
SAMD: Fine-Grained Application Sharing for
Mobile Collaboration

Jaehun Lee∗, Hochul Lee∗, Byoungjun Seo∗, Young Choon Lee†, Hyuck Han‡ and Sooyong Kang∗
∗Dept. of Computer Science, Hanyang University, Korea, Email: {ljhokgo,lhochul2,sbj8388,sykang}@hanyang.ac.kr

†Dept. of Computing, Macquarie University, Australia, Email: young.lee@mq.edu.au
‡Dept. of Computer Science, Dongduk Women’s University, Korea, Email: hhyuck96@dongduk.ac.kr

Abstract—The collective use of ever connected and pervasive
mobile devices has been increasingly sought for in mobile
collaboration, such as multiplayer mobile gaming and distributed
processing. The current model of mobile collaboration requires
each device to install a particular, ‘full’ mobile app for a
respective collaboration. Besides, collaboration functionalities are
typically implemented at application level. In this paper, we
present Single Application Multiple Device (SAMD) as a platform-
level mobile collaboration framework. A mobile app developed
using SAMD is capable of fine-grained application sharing.
In particular, SAMD enables devices, agreed to participate in
collaboration, to get portions of the app on-the-fly and run them
without the prior installation. To achieve this, we have developed
three solutions as core functionalities of SAMD: 1) Controller
packaging, 2) lookahead transfer and 3) code adaptation. We have
implemented SAMD on Android as a proof-of-concept prototype.
Our experimental results demonstrate SAMD can provide fine-
grained sharing of latency-insensitive applications.

I. INTRODUCTION

In the past decade, we have witnessed the tsunami of so-
called “smart” device penetration into every part of our lives
from web surfing to online banking and health check. These
devices including smart watches, smartphones, and tablets
are becoming increasingly resource rich equipping with, for
example, several sensors, GPS modules and even GPUs. As a
consequence, there emerged a trend to collectively and collab-
oratively use these devices, i.e., mobile collaboration. Exam-
ple applications are multiplayer mobile games, collaborative
document editing and some form of distributed processing.

Despite this growth in quantity, capacity and capability,
the platform-level support for mobile collaboration remains
limited. The current model of mobile collaboration is largely
application-driven. In particular, a mobile collaboration is
enabled by an application specifically developed for that.
Such an application is often required to be installed in each
and every device in the collaboration. A typical approach
of communication for collaboration is using a cloud server
or wifi direct, as in Clash Royale [1], Google Docs [2],
SuperBeam [3] and Send Anywhere [4].

In this paper, we study the platform-level support for mobile
collaboration. Motivated by the fact that a mobile app is
considered to be a collection of Controllers1, we propose
to dynamically send Controllers/portions of an app to other

1A Controller as in an Activity of Android and a viewController of iOS is
a code-and-resources set of a function/portion of an app.

devices for remote execution (fine-grained application sharing)
in a coordinated manner, without the prior installation. This
collaboration capability feature is what primarily distinguishes
SAMD from Google’s Instant Apps [5]. Imagine you are in a
metro train station waiting for your train with a few friends of
yours. This instant and fine-grained application sharing will
let you play some multiplayer mobile game—that only you
have on your phone—with your friends.

Our fine-grained application sharing approach has two key
advantages: apps can run across multiple devices on-the-fly
and collaboration apps are non-intrusive. The main challenge
is threefold as it consists in characterizing the composition
of an app, in deciding when to send which Controller and in
executing Controllers (portions of an app) on remote devices.
Above all, these challenges have to be addressed at mobile
platform level to ease collaborative application development.

Our solution to these challenges is called Single Application
Multiple Device (SAMD) with corresponding functionalities
to those three challenges: Controller packaging, lookahead
transfer and code adapation. SAMD manages an applica-
tion as a set of Controllers to dynamically package, send
and execute individually in remote devices. In particular,
an application developed using SAMD (or simply a SAMD
app) is decomposed and individually packaged at Controller
level. Controllers to be executed on other devices, in which
the application is not originally installed, are dynamically
transferred prior to their actual execution. The actual remote
execution is realized by adapting code and resources (e.g.,
images) of an individual Controller and plugging the adapted
Controller into the dummy agent app of SAMD.

We implement SAMD in Android as a proof-of-concept
prototype and demonstrate the development of an example
SAMD app (http://dcslab.hanyang.ac.kr/samd/). Unlike other
multi-user applications, a SAMD app can be easily developed
by using APIs SAMD provides. For instance, the discovery
of (SAMD-enabled) remote devices is enabled by the device
management API of SAMD. Devices approved a collaboration
request are only be able to communicate with each other.

The specific contributions of this paper are:
• We model/formalize platform-level mobile collaboration.
• We develop three core functionalities of SAMD.
• We implement a SAMD prototype on Android and

demonstrate its capacity with TexasHoldem board game.
• We evaluate SAMD with five application scenarios.

Experimental results have demonstrated the feasibility and
capacity of SAMD. In particular, we have evaluated SAMD in
a testbed with a number of Nexus phones of three models. The
evaluation study is conducted with respect to the latency of
remote execution, the SAMD overhead on application installa-
tion, and the effectiveness of SAMD’s distributed processing.

The rest of this paper is organized as follows. In Section II,
we discuss related work. In Sections III and IV, we present
design and prototype implementation of SAMD. Section V
shows an example SAMD application development. In Sec-
tion VI, we provide our discussion on two most significant
aspects of mobile collaboration in the context of SAMD. In
Section VII, we show the feasibility and capacity of SAMD
followed by our conclusion in Section VIII.

II. RELATED WORK

There is a large body of studies on application sharing for
multi-device “collaboration”. Two most common approaches
are screencasting and code/application offloading. Their main
distinction is whether the display information is sent or an
(part of) application is migrated/offloaded, to remote devices.

Screencasting is sharing the screen of a device by transfer-
ring screen output to different devices [6]–[10]. For example,
Apple Airplay [11] can be used to display iOS media contents
on Apple TV. However, the application only runs on the
local device, and the remote device simply shares the screen.
There are some studies on sharing of particular resources like
touch screen e.g., [12]. Recently, a more generic kernel-level
approach for remote I/O sharing for mobile systems, Rio [13],
has been proposed. However, the code still only executes on
local devices; this is a clear limitation to providing a proper
collaboration functionality.

