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Abstract

This paper explores and develops alternative statistical representations and estimation

approaches for dynamic mortality models. The framework we adopt is to reinterpret

popular mortality models such as the Lee-Carter class of models in a general state-space

modelling methodology, which allows modelling, estimation and forecasting of mortality

under a uni�ed framework. We propose alternative model identi�cation constraints which

are more suited to statistical inference in �ltering and parameter estimation. We then

develop a class of Bayesian state-space models which incorporate a priori beliefs about the

mortality model characteristics as well as for more �exible and appropriate assumptions

relating to heteroscedasticity that present in observed mortality data. To study long

term mortality dynamics, we introduce stochastic volatility to the period e�ect. The

estimation of the resulting stochastic volatility model of mortality is performed using a

recent class of Monte Carlo procedure known as the class of particle Markov chain Monte

Carlo methods. We illustrate the framework using Danish male mortality data, and show

that incorporating heteroscedasticity and stochastic volatility markedly improves model

�t despite an increase of model complexity. Forecasting properties of the enhanced models

are examined with long term and short term calibration periods on the reconstruction of

life tables.
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1 Introduction

An ageing population is a major challenge that many countries are facing today. The problem
arises from the fact that fertility rates are declining while life expectancy has been increasing
in the past several decades without any sign of slowing down. The adverse �nancial outcome
of people living longer than expected, and hence the possibility of outliving their retirement
savings, is known as longevity risk. This long term demographic risk has signi�cant implica-
tions for societies and manifests as a systematic risk for pension plans and annuity providers.
Policymakers rely on mortality projection to determine appropriate pension bene�ts and to
understand the costing of di�erent economic assumptions and regulations regarding the age
of retirement of a given population. For instance, in the UK and Australia de�ned-bene�t
pension plans prior to 2000's had limited exposure to e�ects of longevity risk since high equity
returns on pension fund wealth management portfolios were masking the impact of longevity
risk, however post 2000 declining equity returns coupled with record low interest rate �nancial
environments has demonstrated the signi�cance of decades of longevity improvements, posing
a very real problem for pension schemes. Furthermore, by regulation, insurers who o�er re-
tirement income products are required to hold additional reserving capital to cover longevity
risk. A key input to address longevity risk is the development of advanced mortality mod-
elling methodology, so that human longevity can be predicted with better accuracy and any
uncertainties can be accounted for in mortality forecasting.

Since the introduction of the Lee-Carter model (Lee and Carter (1992)), a range of stochastic
mortality models have been proposed in the literature. Renshaw and Haberman (2003) and
Renshaw and Haberman (2006) introduce multiple period e�ects and cohort e�ect to capture
the change of mortality with respect to year and year-of-birth, respectively, to the Lee-Carter
model. Cairns et al. (2006) proposed a two-factor period e�ect mortality model, known as the
Cairns-Blake-Dowd (CBD) model, for pensioner ages. A cohort extension of the CBD model
was studied in Cairns et al. (2009). Plat (2009) draws on the strengths of the Lee-Carter model
and the CBD model to produce an age-period-cohort model that includes a term to capture
young mortality dynamics. In these well known cases it is common practice in actuarial settings
to estimate stochastic mortality models based on a singular value decomposition approach (Lee
and Carter (1992), Koissi et al. (2006)) or via a maximum likelihood based approach if a discrete
Poisson regression setting is considered (Brouhns et al. (2002), Cairns et al. (2009)).

A common feature of the estimation methods adopted in the frameworks mentioned above
is that the dynamics of the period e�ect, the stochastic latent processes, are not directly
incorporated into joint parameter and state estimation, and instead form a component of a
second stage of estimation. Typically this involves specifying a model for the period e�ect for
forecasting purpose only after an estimation is performed. Such approaches often su�er from
a statistical lack of e�ciency compared to methods that perform joint static model parameter
estimation and latent process �ltering. Hence, the �rst argument we make is that recasting

di�erent classes of mortality models in a state-space formulation can better facilitate state-space

based inference under either frequentist or Bayesian estimation. This is especially true in the

case that the inference is performed jointly on the latent process and static model parameters,

rather than in a less statistically e�cient two-stage procedure.
We note that in the classical actuarial approach that utilises the two-stage procedure, a wide

variety of model choices may be adopted to model the latent stochastic dynamics such as period
e�ect, cohort e�ect etc. These models may be time series models such as random walks with
drift, seasonal ARIMA, long memory processes such as GARMA or stochastic volatility model
such as GARCH etc. It is upto the modeller to perform statistical estimation, model selection
and model criticism stages such as via Box-Jenkins type procedures to select an appropriate
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model choice. In the one-stage estimation framework of the state space model, exactly the
same �exible classes of model are also admissible for the state equation, so there is no loss in
model generality when working with the state space formulation. As we will discuss in linear
Gaussian state space choices such as under SARIMA class of models there are optimal state
space estimators based on Kalman Filters, but in more general classes of non-linear time series
models one can use Sequential Monte Carlo �ltering as discussed below. Note also that one can
always carry out model diagnostics in the state-space framework to decide whether the model
proposed is suitable given the data. In addition, there are various formal statistical criteria
designed for model ranking as well as model selection which are applicable for the one-stage
procedure in state-space setting.

Typically the studies carried out in practice and in the literature have the feature that only
mortality data from the past several decades is considered. For many countries, age-speci�c
death rates are evolving rather smoothly except for some potential change of trend in the last 50
years or so in some developed countries. Besides ARIMA models, structural change model have
been proposed to take into account the trend-changing behaviour of the period e�ect (Li et al.
(2011), van Berkum et al. (2014)). Despite this, the implication of including earlier periods that
exhibit signi�cant volatility of mortality, which can be attributed to some life-critical events
such as wars and epidemics, is still not yet being investigated. The ability to incorporate such
structural information into a mortality model is greatly facilitated when recasting the model
in a state-space formulation. Furthermore, extensions to mortality models that can also be
facilitated in a state-space formulation are increasingly able to be considered and may better
explain the stochastic dynamics of such processes. These include features such as: time varying
volatility; cross-sectional volatility between di�erent age groups; extremal dependence features;
cohort e�ects; structure breaks in regimes; long memory or persistence in mortality features
in di�erent age-groups; cointegration and non-stationarity features; as well as regression based
structures that decompose mortality according to categorical features such as o�cial death
causes, regional categories etc.

