[
exp

(
log
(√

2πeσX1

))]w1 ·
[
exp

(
log
(√

2πeσX2

))]w2 −
√

2πeσP[
exp

(
log
(√

2πeσX1

))]w1 ·
[
exp

(
log
(√

2πeσX2

))]w2

=

(√
2πeσX1

)w1 ·
(√

2πeσX2

)w2 −
√

2πeσP(√
2πeσX1

)w1 ·
(√

2πeσX2

)w2

=

(√
2πe
)w1+w2 · σw1

X1
σw2
X2
−
√

2πeσP(√
2πe
)w1+w2 · σw1

X1
σw2
X2

=
σw1
X1
σw2
X2
− σP

σw1
X1
σw2
X1

= 1− σP
σw1
X1
σw2
X2

,

DD∗(P ) =
w1 exp

(
log
(√

2πeσ2
X1

))
+ w2 exp

(
log
(√

2πeσ2
X2

))
− exp

(
log
(√

2πeσ2
P

))
w1 exp

(
log
(√

2πeσ2
X1

))
+ w2 exp

(
log
(√

2πeσ2
X2

))
=

w1

√
2πeσX1 + w2

√
2πeσX2 −

√
2πeσP

w1

√
2πeσX1 + w2

√
2πeσX2

(7)

=
(w1σX1 + w2σX2)− σP

(w1σX1 + w2σX2)

= 1− σP
(w1σX1 + w2σX2)

,
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B. Original Diversification Delta for Example 3

Investor 1 is building a portfolio from assets X1 and X2. This investor determines that a

portfolio with equal weights to be optimal, i.e. P1 = 1
2
X1 + 1

2
X2. In a different market, investor

2 is building a portfolio from assets Y1 = 3
2
X1 and Y2 = 3

4
X2.

4 This investor determines optimal

weights of w1 = 1
3

and w2 = 2
3
, yielding the same portfolio P2 = 1

2
X1 + 1

2
X2.

Let c1 = exp(H(X1)), c2 = exp(H(X2)) and c3 = exp(H(1
2
X1 + 1

2
X2)). Given that the

portfolios are the same, from equation (1) in both cases we have

DD(P ) =
exp (w1H (Y1) + w2H (Y2))− exp(H(P ))

exp(w1H(Y1) + w2H(Y2))

=
exp (w1H (Y1) + w2H (Y2))− c3

exp (w1H (Y1) + w2H (Y2))
.

In the case of Portfolio 1,

exp (w1H (Y1) + w2H (Y2)) = exp

(
1

2
(H(X1) +H(X2))

)
= [exp ((H(X1) +H(X2)))]

1
2

= (c1c2)
1
2 ,

and for Portfolio 2

exp (w1H (Y1) + w2H (Y2)) = exp

(
1

3
H

(
3

2
X1

)
+

2

3
H

(
3

4
X2

))
=

[
exp

(
H

(
3

2
X1

))] 1
3

·
[
exp

(
H

(
3

4
X2

))] 2
3

=

[
3

2
exp (H (X1))

] 1
3

·
[

3

2

exp (H (X2))

2

] 2
3

=

(
3

2

) 1
3

c
1
3
1 ·
(

3

2

) 2
3 (c2

2

) 2
3

=

(
3

2

)
·
(
c1c

2
2

4

) 1
3

.

Therefore, we get

DD(P1) =
(c1c2)

1
2 − c3

(c1c2)
1
2

6= DD(P2) =
3
2
(
c1c22
4

)
1
3 − c3

3
2
(
c1c22
4

)
1
3

.

4Note that the coefficients in these equations represent volume not weights.
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C. Revised Diversification Delta for combination of identical assets

Let P be a portfolio consisting of assets (X1, ..., XN) which are all positive linear combina-

tions of an asset X. Hence, Xi = aiX + bi, for constants ai > 0 and bi with i ∈ {1, ..., N}.

N∑
i=1

wi exp (H(Xi)) =
N∑
i=1

wiai exp (H(X))

= exp (H(X))
N∑
i=1

wiai

= exp

(
H

(
N∑
i=1

wiaiX

))

= exp

(
H

(
N∑
i=1

wiaiX +
N∑
i=1

wici

))

= exp

(
H

(
N∑
i=1

wiXi

))
,

Therefore,

DD∗(P ) =

N∑
i=1

wi exp (H(Xi))− exp

(
H

(
N∑
i=1

wiXi

))
N∑
i=1

wi exp (H(Xi))

= 0

D. Revised Diversification Delta for Example 3

Again, let c1 = exp(H(X1)), c2 = exp(H(X2)) and c3 = exp(H(1
2
X1 + 1

2
X2)). Using (3), in

both cases we have

DD∗(P ) =
w1 exp (H (Y1)) + w2 exp (H (Y2))− exp(H(P ))

w1 exp (H (Y1)) + w2 exp (H (Y2))

=
w1 exp (H (Y1)) + w2 exp (H (Y2))− c3
w1 exp (H (Y1)) + w2 exp (H (Y2))

.

For Portfolio 1,

w1 exp (H (Y1)) + w2 exp (H (Y2)) =
1

2
(exp (H(X1)) + exp(H(X2)))

=
1

2
(c1 + c2),
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and for Portfolio 2

w1 exp (H (Y1)) + w2 exp (H (Y2)) =
1

3
exp

(
H

(
3

2
X1

)
+

2

3
H

(
3

4
X2

))
=

1

3
× 3

2
exp (H (X1)) +

2

3
× 3

4
exp (H (X2))

=
1

2
(c1 + c2).

Therefore, we obtain

DD∗(P1) = DD∗(P2) =
c1 + c2 − 2c3
c1 + c2

.
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