Application offloading to remote devices or often more pow-
erful servers has been extensively studied [14]–[17]. However,
their application to smart devices is limited due to issues with
device heterogeneity. As resources of recent smart devices
have become increasingly abundant, studies on application of-
floading to peer smart devices have also started to appear [18].
Flux [19] uses the record and replay approach to migrate
running applications at local devices to remote devices. Most,
if not all, application offloading approaches require application
installation in remote devices. They typically target one-to-one
offloading/migration, not multi-user collaboration.

Executing a part of the code, not the entire applica-
tion, through cloud servers or nearby smart devices, is
where researchers are making vibrant progress. MAUI [20],
CloneCloud [21], ThinkAir [22], Cloudlet [23] and femto-
cloud [24] offload code to cloud server to enable processing
that a smart device is practically unable to perform alone.
Also, there are some studies on code-level migration with
sending the state of code [25]–[27]. The work in [28] proposes
a framework to support mobile simulations by distributing the
computation between a mobile device and a remote server.
As smart devices become increasingly capable with more and
new resources, studies on code-level offloading are actively
conducted, e.g., Hyrax [29], Serendipity [30] and LWMR [31].

Local Remote

Lookahead Transfer

LC1

RC1 RC2

RC2

Agent App

Code

Adaptation

Controller

Packaging

SAMD App

Launch

Agent

App

LC1 RC2

exe. rsc.
exe. rsc.

Launch

SAMD

App

RC1

RC2

…

Fig. 1. SAMD design overview: We refer to the device where a SAMD app
resides as a ‘local’ device and others running portions of the app without
prior installation as ‘remote’ devices.

The works in these studies enable simultaneous application
code executions across multiple devices. However, they are,
unlike SAMD, unable to access smart device features, such
as display, sensors and cameras; therefore, those are closer to
distributed processing rather than collaboration.

III. SAMD: SINGLE APPLICATION MULTIPLE DEVICE

In this section, we present SAMD with its three core
functionalities (Figure 1): Controller packaging, lookahead
transfer and code adaptation.

A. Controller Packaging

Controllers of a SAMD app are classified into Local Con-
trollers (LCs) and Remoteable Controllers (RCs). While LCs
are designed to run on the local device only, RCs are able
to run on remote devices as well as local devices. RCs are
identified during application development, e.g., by setting
‘remoteable’ flag, in the application configuration file, to true.

Controller packaging takes place while a SAMD app is
being installed and consists of three steps: Decomposition,
Analysis and Packaging (Figure 2). At the core of Controller
packaging is code analysis after decomposing the entire code
in a SAMD app into respective code segments for Controllers.

The code level analysis 1) classifies Controllers into LCs
and RCs, 2) extracts every RC call from LCs and 3) identifies
necessary resources for each RC. Controllers are classified
based on the indication of remote execution, e.g., a remote
execution API call like launchActivity() in our SAMD proto-
type on Android. In particular, a caller Controller and a callee
Controller are classified as a LC and a RC, respectively.

As a result of code level analysis, a Controller call graph
(ControllerMap, Figure 3a) is constructed. In addition, for
RCs, their corresponding resources are identified and tabulated
in a “key-value” like lookup table (ResourceTable, Figure 3b).
ControllerMap is a data structure showing the caller-to-callee
relationships from LCs to RCs. Vertices represent Controllers.
If a Controller is classified as a RC (i.e., made to possibly

Controller Packaging

Installation

App

Executable Resources

Remoteable
Controllers

Resource
Table

Controller
Map

Decomposition Analysis Packaging

RC1 RC2
…

App Package

exe. rsc.

Fig. 2. Controller packaging.

LC1
0,0

RC1
1,0

RC2
1,0

RC3
1,0

LC2
0,0

1.001

LC3
0,0

(a) ControllerMap

Controller Resources

RC1 b.xml, 1.png, c.txt

RC2 d.xml, a.png, c.txt

RC3 e.xml

…

(b) ResourceTable

Fig. 3. Core data structures in SAMD: two numbers in each vertex of the
ControllerMap represent remoteable and cached status of the Controller.

Controller

Changed!

RC1 b.xml, 1.png, c.txt

RC2 d.xml, a.png, c.txt

RC3 e.xml

…

App State
Monitoring

LC3,

status

APP

Code for RC1,

b.xml,1.png,[RC2_c.txt]

Code for RC2,

d.xml,a.png,c.txt

Controller Selection
Controller

Map
Resource

Table
RC1LC2àLC3

observing

controllers

RC2

transfer

Fig. 4. Lookahead Transfer.

run on the remote device), its remoteable status value in the
ControllerMap is set to 1. If the Controller has been transferred
to remote devices already, its cached status is set to 1.

Edges represent call relationships with likelihoods of calls.
The calling likelihood score between a LC and a RC is defined
as score(LC,RC) = n+0.001(r+ c), where n is the calling
precedence value of RC defined as the count (from 1) of all
RC calls from the end of the main procedure (or method in
JAVA) in the LC; for example, the integer part of three RCs
in Figure 3a, 2, 1 and 0 for RC1, RC2 and RC3, respectively,
indicates that RC1 and RC2 are called in that order but RC3 is
not called in the main procedure of the LC1. r is the number
of RC calls outside the main procedure and c is the frequency
of RC execution in the remote device. While remote execution
requests/calls inside the main procedure are made regardless
of user’s behavior, those outside the main procedure are only
made depending on the actions of the user and other factors.
Hence, RCs called inside the main procedure should have a
higher likelihood score than others. The calculation of a score
incorporates the location of such calls making r and c become
a fractional part of the score. We also use a scale factor of
0.001 assuming that the RC calls outside the main procedure
are not expected to occur a thousand times or more.

ResourceTable is a 2-tuple table with RC IDs as the key
and resources as the value. This table is constructed and used
only for remoteable Controllers.

Finally, the code and resources of each RC are packaged
referencing ControllerMap and ResourceTable. Resource iden-
tification and packaging are needed only to RCs for possible
remote execution.