Moreover, additional stochastic factor models such as two and three factor models can be
easily considered. This can be particularly relevant when modelling features such as trends in
excess mortality in particular age-groups resulting from disease epidemics (Zucs et al. (2005),
Dawood et al. (2012)), cold and heat-waves (Fouillet et al. (2006), Analitis et al. (2008))
and other e�ects such as medical impairments, occupational hazards, hazardous persuites,
geographical location of residence and ethnic origin, see Eloranta et al. (2012) and England
and Haberman (1993). Hence, the second argument we make is that all these di�erent model

structures can readily be encoded in state-space model structures. Furthermore, they can be

consistently combined in joint estimation procedures in such state-space model structures in

either frequentist and Bayesian formulations, whilst also admitting consistent joint forecasting

models for predictive purposes.
A variety of state-space model approaches exist in a range of di�erent literatures, in this

paper we propose to begin with the widely adopted frameworks typically introduced in state-
space modelling settings in Harvey (1989) or West and Harrison (1997), which we develop to
address some of the aforementioned issues. In contrast to the singular value decomposition
and Poisson regression estimation approaches where the period e�ect is treated as parameter
without any temporal structure in the �rst-stage estimation, period e�ect is regarded as a latent
process with a Markovian structure under the state-space approach. In other words, a state-
space formulation permits modelling, estimation and forecasting of mortality under a uni�ed
framework. Recent progress in sampling-based techniques has allowed statistical inference to
be conducted on sophisticated state-space models that can incorporate multiple latent driving
factors which may exhibit non-linear and non-Gaussian stochastic dynamics. We take advantage
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of this development and utilise realistic model to capture the long term volatility structure of
mortality time series.

Pedroza (2006) and Kogure and Kurachi (2010) consider Bayesian estimation of the Lee-
Carter model in state-space form. A maximum likelihood approach is studied in De Jong
and Tickle (2006). Here, we extend such frameworks to show how to adopt a combination of
�ltering procedures with Rao-Blackwellization to obtain gradient based Fisher score equation
recursions to accurately and e�ciently perform optimal �ltering of the latent state process,
in the sense of mean square error minimization, and recursive least squares estimation for the
static model parameters jointly in a recursive manner. Furthermore, we extend such state-space
models to incorporate non-linear and non-Gaussian features in the state-space structure that no
longer admit simple Kalman �lter forward backward algorithm recursions, leading us to more
cutting edge �ltering techniques based on Sequential Monte Carlo methods. In this regard, we
estimate and examine the Lee-Carter model with heteroscedasticity using both gradient-based
maximum likelihood and Bayesian analysis. Alternative models that have tried to include such
features include, for example, the Poisson regression in Brouhns et al. (2002) and Czado et al.
(2005), who aimed to replace the homogeneous additive error term in the Lee-Carter model by
a Poisson error structure. Also we note a recently developed framework for modelling death
counts with common latent risk factors via credit risk plus methodology with model estimation
via Markov chain Monte Carlo (MCMC) in Hirz et al. (2015). However, we argue that the
state-space formulation allows heteroscedasticity to be accounted for in a more straightforward
manner.

Note that Pedroza (2006) also considers a Lee-Carter model with heteroscedasticity struc-
ture. Our approach in this paper, however, is more general compared to Pedroza (2006) as
we explain in details the machinery behind the gradient-based maximum likelihood estimation
and sampling-based inference, not con�ning to the restricted class of linear and Gaussian state-
space models as previous studies focus on. Such an e�ort is important especially for researchers
and practitioners who are interested in more realistic and sophisticated models which would
fall into the class of nonlinear and non-Gaussian models, while not wanting to be handicapped
by the complications arising from model estimations.

Through reformulation and extensions of the Lee-Carter type mortality models in a state-
space model structure, we investigate several key properties observed in mortality data. First,
the cross sectional variance-covariance matrix between age-group structures is non-homogeneous.
Second, examination of mortality data over a long period indicates that volatility of the evo-
lution of death rates is not constant, i.e. heteroscedasticity is present. We show that the
incorporation of a second stochastic volatility latent factor will allow us to identify the peri-
ods in which mortality demonstrates heightened volatility. This will aid in interpretation and
forecasting from such models. Speci�cally, we introduce a stochastic volatility model for the
period e�ect, aiming to capture long term mortality dynamics. The state-space framework
provides a natural platform to analyse stochastic volatility models (Kim et al. (1998), Chib
et al. (2002)). In this paper we develop a particle Markov chain Monte Carlo (PMCMC) (An-
drieu et al. (2010)) Bayesian model formulation in order to estimate the resulting stochastic
volatility model of mortality jointly with the other latent stochastic factors and the static model
parameters.

We introduce to mortality modelling the estimation framework based around the PMCMC
algorithm which utilises sequential Monte Carlo (SMC) (Doucet et al. (2001), Peters et al.
(2012)) to obtain required quantities in Metropolis-Hastings algorithms that has found many
applications in a variety of areas, for example �nance (Peters et al. (2013)), economics (Flury
and Shephard (2011)), non-life insurance (Peters et al. (2010b)), risk management (Targino
et al. (2015)) and computational biology (Golightly and Wilkinson (2011)). We apply this
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powerful tool in mortality modelling and it allows us to develop e�cient algorithms to estimate
a stochastic volatility extension of the Lee-Carter model.

Recently there are growing interests in applying a state-space framework to the pricing and
hedging of longevity risk. For example, Kogure and Kurachi (2010) considers the Lee-Carter
model in state-space form and show that a pricing risk premium for longevity instruments can
be derived based on the maximum entropy principle. As another example, Liu and Li (2016a)
investigates longevity hedging strategies accounting for population basis risk1 by formulating
multi-population mortality models in the state-space framework. Their approach relies crucially
on the determination of the sensitivities of the hedge portfolio and the liability with respect
to the hidden states of a state-space multi-population mortality model. In another paper,
Liu and Li (2016b) addresses the issues of trend-changing behaviours of mortality rates by
considering a locally linear Cairns-Blake-Dowd model in state-space representation. In addition,
they consider a state-space hedging method including drift risk where the hidden states play
an important role. We believe that our general presentation of the state-space framework
in the paper, including the machinery such as PMCMC developed in the statistics literature
and extended models we proposed, will further facilitate the potentials of utilising state-space
methods in modelling human mortality and the risk management of longevity risk.

The paper is organised as follows. In Section 2 we give an overview of the conventional
mortality modelling and estimation methodology in the literature. A state-space approach for
mortality modelling is formulated and discussed in Section 3. Section 4 is devoted to state-
space inference for stochastic mortality models in a frequentist approach. Section 5 focuses on
Bayesian inference for dynamic mortality models in state-space framework. In Section 6 we
analyse Danish mortality data based on the enhanced models and methodologies proposed in
the paper. Section 7 provides concluding remarks.

2 Classical Bayesian and Frequentist Approaches

In this section we �rst brie�y recall some important de�nitions on mortality modelling. We
then review stochastic mortality models that are commonly found in the literature. Standard
estimation procedures under frequentist and Bayesian approaches are discussed.

2.1 De�nitions and Notation

Hereafter we use the following standard de�nitions from actuarial literature on mortality mod-
elling (Dickson et al. (2009), Pitacco et al. (2009)). Let Tx be a random variable representing
the remaining lifetime of a person aged x. The cumulative distribution function and survival
function of Tx are written as τqx = P (Tx ≤ τ) and τpx = P (Tx > τ) respectively. For a person
aged x, the force of mortality at age x+ τ is de�ned as

µx+τ := lim
h→0

1

h
P (Tx < τ + h|Tx > τ) = − d

dτ
ln τpx. (1)

Let fx(t) be the density function of Tx, then from (1) we have τqx =
∫ τ
0
fx(s) ds =

∫ τ
0 spx µx+s ds.

The central death rate for a x-year-old, where x ∈ N, is de�ned as

mx :=
qx∫ 1

0 spx ds
=

∫ 1

0 spx µx+s ds∫ 1

0 spx ds
, (2)

1Population basis risk refers to the risk that the mortality experience of a portfolio being hedged is di�erent
to the mortality experience underlying an index-based longevity hedging instrument. This discrepancy causes
the hedge to be less e�ective.
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which is a weighted-average of the force of mortality (here qx := 1qx). Under the so-called
piecewise constant force of mortality assumption, that is µx+s = µx where 0 ≤ s < 1 and
x ∈ N, we have, from (2), mx = µx. Moreover, if a Poisson assumption is made for the actual
number of deaths, then the resulting maximum likelihood estimate of the force of mortality µ̂x
(and hence m̂x) is given by µ̂x = Dx/Ex = m̂x where Dx is the number of deaths recorded at
age x last birthday and the exposure-to-risk Ex is the average number of people aged x last
birthday, during the observation year. Note that Ex is approximated by an estimate of the
population aged x last birthday in the middle of the observation year. We refer to m̂x as the
crude death rate.

In the above setup it is assumed that the force of mortality µ is deterministic. The stochastic
case can be handled by the intensity-based framework where death time is modeled as the �rst
jump time of a doubly stochastic process (Bi�s (2005)). Hereafter we treat the force of mortality
µx+t(t), the central death rate mx,t and the crude death rate m̂x,t as stochastic processes. For
a detailed discussion of the background of stochastic mortality modelling in discrete-time and
continuous-time, see Cairns et al. (2008).

2.2 Stochastic Mortality Models

One of the most widely considered examples of stochastic factor model in the context of mortal-
ity modelling is the approach �rst presented in Lee and Carter (1992) who proposed a stochastic
mortality model for the age-speci�c crude death rate m̂x,t, where x = x1, . . . , xp and t = 1, . . . , T
represent age (or age-group) and year (time) respectively. Under the model, the dynamics of
the log crude death rates, yx,t = ln m̂x,t, is given by2

yx,t = αx + βxκt + εx,t, εx,t
iid∼ N(0, σ2

ε), (3)

where N(0, σ2
ε) denotes a Gaussian distribution with zero mean and variance σ2

ε . The vector
α = αx1:xp := [αx1 , . . . , αxp ] represents the age-pro�le of the log death rates and β = βx1:xp
measures the sensitivity of of death rates for di�erent age group to a change of the time series
κt. The period e�ect, κt, for forecasting purpose, is assumed to satisfy the equation

κt = κt−1 + θ + ωt, ωt
iid∼ N(0, σ2

ω), (4)

where εx,t and ωt are independent.
Under this speci�cation, it is clear that the Lee-Carter model is not identi�able, since (3)

is invariant up to some linear transformations of the parameters:

yt = α+ βκt + εt = α+ βc+
β

d
((κt − c)d) + εt = α̃+ β̃κ̃t + εt, (5)

where α̃ = α+ βc, β̃ = β/d and κ̃t = (κt − c)d.
To overcome this identi�cation issue when estimating the Lee-Carter model, one has to

impose a non-unique choice of constraints to restrict the model to an identi�able class. It is
standard practice in actuarial literature to consider the following two constraints:

xp∑
x=x1

βx = 1,
T∑
t=1

κt = 0, (6)

2Alternatively, one may treat the Lee-Carter model as a model for the log central death rate lnmx,t =
αx + βxκt. The distinction of the crude and central death rate is of particular importance when one considers
a Poisson regression setup of death counts (discussed in Section 2.3.2) where the dynamics of the central death
rate is being modeled (Cairns et al. (2009) and Dowd et al. (2010)).

6



as suggested in Lee and Carter (1992) to remedy the identi�ability issue. This choice of con-
straints is equivalent to �xing c = (1/T )

∑T
t=1 κt and d =

∑xp
x=x1

βx. Consequently we have∑T
t=1 κ̃t = 0 and

∑xp
x=x1

β̃x = 1. The reason for these particular form of identi�cation constraints
relates to the fact that the constraint on the path space of the stochastic factor κ1, . . . , κT is
intended to have the e�ect of centering the κt values over the range t ∈ {1, . . . , T}, such that
the structure is designed to capture age-period e�ects with the αx terms incorporating the
main age e�ects, averaged over time, and the bilinear terms βxκt incorporating the age speci�c
period trends (relative to the main age e�ects).

Since the introduction of the Lee-Carter model it has found a widespread uptake of this
class of factor model in both practice, where the Lee-Carter model is now used as a benchmark
methodology by the US Bureau of the Census, and in academia where a range of stochastic
mortality model extensions have been proposed in the literature, see Table 1. We note here that

Model Dynamics

Lee and Carter (1992) ln(mx,t) = αx + βxκt

Renshaw and Haberman (2003) ln(mx,t) = αx +
∑k

i=1 β
(i)
x κ

(i)
t

Renshaw and Haberman (2006) ln(mx,t) = αx + β
(1)
x κt + β

(2)
x ζt−x

Currie (2009) ln(mx,t) = αx + κt + ζt−x

Cairns et al. (2006) logit(qx,t) = κ
(1)
t + κ

(2)
t (x− x̄)

Cairns et al. (2009) logit(qx,t) = κ
(1)
t + κ

(2)
t (x− x̄) + ζt−x

Plat (2009) ln(mx,t) = αx + κ
(1)
t + κ

(2)
t (x̄− x) + κ

(3)
t (x̄− x)+ + ζt−x

Table 1: Several popular stochastic mortality models.

Renshaw and Haberman (2003) and Renshaw and Haberman (2006) introduces multi-period

(
∑k

i=1 β
(i)
x κ

(i)
t ) and cohort factor (ζt−x), respectively, to the Lee-Carter method. Currie (2009)

considers a simpli�ed version of the model in Renshaw and Haberman (2006). Cairns et al.
(2006) propose to model logit(qx,t) := ln (qx,t/(1− qx,t)) instead of log death rates and x̄ is
the average age in the sample range. An addition of cohort factor is studied in Cairns et al.
(2009). Plat (2009) introduces a model which combines the desirable features of the previous
models and include a term (x̄ − x)+ := max(x̄ − x, 0) to capture better young age mortality.
The speci�cation of identi�cation constraints for the Lee-Carter type models, that is for those
where the log death rate is being modeled in Table 1, is discussed in Hunt and Villegas (2015).