B. Lookahead Transfer

As the latency for remote execution of RCs can become
a major concern, lookahead transfer in conjunction with ap-
plication state monitoring determines which RCs are likely
to be called upon a state change and sends appropriate RCs
in advance. In particular, upon a state change, such as the

execution control shift from a LC to another LC (e.g., LC2
to LC3 in Figure 4), ControllerMap is looked up to determine
which RCs are likely to be executed in which device after the
state change. Lookahead transfer then sends RCs imminent
and yet to be called, one by one to remote devices in the
order of their calling likelihood scores. The actual transfer of
RCs is selective in the sense that only RCs that are likely
to be executed and have never been transferred (i.e., not
cached) are sent. Besides, when transferring multiple RCs to
a particular remote device, same resources are sent only once.
More specifically, redundant resources in succeeding RCs are
removed before their transfers. In this case, the information of
such resource removal ([RC2_c.txt] in Figure 4) is also
sent for the remote device to properly run those RCs.

C. Code Adaptation

Controllers transferred to remote devices are first depack-
aged, and repackaged through code adaptation to suit the
execution on remote devices. The depackaging process simply
extracts the code and resources from a Controller and forwards
them for repackaging with the agent app. At the core of
repackaging is code adaptation.

In general, resources in mobile applications are installed
in a compiled state to minimize the resource access latency
by code. Compiled resources are referenced by their static
addresses which are bound to all resources in the application
at the compilation time. In SAMD, only a subset of application
resources are included in a RC and transferred to remote
devices for execution. Hence, for a remote device to execute
the received RC, it needs not only to generate resource
information to be provided to its mobile platform but also to
recompile resources to bind new static addresses to them. The
resource accessing parts of code in the RC are also needed to
be adapted for the changed static addresses.

As RCs are only portions of an app without the prior in-
stallation in the remote device, they are not readily executable
standalone. The agent app can be seen as a system app, part
of SAMD, on all SAMD-enabled devices. It is a dummy
app with minimal code and resources to be an application.
After code adaptation, the agent app’s code and resources are
replaced with the adapted code and resources of the RC. Then
we can execute the received RC by launching the agent app.
Multiple different RCs can run in turn on the remote device
by subsequently replacing agent app’s code and resources.

IV. PROTOTYPE IMPLEMENTATION

In this section, we first give a brief description of Android
application installation process and detail the prototype imple-
mentation of SAMD on the Android (version 6.0.1r11, Marsh-
mallow) focusing on three key functionalities. In particular, the
prototype is implemented primarily in the form of platform-
level services (Figure 5). These services are accessed through
SAMDService using APIs of SAMD. The description of these
APIs is also provided in this section.

Android uses Android application package (APK) for appli-
cation installation. From APK file, it registers application in-

SAMD App

Framework/Libs

Kernel

PackageManagerService*

Storage

PackagingService

SelectionService

Agent App

Kernel

StorageAPK

C
o

n
tr

o
ll
e

r
P

a
c
k

a
g

in
g

Agent

RscTable

Framework/Libs

PackageManagerService*

DePackagingService

Adaptation
Service

transfer

ActivityThread*

AppMonitor

Code
Adaptation

ActMap

Communication
Service

ActivityThread*

AppMonitor

Communication
Service

Local Device Remote Device

SAMDService SAMDService

SAMD

Message

Fig. 5. SAMD components in Android platform. Components added by
SAMD are highlighted in gray. Modified components are marked with ‘*’.

formation and extracts the executable file and resources. These
extracted files and resources are allocated an appropriate direc-
tory for application installation. The process of APK file gen-
eration is as follows: compiling Java source (.class) files and
resources generates classes.dex and resources.arsc
files, respectively. These files are then compressed and pack-
aged into an APK file along with AndroidManifest.xml
which is an application configuration file.

A. Implementation of Controller Packaging

The Controller packaging functionality is implemented
through primarily PackagingService in cooperation with An-
droid’s PackageManagerService as shown in Figure 5. We add
SAMDApp and Remoteable attributes to <Application>
and <Activity> elements of AndroidManifest.xml, re-
spectively. During the installation of an application, if Pack-
ageManagerService 2 finds “android: SAMDApp=true”
in <Application>, it considers the application as a SAMD
app and identifies remoteable Activities3 by checking the
Remoteable attributes in each <Activity> when writing the
Activity list. PackageManagerService then sends this applica-
tion information to SAMD’s PackagingService for the actual
Controller packaging.

As classes.dex (the Android specific executable file) is
a set of Java class files, we port and install baksmali [32]
to Android to extract human readable ‘smali’ files from .dex
file. These smali files are then analyzed to identify different
Activities and their necessary resources. Afterwards, Activ-
ityMap (ControllerMap) and ResourceTable are constructed
with such pieces of information. In the case that an Activity
requires external libraries, they are also listed in ResourceTable
along with the Activity’s resources. These external libraries are
then included in the RC for effective remote execution.

In Android, compiled resources are associated with and
referenced by their IDs which are again translated into offsets
(static addresses) to resources.arsc. As resources in a

2PackageManagerService is an Android system service that coordinates
application installation. We modified it for SAMD app and RC identification.

3Activity is an Android specific term for Controller.

RC, which are portion of the entire application resources, are
compiled separately in the remote device for code adaptation,
resource IDs of RCs in the remote device may differ from
those in the local device. To resolve this issue, we overload
the APIs of resource access in Android for resources to be
referenced also by name. For RCs, ID-based API calls are
replaced with the name-based API calls in their respective
smali files.

B. Implementation of Lookahead Transfer

The lookahead transfer functionality is implemented
through AppMonitor and SelectionService. The former moni-
tors application state while the latter handles the actual transfer
of Controllers. As a state change of the current Activity
running on the local device (i.e., LC) may trigger remote exe-
cution of a RC, AppMonitor needs to constantly monitor appli-
cation state. AppMonitor is essentially implemented within the
ActivityThread daemon in Android. Upon a state change that
requires RC transfer, SelectionService looks up ActivityMap
and selects Activities for transfer. It then in conjunction
with PackagingService and CommunicationService prepares
and transfers RCs for selected Activities to remote devices.
CommunicationService also provides SAMDMessageListener
as an event handler for communication between Activities of
local and remote devices.

C. Implementation of Code Adaptation

The code adaptation functionality is implemented through
DePackagingService and AdapationService. The core function-
ality of code adaptation is in AdaptationService that deals
with generating the executable file from the Controller code,
forwarded from DePackagingService, and plugging it with its
resources into the agent app. We have ported baksmali
and aapt (Android Asset Packaging Tool) [33] to An-
droid for converting smali files back to the classes.dex
file and compiling resources into resources.arsc, re-
spectively. AdaptationService stores (actually, overwrites)
classes.dex and resources.arsc files in the agent
app’s installation directory. The agent app executes using them.