2.3 Two-Stage Estimation Approaches: Frequentist View

Several �classical� approaches to Lee-Carter model estimation have been proposed in the lit-
erature, though they typically involve a two-stage procedure looking �rst at the observation
equation as a regression (ignoring the latent factor structure explicitly) and then in the sec-
ond stage they �t time series models to the latent factor structures. A good overview of such
methods is obtained in Pitacco et al. (2009). This two-stage procedure is at odds with modern
state-space modelling procedures which have been progressively moving towards joint param-
eter estimation and latent state estimation in frequentist and Bayesian formulations, which
will be discussed in subsequent sections. This is re�ected in the �rst attempt to improve the
calibration approaches as re�ected in the comment in Cairns et al. (2011) where they highlight
that the �..key element of the proposed framework is our single-stage approach to model �tting

and process parameter estimation.� Such sentiments, relating to consistent single stage joint
estimation are also echoed in the work of Czado et al. (2005).

7



2.3.1 Multi-factor Lee-Carter SVD-based two-stage calibration

One of the most commonly adopted approaches to estimate stochastic mortality models is
via singular value decomposition (SVD). We use the multi-period (k-factor) Lee-Carter model
(Renshaw and Haberman (2003)) with identi�cation constraints given by

T∑
t=1

κ
(i)
t = 0,

xp∑
x=x1

β(i)
x = 1, (7)

where i = 1, . . . , k, as an example to illustrate the methodology below (Koissi et al. (2006)).
Stage 1a - Observation Equation Estimation Stage: We �rst notice that the constraint∑T

t=1 κ
(i)
t = 0 will lead to an estimator for the level α given by

α̂x =
1

T

T∑
y=1

yx,t. (8)

Stage 1b - Observation Equation Estimation Stage: The next stage is to de-trend the
observations {y1:T} by the level estimate α̂ and then to perform a SVD on the resulting
(p× T ) matrix of residual observations to obtain the decomposition

SVD[y1:T − α̂] =
h∑
i=1

ρiuiv
⊤
i , (9)

where ⊤ denotes transposition and ρi, for i ∈ {1, . . . , h}, are the descending singular
values where h is the rank of the data matrix. Here ui and vi are the corresponding left
and right singular vectors of the singular value ρi with dimension p and T respectively.
For a k-rank, where k ≤ h, approximation of the matrix, we have

y1:T − α̂ =
k∑
i=1

ρiuiv
⊤
i +φ1:T , (10)

where φ1:T =
∑h

i=k+1 ρiuiv
⊤
i is the k-rank residuals. We then identify β̃(i) = ui and

κ̃(i) = ρivi, for i = 1, . . . , k. One then performs the transformation

κ
(i)
t = κ̃

(i)
t

∑
x

β̃(i)
x , β(i)

x =
β̃
(i)
x∑
x β̃

(i)
x

, (11)

to ensure the constraints
∑

x β
(i)
x = 1, for i = 1, . . . , k, are satis�ed.

Stage 2 - Latent Process Factor Estimation Stage: At this stage3, the estimation of the
latent factors can be performed by specifying a time series model structure such as ARIMA
model for each of the factors:

κ
(j)
t = θ(j) +

p∑
r=1

κ
(j)
t−r +

q∑
s=1

ϵ
(j)
t−s + ϵt, (12)

or alternatively one could �t the equivalent Vector Auto-Regressive (VAR) model struc-
ture not treating each factor as independent in the time series speci�cation. One would
typically perform this stage of estimation via the Yule-Walker equations, see for instance
discussions in Tsay and Tiao (1984). Under such speci�cations, one then obtain closed
form distributions and estimators for period e�ect latent factor forecasts that can be sub-
stituted into the observation model for forecasts of the mortality by age in future forecast
horizons and used to construct life tables.

3We omit here the re�tting procedure for κ suggested in Lee and Carter (1992).
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2.3.2 Regression-based approaches

It is important to note that the SVD approach assumes homoscedasticity in the error structure.
Therefore, to account for heteroscedasticity in mortality data for di�erent ages, Brouhns et al.
(2002) propose to model death counts, instead of death rates, via Poisson regression where
the addition error term in the Lee-Carter approach is replaced by Poisson random variation.
Speci�cally, the number of death Dx,t is modeled as

Dx,t ∼ Poisson(Ex,tmx,t(Φ)), (13)

where Ex,t is the death exposure, mx,t(Φ) is a model of the central death rate and Φ is the
parameter vector according to the model being used, including time dynamic factors such as
period and cohort e�ect, see for example Table 1. The parameter vector is then estimated by
maximising the log-likelihood function, which is given by

l(Φ;D,E) =
∑
t

∑
x

(Dx,t ln(Ex,tmx,t(Φ))− Ex,tmx,t(Φ)− ln(Dx,t!)) , (14)

where Dx,t! indicates the factorial of Dx,t. Times series models are then used to model the time
dynamic factors forming a second stage estimation procedure for forecasting purpose. Note that
the CBD type models can be estimated under this approach since we have qx,t = 1−exp{−mx,t}
(Cairns et al. (2009)).

Remark 2.1 In all the discussed cases above, there is the general idea that the two-stage es-
timation approaches (SVD and regression) treat the unobserved factors corresponding to for
instance a period e�ect κt and a cohort e�ect ζt−x as parameters. For forecasting purpose,
these dynamics factors are then modeled as time series, typically under the ARIMA framework.
In this paper we argue that a more consistent approach involves embedding the speci�cation of
the model formally within a state-space model structure and to perform the estimation via a
joint combination of �ltering and static-parameter estimation, which can be achieved either in
Bayesian (posterior-based) or frequentist (likelihood-based) settings. We will demonstrate both
in this paper.

2.4 Estimation Approaches: Bayesian View

From the Bayesian modelling perspective there are few papers that study stochastic mortality
models, the main papers in this area involve the works of Czado et al. (2005), Pedroza (2006),
Kogure et al. (2009) and Cairns et al. (2011). As observed in these studies, there are many
possible advantages to adopting a Bayesian approach for mortality modelling, especially in the
context of small populations which may also have substantial quantities of missing data.

An important point to note is that all Bayesian model formulations to date in the mortal-
ity modelling literature, that we are aware of, have utilised what would, in modern statistical
approaches be considered rudimentary sampling based approaches to performing Bayesian es-
timation of the Lee-Carter type models. The criticism here can be leveled in two ways.