D. SAMD APIs

There are three types of API provided in our SAMD im-
plementation on Android: (remote) device management API,
Activity management API and communication API.

Device management API, such as getConncectedDevices()
identifies nearby devices and handles connection/pooling for
collaboration. In this work, we adopt techniques developed as
part of our previous work in CollaboRoid [34].

Second, launchActivity() API is provided for sending a
message to execute a specified Activity from a specified
remote device. It includes typically two parameters: device
number and Activity name. On receiving the message, if
the RC for the specified Activity has already arrived to the
remote device via lookahead transfer, the remote device plugs
the specified Activity into the agent app and then launches
the agent app. If the RC has not arrived yet, the remote

Fig. 6. TexasHoldem: App is installed and launched only in the center (local)
device where BoardActivity is currently being executed. Four remote devices
in both sides are executing PlayerActivity with different cards each other.

Local
(Board)

Remote
(Player)

launch “PlayerActivity”

with 2 card images

start

game start agent App

with PlayerActivity

and 2 cards

“your turn”

“bet” or “fold”

open a

community

card

Repeats until a game ends

Fig. 7. TexasHoldem application processes.

device waits for the RC and executes the Activity after code
adaptation. launchActivity(DEVICE NUM, ACTIVITY NAME,
BUNDLE) API is also provided for additional resources and
parameters to be dynamically sent. BUNDLE is a String type
parameter. If it starts with ‘rsc ’, the specified resource is
transferred to the specified device.

The third and last type of API is communication API,
sendMessageToRemote(DEVICE NUM, SAMD MESSAGE)
and sendMessageToLocal(SAMD MESSAGE), for
sending messages between local and remote devices.
SAMD MESSAGE can have various types of object including
string and file. Also, SAMD provides MessageListener for
processing messages.

V. EXAMPLE SAMD APPLICATION: TexasHoldem

In this section, we illustrate the development of the Tex-
asHoldem (Figure 6) as an example SAMD application. The
game plays by interacting between BoardActivity (LC) in the
local device and PlayerActivity (RC) in remote devices. These
Activities are analogous to the dealer and players of the real-
life game. The sequence of TexasHoldem app is as shown in
Figure 7. In the following, we show the core parts of Texas
Holdem application code (Programs 1 and 2).

Program 1 shows the partial, core code of BoardActivity
in the TexasHoldem app. The first step is to get SAMDService
(service manager, line 7 in Program 1) that plays as a gateway
to SAMD services. A Listener is then registered for message
passing (line 8). These two steps are typically the very first two
tasks any SAMD app has to do. As BoardActivity is playing as
a coordinator (i.e., a dealer), it identifies participating devices
(line 9); this is another typical step of the main Activity in
the local device. A message is sent to each remote device
to launch the PlayerActivity with private card images in the
Bundle object (lines 12–19, 2 in Figure 7). The Controller
for PlayerActivity may have already arrived to the remote

devices at the time since it has been sent, via lookahead
transfer, as soon as the BoardActivity started. Since the private
cards for each player are determined dynamically, it cannot
be sent together with the PlayerActivity, a priori. The actual
game starts by calling the playNextTurn method (line 21). This
method opens community cards, records the move the current
player has made and sends a message (“your turn”) to the
next player (lines 30–40, 4 and 5). A player who receives
message “your turn” selects either ‘bet’ or ‘fold’ as her move.
Then, a message with the selected move gets sent to the local
device and the game continues on (lines 24–28).

Program 1. BoardActivity of TexasHoldem
1public class BoardActivity extends Activity {
2 SAMDService SAMD;
3 SAMDMessage msgToRemote;
4 ...
5 public void onCreate(Bundle savedInstanceState) {
6 ... // set layout and initialize SAMDMessage and components
7 SAMD = (SAMDService) getSystemService(Context.SAMDService);
8 SAMD.setListener(mSAMDListener);
9 int [] devices = SAMD.getConnectedDevices();

10 ArrayList<Player> players = initPlayer(devices);
11 // launch PlayerActivity with Bundle
12 for (int deviceNum : devices) {
13 int privateCard1 = deck.getCard();
14 int privateCard2 = deck.getCard();
15 Bundle b = new Bundle();
16 b.putString(”rsc card1”, ”Card ”+privateCard1);
17 b.putString(”rsc card2”, ”Card ”+privateCard2);
18 SAMD.launchActivity(deviceNum, ”PlayerActivity”, b);
19 }
20 ...
21 playNextTurn(0, null) ;
22 }
23 // handle SAMDMessage
24 private SAMDMessageListener mSAMDListener = new

SAMDMessageListener() {
25 public void onSAMDMsg(int deviceNum, SAMDMessage msg) {
26 playNextTurn(deviceNum, msg.getString());
27 }
28 }
29 ...
30 public void playNextTurn(int deviceNum, String move) {
31 openCommunityCards();
32 msgToRemote.putString(”your turn”);
33 // start game
34 if (deviceNum == 0)
35 SAMD.sendMessageToRemote(players.getFirstPlayer(),

msgToRemote);
36 else {
37 players.getPlayer(deviceNum).setMove(move);
38 SAMD.sendMessageToRemote(players.getNextPlayer(deviceNum),

msgToRemote);
39 }
40 }
41}

The first two steps of PlayerActivity implementation (Pro-
gram 2) are the same as those of BoardActivity (lines 9 and
10). Two card images in the Bundle object received from the
local device are displayed on the screen (lines 12–14). Up to
line 14 is the process from the start of the game to the point
the game shows players their cards. After that, when “your
turn” message is received from the local device, bet and fold
buttons get activated for the player to choose from (lines 32–
37). If either button is clicked, PlayerActivity sends a message
of the selected button to the local device and the buttons are
deactivated until next “your turn” message arrives (lines 16–
29, 6).

Program 2. PlayerActivity of TexasHoldem
1public class PlayerActivity extends Activity {
2 SAMDService SAMD;
3 SAMDMessage msgToLocal;
4 ImageView ivCard1, ivCard2;
5 Button betBtn, foldBtn ;
6 ...
7 public void onCreate(Bundle savedInstanceState) {
8 ... // set layout and initialize SAMDMessage and components
9 SAMD = (SAMDService) getSystemService(Context.SAMDService);

10 SAMD.setListener(mSAMDListener);
11
12 Bundle b = getIntent () .getExtras() ;
13 ivCard1.setImageResource(b.getString(”rsc card1”));
14 ivCard2.setImageResource(b.getString(”rsc card2”));
15
16 betBtn.setOnClickListener(new View.OnClickListener(){
17 public void onClick(View v){
18 msgToLocal.putString(”BET”);
19 SAMD.sendMessageToLocal(msgToLocal);
20 endTurn(); // make bet and fold buttons unclickable
21 }
22 }
23 foldBtn .setOnClickListener(new View.OnClickListener(){
24 public void onClick(View v){
25 msgToLocal.putString(”FOLD”);
26 SAMD.sendMessageToLocal(msgToLocal);
27 endTurn();
28 }
29 }
30 }
31 // handle SAMDMessage
32 private SAMDMessageListener mSAMDListener = new

SAMDMessageListener() {
33 public void onSAMDMsg(int deviceNum, SAMDMessage msg) {
34 if (msg.getString().equalsIgnoreCase(”your turn”))
35 playTurn() ; // make bet and fold buttons clickable
36 }
37 }
38 ...
39}

VI. DISCUSSION

In this section, we discuss three particular aspects of mobile
collaboration in the context of SAMD.
Security. The security and privacy concern becomes far
greater when multiple (possibly arbitrary) devices are per-
forming some form of mobile ‘collaboration’ that SAMD is
designed for. In essence, SAMD enables “arbitrary” code to
dynamically run on multiple devices owned by different users.
This may become a serious security concern if that arbitrary
code is malicious. In SAMD, we address the security issue in
three ways: connection authorization, Controller management
and application permission inheritance. The users of devices
willing to participate in a particular collaboration shall manu-
ally select the collaboration initiating device (i.e., local device)
to get connected and authorized for the collaboration.

To make SAMD less intrusive, Controllers in remote devices
may be removed at the time of termination of a collaboration
or cached for later use if and only if remote device users allow.

In the Android platform, the privilege of an application
(e.g., in accessing resources) is dictated by its permissions.
However, in the case of the agent application in SAMD, it
is difficult to anticipate what code will execute; and thus,
setting particular permissions a priori is not quite possible.
Such a permission concern may be addressed by adopting a
permission inheritance technique as in [35] that enables agent
app plugged with a received Activity to inherit permissions of
the SAMD application in the local device.

Portability. SAMD can be implemented in any mobile plat-
form if the platform features the following two characteristics:
1) decomposing and analysis of application executable file is
possible and 2) replacing the executable file and resources
of the application is possible. There are a number of tools,
that can be ported to mobile platforms, for decomposing and
analyzing executable files. The main challenge is with the
second characteristic as mobile platforms differ in structure.
Typically, at the time of application installation, mobile plat-
form creates a sub-directory, in its installation directory, to
store all necessary data for execution. For instance, Android
creates the application’s directory in /data/app/ or /system/app/
and then stores APK. Similarly, iOS creates a directory in
/Apps/ and stores Documents, Library, and application binary.
Due to these similarities in application runtime environments
across mobile platforms, the challenge in the third application
repackaging characteristic can be overcome.
Error handling. ‘Mobile’ devices are transient in nature.
They may disappear (without a notice) during collaboration
due to, for example, out of batteries or network instability.
SAMD handles these errors by regularly checking heartbeats
of mobile devices participating in the collaboration. This is
for simply notifying the local device (more precisely, the app
in the local device) and excluding disconnected devices from
the list of participating devices. The actual error handling
is often specific to an app. For a multi-player board game
(e.g., TexasHoldem), the disconnection of any participating
device makes the entire game invalid. In the meantime, for a
distributed processing app that delegates tasks of a particular
job to multiple devices, the app may need to have some form
of fault tolerance feature specific to the nature of job the app
performs, e.g., re-sending failed tasks to other participating
devices and restarting them there or check-pointing tasks and
resuming failed tasks in other devices.

VII. EVALUATION

We have evaluated the performance of SAMD in terms of
feasibility and capacity. The evaluation has been conducted
with five applications in SAMD-enabled Android phones of
three models, Nexus 6P, Nexus 5X and Nexus 5. The five
experimental SAMD apps and their details are shown in
Table I. In particular, TexasHoldem represents typical multi-
user apps. Code-Intensive and Resource-Intensive represent
apps with two extreme characteristics, 1) long remoteable code
with small amount of resources and 2) short remoteable code
with large amount of resources, respectively. TestApp(n/m)
represents apps with multiple LCs and/or RCs. It is a trans-
formable app that consists of n LCs and m RCs. Mosaicing
is a distributed image processing app.

All mobile devices used in our experiments are located in
the same room and connected to each other via a dedicated
WiFi AP that supports 802.11 a/b/g/n/ac. We repeated the same
experiments five times and used their average to evaluate the
performance of SAMD.

TABLE I
CHARACTERISTICS OF EXPERIMENTAL SAMD APPS.

Application name Description Controller size (code/resource) Number of LCs/RCs APK size
TexasHoldem Texas Holdem board game app 62 KB (8 KB/54 KB) 1/1 1.5 MB
Code-Intensive Includes a RC with ≥2,000 lines of code 72 KB (68 KB/4 KB) 1/1 60 KB
Resource-Intensive Includes a RC which uses large sized resources 20 MB (3 KB/19.8 MB) 1/1 20 MB
TestApp(n/m) Includes n and m LCs and RCs, respectively variable (c MB) n/m (n + m)× c MB
Mosaicing Distributed image mosaicing 13 KB (9 KB/4 KB) 1/1 39 KB

 0

 1

 2

 3

 4

1 2 3 1 2 3 1 2 3

T
im

e
(S

ec
on

ds
)

Nexus 6P to Nexus 6P
Nexus 5X to Nexus 6P

Nexus 6P to Nexus 5

Resource IntensiveCode IntensiveTexasHoldem

Fig. 8. Remote execution latency: x-axis indicates #remote devices.

A. Remote Execution Latency

We first evaluate the remote execution latency which is the
time difference between the launch time of an app in the
local device and the launch time of a transferred RC in the
remote device. Up to three remote devices participate in this
experiment. We used three combinations of local and remote
devices to represent the device heterogeneity in the real world:
(1) Nexus 6P (Local) and Nexus 6P (Remote) to represent
the same devices on both sides, (2) Nexus 5X (Local) and
Nexus 6P (Remote) to represent different devices with similar
performance, (3) Nexus 6P (Local) and Nexus 5 (Remote) to
represent different devices with different performance.