1. The �rst relates to the fact that in these Bayesian formulations the latent dynamic process
states are still treated in the MCMC sampling procedures as if they were a set of static
model parameters. The issues with doing this have been mentioned in numerous places,
see for example Carter and Kohn (1994). Recently new approaches to such inference
in Bayesian models have been developed to avoid having to make univariate conjugate
Gibbs or Metropolis-within-Gibbs steps for the latent processes. The reason for this is
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that it is known in general to be very ine�cient in performing inference and can be prone
to misleading posterior inference results due to poor mixing performance of the Markov
chain for a �nite computational budget. Detailed discussions have been provided on such
problems in Andrieu et al. (2010) and subsequently in work such as Chopin et al. (2013)
and the speci�c case to population based state-space models in ecology in Peters et al.
(2010a). Pedroza (2006) also follows this more e�cient sampling approach for mortality
modelling based on Carter and Kohn (1994).

2. Secondly, all existing MCMC sampling-based approaches we are aware of for Bayesian
inference in the mortality modelling literature tends to neglect the issue of model identi�-
cation in the likelihood which can cause issues in the Bayesian formulation. In fact, some
approaches implement identi�cation constraint in the Bayesian model and develop an
MCMC sampler that tries to impose the identi�cation constraint in such a manner that
the resulting Markov chain may not be consistent with preserving the correct invariant
stationary distribution if one applies the constraints inappropriately. We investigate this
issue in a separate paper (Peters et al. (2016)).

These two considerations need to be resolved to update the approaches to more e�cient
sampling approaches with enhanced speci�cations of the model formulation to deal with such
issues directly. In particular, modern approaches to such model estimations are to treat the
latent unobserved process not as static parameters but as a state-space model in which �l-
tering based methods (Kalman Filter variants, SMC) can be utilised for the latent process
estimations jointly with consistent estimation of the `static' model parameters. We will detail
such estimation procedures which are also consistent with imposing speci�c identi�cation con-
straints of relevance to the Lee-Carter model formulations, that are developed to ensure the
correct invariant Bayesian posterior model is preserved by the Markov chain sampler and �lters
developed.

Remark 2.2 (Likelihood Identi�cation Issues and Bayesian Modelling) We note the
fact that model parameters that are not identi�ed in the likelihood pose no formal problem in
a Bayesian analysis. Identi�cation is a property of the likelihood function, whereas Bayesian
inference simply uses the likelihood function to map through the data from prior beliefs to
posterior beliefs. However, it is often the case that working with unidenti�ed likelihood functions
is usually unsatisfactory from a practical perspective as it may lead to partial identi�cation issues
in the posterior or problematic multimodality in the posterior. In general if one utilises a proper
prior distribution it may act to provide a �near-identi�cation� in the sense that one considers
parameter restrictions as limiting forms of prior densities, then there is at least a functional
equivalence between introducing prior information about parameters, and imposing identifying
restrictions.

3 State-Space Formulations of Mortality Models

We are now in a position to present an alternative representations of stochastic mortality
modelling based on state-space methodology (Harvey (1989), West and Harrison (1997)). A
key advantage of this approach is that the two-stage estimation and forecasting procedure
under the SVD or Poisson regression maximum likelihood approaches can be combined in a
single setting. The improved statistical consistency of a single stage approach is recognised in
Cairns et al. (2011). Another key advantage comes from the recent progress in sampling-based
techniques in the estimation of state-space models. The advancement allows statistical inference
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to be conducted on sophisticated state-space models. We take advantage of this development
and utilise realistic model aiming to capture long term mortality dynamics.

A general state-space model consists of a state equation

ϕt = a(ϕt−1,ut), (15)

and an observation equation
zt = b(ϕt,vt), (16)

where the states ϕt form a hidden/latent Markov process with disturbance ut, and the observed
time series data zt depends only on ϕt and disturbance vt. Here a(.) and b(.) are possibly
nonlinear functions, and the states ϕt and observations zt can be multi-dimensional.

It is clear that the models in Table 1 specify the observation equation of di�erent state-space
models that can be considered. For example, for the multi-period Lee-Carter model (Renshaw
and Haberman (2003)), the observed data is zx,t = ln(m̂x,t) for di�erent age x and the latent

states are the period e�ects ϕt =
(
κ
(1)
t , . . . , κ

(k)
t

)
. We also note that multi-population (i.e.

multi-curve) structures can be incorporated in the following state-space models in a number
of di�erent ways and the approaches we will develop for estimation will accommodate such
settings. In the following sub-sections we will discuss a few di�erent classes of mortality models
that are di�cult to deal with in the approaches mentioned in Section 2, but can be handled
straightforwardly in state-space framework.

3.1 Lee-Carter Model with Heteroscedasticity: LC-H model

We present here a state-space formulation of the Lee-Carter model with heteroscedasticity
structure. In this context, the hetroscedasticity refers to a relaxation of the constant single
degree of freedom diagonal covariance assumption typically made on the observation vector for
each year t across the panel of age group strate�cations yt =

(
yx1,t, yx2,t, . . . , yxp,t

)
. Within this

state-space model structure we propose an alternative identi�cation constraint which is tailored
for the estimation under the state-space approach.

The Lee-Carter model with heteroscedasticity structure can be written in state-space form
by combining the processes yt = (yx1,t, . . . , yxp,t) and κt into one dynamical system

yt = α+ βκt + εt, εt
iid∼ N(0,Σ), (17a)

κt = κt−1 + θ + ωt, ωt
iid∼ N(0, σ2

ω), (17b)

where α = αx1:xp , β = βx1:xp and κt is the latent state of the resulting linear Gaussian state-
space model. Here Σ is a p by p diagonal matrix with σ2

ε,x1:xp
on the diagonal. We refer to this

model as LC-H model, and the special case with σ2
ε,xi

= σ2
ε , i ∈ {1, . . . , p}, as LC model.

Instead of the identi�cation constraint (6), we suggest an alternative constraint which is
simpler and more readily applicable to Monte Carlo based procedures such as MCMC and
SMC. Our formulation of the identi�cation constraint is given by setting

αx1 = constant, βx1 = constant. (18)

Such a choice is a valid identi�cation constraint since if one of the elements of each α and β
are known (here we have arbitrarily chosen αx1 and βx1 ; in general one can choose αxi and βxj
where i, j ∈ {1, . . . , p}), then a non-trivial linear transformation in (5) is not allowed anymore;
that is, we must have c = 0 and d = 1. Note that implementing the proposed constraint is
straightforward in both maximum likelihood and Bayesian setting compared to the constraint
(6).
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Remark 3.1 As discussed in Section 2.4, one needs be careful about the way how the con-
straint (6) is implemented in a MCMC based sampling setting. An advantage of the proposed
constraint (18) here is that it is errorproof in this setup. Note that regardless of which constraint
one chooses, a natural interpretation of α and β is that α represents the general pattern of the
age-speci�c log death rates while β captures the sensitivity of log death rates with respect to a
change of the period e�ect. Therefore one can naturally set a value for αx1 as the average of the
log death rate at age x1. On the other hand, there is no restriction on what value βx1 can take.
However we recommend it to be in the range of [0.01, 1], as too small or too large value may
lead to numerical issues such as over�ow/under�ow problems. We also emphasize here that the
resulting �t and forecasting ability of the model will not be a�ected by the choice of constraint
since an identi�cation constraint serves only to identify the model in a unique way.