Figure 8 shows the results. Since the remote execution
latency in each remote device can be different from each
other, we chose the largest (i.e., worst) value among them.
TexasHoldem and Code-Intensive apps show less than one
second of latencies in all cases, while Resource-Intensive app
shows up to about four seconds. The large latency of the
Resource-Intensive app is due to the huge sized (about 20 MB)
resources that is transferred to all remote devices. Hence, in the
current network environment, latency-sensitive applications
having large sized resources are not adequate to be SAMD
apps. However, since SAMD shows reasonable latencies in
TexasHoldem and Code-Intensive apps, latency-insensitive ap-
plications such as board games and instant messaging apps
can be good candidates for SAMD apps.

While the Controller sizes of TexasHoldem and Code-
Intensive apps are similar to each other, their latencies are
noticeably different due to the interactive resource transfer
latency in TexasHoldem. Dynamically determined resources
(i.e., private card images for each user) can not be transferred
in advance via lookahead transfer. They are transferred at the
time of the agent app launch, which increases the overall
launching time of the agent app. We can confirm it from
Figure 9, which shows the breakdown of the entire remote
execution latency.

We can see that the major source of remote execution
latency in each app differs from each other. The interactive
resource transfer latency makes the Launching phase the
main source of latency in TexasHoldem. The Delivery phase

 0

 1

 2

 3

 4

1 2 3 1 2 3 1 2 3

T
im

e
(S

ec
on

ds
)

Delivery
Adaptation
Launching

Resource IntensiveCode IntensiveTexasHoldem

Fig. 9. Remote execution latency breakdown (Nexus 6P to Nexus 6P): Deliv-
ery, Adaptation and Launching represent Controller transfer, code adaptation
and agent app launching phases, respectively.

dominantly contributes to the latency in Resource-Intensive
app due to its large sized resources.

The number of remote devices affect the latency in the
Delivery phase since it determines the total amount of data
to be transferred via network. However, it does not affect
latencies in other phases. In Launching phase, only small-sized
messages are exchanged between local and remote devices if
interactive resource transfer does not occur, hence its latency is
not largely affected by the number of devices. Other latency in-
cluded in the Launching phase is the agent app launching time,
which takes about 0.2 seconds in Nexus 6P. The Adaptation
phase is performed in the individual remote devices, which
shows constant latency regardless of the number of remote
devices. Controller size is the dominant factor determining the
latency in Adaptation phase, which makes Resource-Intensive
app show the largest latency in that phase.

Through the lookahead transfer in SAMD, RCs are trans-
ferred and adapted before they are actually called by a LC.
Hence, if there is sufficient interval from the beginning of
a LC to the call of a RC, the only latency users actually
experience is that of the Launching phase, which makes
SAMD feasible even for large-sized applications having large
amount of resources.

To evaluate the effect of the amount of data, transferred to
each remote device, on the feasibility of SAMD, we measured
the remote execution latency varying the Controller size of
TestApp(1,1). Figure 10 shows the results in the Nexus 6P to
Nexus 6P case. Due to the increasing latency of the Delivery

 0

 0.5

 1

 1.5

100KB 500KB 700KB 1MB 2MB 5MB

T
im

e
(S

ec
on

ds
)

Controller Size

1 Remote Device
2 Remote Devices
3 Remote Devices

Fig. 10. Remote execution latency with varying Controller size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

6P 5X 5 6P 5X 5 6P 5X 5 6P 5X 5 6P 5X 5 6P 5X 5

T
im

e
(S

ec
on

ds
)

Installation
Decomposition

Analysis
Packaging

TestApp(3,3)TestApp(1,5)TestApp(1,3)TestApp(1,1)Resource IntensiveTexasHoldem

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

6P 5X 5
Code Intensive

Fig. 11. SAMD app installation time breakdown: Controller size of TestApp is fixed to 2 MB (code: 5 KB, resource 2 MB).

phase, the remote execution latency increases with the increas-
ing Controller size. Therefore, SAMD app developers need to
consider not only the latency-sensitivity of the application but
also the sizes of RCs and the number of simultaneous users.

B. Installation time for SAMD apps

As the installation of a SAMD app requires additional
steps (decomposition, analysis and packaging) for Controller
packaging, we measured the installation time of SAMD apps.
Figure 11 shows the results. The ‘Installation’ is the time for
installing APK file to the device. After installing the APK
file, the Controller packaging is performed to make the app
‘SAMD-ready’. Since the time for decomposition step depends
on the code size of the app, Code-Intensive and TestApp(1,1)
show the largest and least decomposition times, respectively.
The time for analysis step also depends on the code size
because it not only reads smali files but also modifies them for
ID-based API call replacement as described in Section IV-A.
One more notable fact is that, since the modification of smali
files incurs costly write operations to the storage device, the
analysis step takes longer time as the number of RCs increases.
The time for packaging step depends on both the number and
code size of RCs. While Code-Intensive has only one RC, it
shows large packaging time due to the large code size of the
RC. TestApp(1,5) also shows large packaging time due to the
large number of RCs.

C. Effectiveness of the Lookahead Transfer

SAMD uses lookahead transfer to send RCs, a priori, to re-
mote devices in order to reduce the remote execution latencies
of RCs. To evaluate the effectiveness of the lookahead transfer
in SAMD, we measured the remote execution latency of each
RC. The latency is defined as the time between the next RC is
determined in the local device and the RC is actually launched
in the remote device. If we do not use lookahead transfer, a RC
is transferred to the remote device only after it is determined
as the next Controller to be executed in the remote device,
which may cause a large latency.

To mimic the user interaction with the app, we modified
TestApp(1,3) so that a remote device execute multiple RCs one
by one. Every RC is programmed to send a message to the LC
one second after its execution. On receiving the message, the
LC is programmed to determine the next RC to be remotely
executed among unexecuted RCs. In this way, all three RCs are

 0

 0.5

 1

 1.5

 2

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

T
im

e
(S

ec
on

ds
)

w/o Lookahead Transfer
w/ Lookahead Transfer

1:31:21:1

Fig. 12. Remote execution latency of the TestApp(1,3) w/ or w/o lookahead
transfer: n:m in the x-axis represents the number of local:remote devices.
Controller size: 2 MB.

executed once in some order, and we measure their respective
remote execution latencies.