3.2 Two Factor Lee-Carter Model with Age Based Heteroscedasticity:
LC2-H model

A natural extension of the LC-H model is to include a second stochastic factor for the cohort
e�ect. We denote this model by LC2-H model. The cohort e�ect (Renshaw and Haberman
(2006)) can be modeled under the state-space framework as follows


yx1,t
yx2,t
...

yxp,t

 =


αx1
αx2
...
αxp

+


β
(1)
x1 β

(2)
x1 0 · · · 0

β
(1)
x2 0 β

(2)
x2 · · · 0

...
...

...
. . .

...

β
(1)
xp 0 0 · · · β

(2)
xp



κt
ζx1t
ζx2t
...
ζ
xp
t

+


εx1,t
εx2,t
...

εxp,t

 , (19)

where ζxt := ζt−x. The state equation can be expressed as

κt
ζx1t
ζx2t
...

ζ
xp−1

t

ζ
xp
t


=



1 0 0 · · · 0 0
0 ϑ 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0





κt−1

ζx1t−1

ζx2t−1
...

ζ
xp−1

t−1

ζ
xp
t−1


+



θ
0
0
...
0
0


+



ωκt
ωζ1t
0
...
0
0


. (20)

Here we assume κt is a random walk with drift process and an AR(1) process is assumed for
the cohort e�ect, that is ζx1t = ϑζx1t−1 + ωζ1t , where |ϑ| < 1. Note that, from (20), we have
ζxit = ζ

xi−1

t−1 for i = 2, . . . , p, which is the de�ning property of the cohort e�ect and consequently
we are only required to model the dynamics of ζx1t . We can write the model (19) - (20) in the
following form

yt = α+B [κt, ζt]
⊤ + εt, εt

iid∼ N(0,Σ), (21a)

κt = κt−1 + θ + ωκt , ωκt
iid∼ N(0, σ2

ωκ), (21b)

ζt = Cζt−1 +Dωζt , ωζ1t
iid∼ N(0, σ2

ωζ), (21c)

where B is the p by p+1 matrix in (19), C is the corresponding p by p sub-matrix in (20) and
D is a zero p by p matrix except for the (1, 1) element with value 1.

For further details on the formulation, estimation and forecasting of cohort models in state-
space framework, see Fung et al. (2017).
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3.3 Three Factor Lee-Carter Model with Dynamic Time Based Het-
eroscedasticity: LC3-H2 model

We can further extend the LC2-H model by adding a third factor for the dynamic of volatility
in the observation vector over time. Speci�cally, a time dependent stochastic factor

√
γyt , which

is independent to age (or age group), is incorporated into the observation noise term as follows:

yt = α+B [κt, ζt]
⊤ +

√
γyt εt, εt

iid∼ N(0,Σ), (22a)

κt = κt−1 + θ + ωκt , ωκt
iid∼ N(0, σ2

ωκ), (22b)

ζt = Cζt−1 +Dωζt , ωζ1t
iid∼ N(0, σ2

ωζ), (22c)

γyt = a(b− γyt−1) + γyt−1 + σ
√
γyt−1ϵ

γy

t , ϵγ
y

t
iid∼ N(0, 1), (22d)

where γyt is a process obtained via an Euler discretization of a square Bessel process corre-
sponding to the Cox-Ingersoll-Ross process given by

dγyt = a(b− γyt ) dt+ σ
√
γyt dWt,

where 2ab ≥ σ2 to ensure γyt is strictly positive. Such a dynamic volatility factor can be used
to explain time varying periods of heightened observation variance, which potentially occur in
some populations over time. These may be attributed to disease, war, famine, environmental
factors or shocks as well as changes in migration and immigration patterns that could in�uence
the volatility of the observed death counts in di�erent age groups. Note that this is one possible
way to introduce stochastic volatility to mortality models where the stochastic volatility factor
enters via the observation noise term. Another possible choice is to consider stochastic volatility
through the state equation described in Section 3.4 which will be the focus of this paper.

3.4 Multi-Factor Model with Stochastic Volatility in the Latent Pro-
cess: LCSV and LCSV-H models

A common assumption in mortality modelling is that the period e�ect is derived from a dis-
cretization of a random walk with drift process. Such a process may be su�cient for modelling
simple dynamics, but can be insu�cient if time varying periods of volatility are present in
the time series. In fact, much of the literature focuses mainly on capturing the trend of the
period e�ect κt for the past several decades where mortality time series for many countries are
reasonably smooth.

Here we extend the Lee-Carter framework to incorporate stochastic volatility in the latent
process. As a result, the impact of epidemics, natural disasters, medical breakthrough or wars
on the evolution of mortality can be taken into account. This will produce di�erent structural
e�ects on the calibration and importantly on the forecasting when compared to the previously
developed model of LC3-H2. We refer (23a)-(23c) as Lee-Carter stochastic volatility model
which we denote as LCSV model:

yt = α+ βκt + εt, εt
iid∼ N(0, σ2

ε1p), (23a)

κt = κt−1 + θ + ωt, ωt|γt ∼ N(0, exp{γt}), (23b)

γt = λ1γt−1 + λ2 + ηt, ηt
iid∼ N(0, σ2

γ). (23c)

The log-volatility process γt is introduced in the state equation for κt via the error term ωt. The
process γt is an autoregressive model of order 1 (AR(1)) with |λ1| < 1 and the mean reverting
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level is given by λ2/(1−λ1). A heteroscedasticity structure can be introduced in (23a) and will
be referred to as LCSV-H model. Speci�cally, the LCSV-H model is given by

yt = α+ βκt + εt, εt
iid∼ N(0,Σ), (24a)

κt = κt−1 + θ + ωt, ωt|γt ∼ N(0, exp{γt}), (24b)

γt = λ1γt−1 + λ2 + ηt, ηt
iid∼ N(0, σ2

γ). (24c)

Cohort e�ect can also be incorporated into the LCSV model as follows:

yt = α+B [κt, ζt]
⊤ + εt, εt

iid∼ N(0, σ2
ε1p), (25a)

κt = κt−1 + θ + ωt, ωt|γt ∼ N(0, exp{γt}), (25b)

γt = λ1γt−1 + λ2 + ηt, ηt
iid∼ N(0, σ2

γ), (25c)

ζt = Cζt−1 +Dωζt , ωζ1t
iid∼ N(0, σ2

ωζ). (25d)

Compared to the LC3-H2 model where stochastic volatility is included in the observation noise
term, introducing stochastic volatility in the latent period process has the advantage, in terms of
simplicity and ease of interpretation, that the variability of mortality data in the time dimension
is captured purely by the latent process.