Figure 12 shows the results. When using lookahead transfer,
SAMD starts to transfer three RCs as soon as the LC is
executed. The first RC determined by the LC is executed when
it becomes ready in the remote device, i.e., delivered and
adapted. Using the lookahead transfer, the remote execution
latency of the first RC can be larger than that without the
scheme, since the RC can be the second or third one in
the transfer order from the local device and so has not been
delivered or adapted yet. However, for the second and third
RCs, their latency are very likely to be smaller than those
without the scheme, since they have high probability of being
already ready to be executed in the remote device.

It is notable that the latency of the first RC when using
lookahead transfer can be similar to those of the second and
third RCs when the LC issues execution of the first RC after
sufficient time elapsed from the start of the LC. Hence, if the
time interval between user interactions is not extremely small,
the remote execution latency can be reasonably small. The
experimental results in Figure 12 confirms it.

When lookahead transfer is not used, the latency is not
affected by the execution order. However, it increases as the
number of remote devices increases due to the increasing
Controller delivery time.

D. APK Installation scheme versus SAMD

The easiest way to execute a local app on the remote device
is to transfer the whole package file (i.e., APK file in Android)
of the app and then install and launch the app in the remote
device. We call this simple approach as ‘APK installation
scheme’ in this paper. In this section, we compare the remote
execution latencies between the APK installation scheme and
SAMD to show the relative performance of SAMD. We

 0
 1
 2
 3
 4
 5
 6

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

T
im

e
(S

ec
on

ds
)

APK installation
SAMD

5/(5,5)5/(1,5)3/(1,5)1/(1,5)3/(1,3)1/(1,3)1/(1,1)

Fig. 13. Remote execution delay of TestApp(n,m) between APK installation
scheme and SAMD: 1, 2 and 3 in the x-axis represent the number of remote
devices, and k/(n,m) represents the case where there are k current RCs in
current state of the TestApp(n,m). Controller size: 2 MB.

implemented dynamic application package extraction, transfer
and installation functionalities to the Android platform. Using
these functionalities, when a local app is launched, its APK
file is extracted and transferred to remote devices and then
installed (as a foreground job) and launched in those devices.

Figure 13 compares the remote execution latencies between
APK installation scheme and SAMD. Since the APK instal-
lation scheme transfers and installs the whole app to remote
devices, its remote execution latency is inevitably larger than
that of SAMD, as shown in the figure. In this experiment,
we varied not only the total number of RCs but also the
number of ‘current’ RCs. The current RCs are remoteable
Controllers that are called by the currently executing LC
for remote execution. Only current RCs are transferred to
the remote devices, a priori, by the lookahead transfer in
SAMD. The RC that will be executed in the remote device
is determined, among the current RCs, by the user action or
the current context of the app. Hence, as the number of current
RCs increases, the average remote execution latency becomes
larger since the lastly transferred RC can be determined to
be executed. In the experiment, we randomly selected the RC
to be executed. All values in Figure 13 are the average of
measured times from 10 repeated experiments.

In APK installation scheme, the latency depends only on
the number of total Controllers in the app, since the number
of Controllers determines the size of the app to be transferred
and installed before launch. On the other hand, the latency
of SAMD depends on the number of current RCs not on the
number of total Controllers.

E. Distributed processing

SAMD can also be effectively used for distributed pro-
cessing of computation-intensive applications. To evaluate the
feasibility of distributed processing using SAMD, we have
implemented an image mosaicing app, Mosaicing. Mosaicing
consists of one LC and one RC. The LC equally divides an
input image into multiple subimages of which the number is
equal to the number of participating devices, and distributes
them along with RC to all devices. The RC, after mosaicing
subimage, returns the result (mosaic subimage) to the LC.
Then the LC merges mosaic subimages to produce the final
mosaic image. The RC is executed in both local and remote
devices.

 0

 5

 10

 15

 20

L L+1R L+2R L+3R L+4R L+5R L+6R L+7R

T
ot

al
 E

xe
cu

tio
n

T
im

e
(S

ec
.)

Number of Devices

Mosaicing
Split

Network
Merge

Fig. 14. Total execution time breakdown: Split, Network, Mosaicing and
Merge represent image splitting, transfer, processing and merging time,
respectively. L and R in x-axis denote local and remote devices, respectively.

Figure 14 shows the breakdown of the total execution
time for Mosaicing to process an image file. We repeated
experiment three times using three different image files with
the same resolution (5,500×4,000), and then averaged their
execution times. We used Nexus 6P for local device and three
Nexus 6P and four Nexus 5X devices for remote devices.
From L+1R to L+3R, only Nexus 6P were used for remote
devices. When no remote device is used (L case), the stand-
alone version of the Mosaicing is used to exclude any overhead
induced by distributed processing.

Figure 14 shows that SAMD can be effectively used for
distributed processing of computation-intensive applications
among mobile devices. The increasing overhead along the
number of devices is largely due to the design nature of the
Mosaic rather than due to the native overhead of SAMD. For
example, since the LC performs merge operation as many
times as the number of subimages, the merge overhead linearly
increases to the number of devices.

VIII. CONCLUSION

In this paper, we present Single Application Multiple Device
(SAMD) as a novel mobile collaboration framework. We have
demonstrated fine-grained application sharing enabled by the
platform-level support of SAMD significantly facilities the de-
velopment of mobile collaboration applications. In particular,
platform-level solutions of SAMD to the three main challenges
in mobile collaboration liberate application developers from
custom-implementation of collaboration functionalities. Our
thorough evaluation study and experimental results confirm
our claims.

For our future work, we plan to study resource scheduling
for mobile collaboration, distributed processing applications
in particular, taking into account resource capacity and status
of remote devices. Error handling and fault tolerance are also
part of our future work.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIP) (No. 2014R1A2A2A01004187). Sooyong Kang is the
corresponding author of this paper.