4 Frequentist State-Space Inference

Given these di�erent state-space model structures, the next task to consider is the inference for
the joint single stage state and parameter estimation. In this section we consider full likelihood
based joint inference procedures based on �ltering and gradient estimation. To achieve this
we must describe both �ltering in linear Gaussian and non-linear / non-Gaussian �ltering via
SMC method (particle �lters) and their application to gradient based estimation in the marginal
likelihood, having integrated out the latent state processes. We will do this in a general way
and then present particular examples of relevance to this paper.

Under the classical maximum likelihood approach, parameters are estimated by maximizing
a model's log-likelihood function. In the case of state-space models in the form of (15)-(16),
the likelihood is in two forms: the complete data likelihood, assuming ϕ0 �xed, is given by

pψ (ϕ1:T ,z1:T ) =
T∏
t=1

pψ (zt|ϕt) pψ (ϕt|ϕt−1) , (26)

and the marginal likelihood, typically used for the static model based inference, is given by

pψ (z1:T ) =

∫ T∏
t=1

pψ (zt|ϕt) pψ (ϕt|ϕt−1) dϕt, (27)

where ψ denotes the d-dimensional parameter vector of the model. Two challenges now arise.
The �rst is that typically the integral in (27) cannot be evaluated in closed form, except for
linear Gaussian state-space model systems. The second issue is that the gradient equations for
such a state-space model marginal likelihood, even if they can be calculated in closed form,
requires a non-linear multiple equation solver. For this reason it is common to adopt a solution
based on a recursive estimation using gradient and Hessian information from the marginal
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likelihood. Under the gradient-based approach, the optimal parameter vector can be found by
iterations, where the (m+ 1)-th estimate is obtained by:

ψ(m+1) = ψ(m) −
[
∇2
ψ ℓ(ψ

(m))
]−1 ∇ψ ℓ

(
ψ(m)

)
, (28)

where ℓ(ψ), ∇ψℓ(ψ) and −∇2
ψ ℓ(ψ) denote the log-likelihood function, the gradient (or score)

vector and the Hessian information matrix of the log-likelihood function respectively, de�ned
with respect to grad and Laplacian di�erential operators given by:

[∇ψ]i :=
∂

∂ψi
, ∀i ∈ {1, . . . , n}

[
∇2
ψ

]
i,j

:=
∂2

∂ψi∂ψj
, ∀i, j ∈ {1, . . . , n} .

(29)

The iterating scheme will stop once certain criterion is met, for example when the magnitude of
the score vector is small enough. This will be illustrated using the LC-H model as an example
in Section 4.2.

The results developed are based on the marginal likelihood of the state-space model, with
generic static model parameters ψ for observations z1:T = z1, . . . , zT having integrated out
latent states ϕ1, . . . ,ϕT , denoted by pψ (z1:T ). We are then interested in forming recursive
�ltering to integrate the complete data likelihood to �nd the marginalized likelihood and then
working with recursive gradient based estimation to update static model parameters in Newton-
Descent type algorithm, or for linear Gaussian systems a recursive least squares based approach.

As observed in Poyiadjis et al. (2005) and Poyiadjis et al. (2011), it is useful to consider
two classes of identities for the gradient and Hessian of the marginalized likelihood, given by
the Fisher's identity and the Louis' identity, respectively according to

∇ψpψ (z1:T ) =

∫
∇ψ ln pψ (ϕ1:T ,z1:T ) pψ (ϕ1:T |z1:T ) dϕ1:T ,

−∇2
ψpψ (z1:T ) = ∇ψ ln pψ (z1:T )∇ψ ln pψ (z1:T )

⊤ −
∇2
ψ ln pψ (z1:T )

pψ (z1:T )
,

(30)

where

∇2
ψpψ (z1:T )

pψ (z1:T )
=

∫
∇ψ ln pψ (ϕ1:T , z1:T )∇ψ ln pψ (ϕ1:T , z1:T )

⊤ pψ (ϕ1:T |z1:T ) dϕ1:T

+

∫
∇2
ψ ln pψ (ϕ1:T ,z1:T ) pψ (ϕ1:T |z1:T ) dϕ1:T .

(31)

An important point about these recursions is that the integrals for the gradient vector and
Hessian matrix are expressed in terms of the path-space distribution pψ (ϕ1:T |z1:T ). In the case
of the linear Gaussian dynamics this distribution can be obtained based on variations of the
Kalman �lter recursion, however when the state-space model is non-linear or non-Gaussian this
distribution must be estimated via Monte Carlo methods. The most e�cient of these methods
for state-space modelling purposes is known as the class of SMC methods (particle �lters). In
this case it will be more accurate from the perspective of the variance of the estimated gradient
and Hessian matrices to utilise the �lter distribution based estimators in a recursive fashion
based on the local estimates of the distributions pψ (ϕt|z1:t), for each t ∈ {1, . . . , T} rather than
the path space estimator which is based on distribution pψ (ϕ1:T |z1:T ) at the �nal time T . The
result explaining the di�erence in estimation precision for the gradient and Hessian, from the
perspective of variance of the solution on the path space distribution versus �lter distributions
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is provided in Theorem 1 of Poyiadjis et al. (2011). This motivates the need to work with the
�lter recursions.

To achieve this one can replace in the Fisher and Louis' identities the path-space quantities
pψ (ϕ1:T , z1:T ) and pψ (ϕ1:T |z1:T ) by the �lter quantities given by pψ (ϕt,z1:t) and pψ (ϕt|z1:t).
After this substitution, one may utilise the following recursive formulations to evaluate the
gradient and Hessian, see Poyiadjis et al. (2005) and Poyiadjis et al. (2011). In this case the
Fisher identity is recursively given by:

∇ψ ln pψ (z1:t) =

∫
∇ψ ln pψ (ϕt, z1:t) pψ (ϕt|z1:t) dϕt,

∇ψ ln pψ (ϕt,z1:t) =
pψ (z1:t−1) pψ (zt|ϕt)

pψ (ϕt,z1:t)

∫
pψ (ϕt|ϕt−1) pψ (ϕt−1|z1:t−1)

× [∇ψ ln pψ (zt|ϕt) +∇ψ ln pψ (ϕt|ϕt−1) +∇ψ ln pψ (ϕt−1,z1:t−1)] dϕt−1,

pψ (ϕt,z1:t) = pψ (z1:t−1) pψ (zt|ϕt)
∫
pψ (ϕt|ϕt−1) pψ (ϕt−1|z1:t−1) dϕt−1.