REFERENCES

[1] Supercell, “Clash Royale.” [Online]. Available: https://play.google.com/
store/apps/details?id=com.supercell.clashroyale

[2] Google Inc., “Google docs.” [Online]. Available: https://docs.google.
com/

[3] LiveQoS, “SuperBeam — WiFi Direct Share,” 2015. [Online]. Available:
https://play.google.com/store/apps/details?id=com.majedev.superbeam

[4] Estmob Inc., “Send Anywhere,” 2017. [Online]. Available: https://play.
google.com/store/apps/details?id=com.estmob.android.sendanywhere

[5] Google Inc., “Google Instant Apps.” [Online]. Available: http:
//developer.android.com/topic/instant-apps/index.html

[6] R. A. Baratto, L. N. Kim, and J. Nieh, “THINC: A Virtual Display
Architecture for Thin-Client Computing,” in ACM SIGOPS Operating
Systems Review, vol. 39, no. 5. ACM, 2005, pp. 277–290.

[7] R. A. Baratto, S. Potter, G. Su, and J. Nieh, “Mobidesk: Mobile
Virtual Desktop Computing,” in Proceedings of the 10th ACM Annual
International Conference on Mobile Computing and Networking, 2004,
pp. 1–15.

[8] J. Kim, R. A. Baratto, and J. Nieh, “pTHINC: A Thin-Client Archi-
tecture for Mobile Wireless Web,” in Proceedings of the 15th ACM
International Conference on World Wide Web, 2006, pp. 143–152.

[9] K.-W. Lim, J. Ha, P. Bae, J. Ko, and Y.-B. Ko, “Adaptive Frame Skipping
with Screen Dynamics for Mobile Screen Sharing Applications,” IEEE
Systems Journal, 2017.

[10] S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan,
“How Close is Close Enough? Understanding the Role of Cloudlets
in Supporting Display Appropriation by Mobile Users,” in IEEE In-
ternational Conference on Pervasive Computing and Communications
(PerCom), 2012, pp. 122–127.

[11] Apple, “AirPlay,” 2015. [Online]. Available: https://developer.apple.
com/airplay

[12] A. Lucero, J. Holopainen, and T. Jokela, “Pass-Them-Around: Collabo-
rative Use of Mobile Phones for Photo Sharing,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,
2011, pp. 1787–1796.

[13] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong, “Rio: A System
Solution for Sharing I/O Between Mobile Systems,” in Proc. Int’l Conf.
Mobile Systems, Applications, and Services (MobiSys ’14), 2014.

[14] B. C. Tak and C. Tang, “Appcloak: Rapid Migration of Legacy Ap-
plications into Cloud,” in 7th IEEE International Conference on Cloud
Computing (CLOUD), 2014, pp. 810–817.

[15] V. Andrikopoulos, A. Darsow, D. Karastoyanova, and F. Leymann,
“CloudDSF–The Cloud Decision Support Framework for Application
Migration,” in European Conference on Service-Oriented and Cloud
Computing, 2014, pp. 1–16.

[16] Z. Cai, L. Zhao, X. Wang, X. Yang, J. Qin, and K. Yin, “A Pattern-Based
Code Transformation Approach for Cloud Application Migration,” in 8th
IEEE International Conference on Cloud Computing (CLOUD), 2015,
pp. 33–40.

[17] J. Ejarque, A. Micsik, and R. M. Badia, “Towards Automatic Application
Migration to Clouds,” in 8th IEEE International Conference on Cloud
Computing (CLOUD), 2015, pp. 25–32.

[18] Y. Hu, T. Azim, and I. Neamtiu, “Versatile Yet Lightweight Record-and-
Replay for Android,” in ACM SIGPLAN Notices, vol. 50, no. 10, 2015,
pp. 349–366.

[19] A. Van’t Hof, H. Jamjoom, J. Nieh, and D. Williams, “Flux: Multi-
surface Computing in Android,” in Proceedings of the Tenth European
Conference on Computer Systems (Eurosys), 2015.

[20] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code Offload,” in Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (Mobisys), 2010.

[21] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic Execution Between Mobile Device and Cloud,” in Proceedings
of the 6th European Conference on Computer Systems (Eurosys), 2011.

[22] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proceedings of the 31st IEEE International
Conference on Computer Communications (INFOCOM), 2012.

[23] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Adaptive
Deployment and Configuration for Mobile Augmented Reality in the
Cloudlet,” Journal of Network and Computer Applications, vol. 41, pp.
206–216, 2014.

[24] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto Clouds:
Leveraging Mobile Devices to Provide Cloud Service at the Edge,” in 8th
IEEE International Conference on Cloud Computing (CLOUD), 2015,
pp. 9–16.

[25] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code Offload by Migrating Execution Transparently,” in
OSDI, vol. 12, 2012, pp. 93–106.

[26] Y. Li and W. Gao, “Minimizing Context Migration in Mobile Code
Offload,” IEEE Transactions on Mobile Computing, vol. 16, no. 4, pp.
1005–1018, 2017.

[27] S. Yang, Y. Kwon, Y. Cho, H. Yi, D. Kwon, J. Youn, and Y. Paek,
“Fast Dynamic Execution Offloading for Efficient Mobile Cloud Com-
puting,” in IEEE International Conference on Pervasive Computing and
Communications (PerCom), 2013, pp. 20–28.

[28] C. Dibak, A. Schmidt, F. Dürr, B. Haasdonk, and K. Rothermel, “Server-
assisted interactive mobile simulations for pervasive applications,” in
IEEE International Conference on Pervasive Computing and Communi-
cations (PerCom), 2017, pp. 111–120.

[29] E. E. Marinelli, Hyrax: Cloud Computing on Mobile Devices using
MapReduce. Masters Thesis, Carnegie Mellon University, 2009.

[30] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
Enabling Remote Computing Among Intermittently Connected Mobile
Devices,” in Proceedings of the 13th ACM international symposium on
Mobile Ad Hoc Networking and Computing, 2012, pp. 145–154.

[31] D. Dı́az-Sánchez, A. M. López, F. Almenares, R. Sánchez, and P. Arias,
“Flexible Computing for Personal Electronic Devices,” in IEEE Inter-
national Conference on Consumer Electronics, 2013, pp. 212–213.

[32] JesusFreke, “Baskmali tool.” [Online]. Available: http://baksmali.com
[33] G. Inc., “Android Asset Packaging Tool.” [Online]. Available:

http://elinux.org/Android aapt
[34] J. Lee, H. Lee, Y. C. Lee, H. Han, and S. Kang, “Platform Support For

Mobile Edge Computing,” in 10th IEEE International Conference on
Cloud Computing (CLOUD), 2017.

[35] J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim, “FLEXDROID: Enforcing
In-App Privilege Separation in Android,” in NDSS, 2016.