The recursive form of Luis' identity is given by:

∇2
ψpψ (z1:t)

pψ (ϕt,z1:t)
=

∫
∇ψ ln pψ (ϕt,z1:t)∇ψ ln pψ (ϕt, z1:t)

⊤ pψ (ϕt|z1:t) dϕt

+

∫
∇2
ψ ln pψ (ϕt,z1:t) pψ (ϕt|z1:t) dϕt,

∇2
ψ ln pψ (ϕt, z1:t) =

∇2
ψpψ (ϕt,z1:t)

pψ (ϕt,z1:t)
−∇ψ ln pψ (ϕt,z1:t)∇ψ ln pψ (ϕt, z1:t)

⊤ ,

∇2
ψpψ (ϕt, z1:t) = pψ (z1:t−1) pψ (zt|ϕt)

∫
pψ (ϕt|ϕt−1) pψ (ϕt−1|z1:t−1)

× {[∇ψ ln pψ (zt|ϕt) +∇ψ ln pψ (ϕt|ϕt−1) +∇ψ ln pψ (ϕt−1,z1:t−1)]

× [∇ψ ln pψ (zt|ϕt) +∇ψ ln pψ (ϕt|ϕt−1) +∇ψ ln pψ (ϕt−1, z1:t−1)]
⊤

+
[
∇2
ψ ln pψ (zt|ϕt) +∇2

ψ ln pψ (ϕt|ϕt−1) +∇2
ψ ln pψ (ϕt−1,z1:t−1)

]}
dϕt−1.

In general, the solution to these recursions can be achieved via SMC as detailed in Poyiadjis
et al. (2005) and Poyiadjis et al. (2011).

In the following sections we will illustrate the use of these recursive identities for the special
case of the LC-H model where the state-space takes a linear Gaussian form. In this case the
integrals and recursive evaluation of the gradient and Hessian can be written in closed form.
To proceed we �rst introduce the optimal �lter recursion, with respect to minimization of mean
squared error, in the case of linear Gaussian state-space models, known as the Kalman �lter
(Kalman (1960) and Harvey (1989)).

4.1 Closed Form Filter Recursions for LC-H Model

The aim of �ltering is to obtain the distribution of the latest state given observations. For a
general state-space model, (15)-(16), the �ltering density π(ϕt|z1:t) at time t can be calculated
sequentially by �rst assuming the �ltering density π(ϕt−1|z1:t−1) at time t− 1 is known. Then
the one-step ahead predictive density for the state is given by

π(ϕt|z1:t−1) =

∫
π(ϕt|ϕt−1)π(ϕt−1|z1:t−1)dϕt−1. (32)
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From Bayes' Formula and the structure of the conditional dependency of the state-space model,
one can obtain the �ltering density as

π(ϕt|z1:t) =
π(ϕt|z1:t−1)π(zt|ϕt)∫
π(ϕt|z1:t−1)π(zt|ϕt)dϕt

. (33)

For nonlinear and non-Gaussian state-space models, numerical techniques such as SMCmethods
are required to estimate the �ltering density, see Doucet et al. (2001), Doucet et al. (2000) and
Liu (2008).

In the case of the LC-H model, since it is a linear and Gaussian state-space model, the
�ltering distribution can be obtained analytically via Kalman �ltering. In particular we can
�nd the conditional distributions of the key quantities in the �ltering recursions are all Gaussian
distributions as follows:

κt−1|y1:t−1 ∼ N(mt−1, Ct−1), (34a)

κt|y1:t−1 ∼ N(at, Rt), (34b)

yt|y1:t−1 ∼ N(ft,Qt), (34c)

κt|y1:t ∼ N(mt, Ct) (34d)

where the recursive nature of these distributions arises from the recursions of the su�cient
statistics:

at = mt−1 + θ, Rt = Ct−1 + σ2
ω, (35a)

ft = α+ βat, Qt = ββ
⊤Rt + Σ, (35b)

mt = at +Rtβ
⊤Q−1

t (yt − ft), Ct = Rt −Rtβ
⊤Q−1

t βRt. (35c)

That is, given the �ltering distribution at t− 1, (34a), the �ltering distribution at t is given by
(34d) using (35a)-(35c).

4.2 Closed form Gradient-Based Estimation via Score and Hessian
Recursions for LC-H Model

For the LC-H model, the log-likelihood function ℓ(ψ) := ln π(y1:T |ψ) is given by

ℓ(ψ) = ln

(
T∏
t=1

π(yt|y1:t−1,ψ)

)
= −pT

2
ln 2π − 1

2

T∑
t=1

(
ln |Qt|+ v⊤t Q−1

t vt
)
, (36)

where vt := yt−ft, and ψ = (αx2:xp , βx2:xp , θ, σ
2
ε,x1:xp

, σ2
ω) is an n-dimensional parameter vector.

The log-likelihood function (36) can be derived directly from (34c).
It can be shown that (Harvey (1989)) the elements of the score vector and the information

matrix are given in closed form for the LC-H model according to the expressions:

∂ℓ

∂ψi
=

1

2

T∑
t=1

{
tr

[(
Q−1
t

∂Qt

∂ψi

)
(1p −Q−1

t vtv
⊤
t )

]
+ 2

∂v⊤t
∂ψi

Q−1
t vt

}
, i = 1, . . . , n (37)

where tr[·] denotes the trace operator and

−E
[

∂2ℓ

∂ψi∂ψj

]
=

1

2

T∑
t=1

[
tr

(
Q−1
t

∂Qt

∂ψi
Q−1
t

∂Qt

∂ψj

)]
+ E

[
T∑
t=1

∂v⊤t
∂ψi

Q−1
t

∂vt
∂ψj

]
, i, j = 1, . . . , n

(38)
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and the expectation operator E[·] on the second term in (38) can be dropped (since the expres-
sions are asymptotically equivalent). In order to evaluate the score vector and the information
matrix, we need

∂vt
∂ψi

= − ∂α

∂ψi
− ∂β

∂ψi
at − β

∂at
∂ψi

(39)

and
∂Qt

∂ψi
=
∂β

ψi
Rtβ

⊤ + β
∂Rt

∂ψi
β⊤ + βRt

∂β⊤

∂ψi
+
∂Σ

∂ψi
. (40)

The expressions (39) and (40) require, for t = 1, . . . , T and i = 1, . . . , n,

∂at
∂ψi

=
∂mt−1

∂ψi
+

∂θ

∂ψi
and

∂Rt

∂ψi
=
∂Ct−1

∂ψi
+
∂σ2

ω

∂ψi
. (41)

The expressions in (41) in turn require, for t = 1, . . . , T − 1 and i = 1, . . . , n,

∂mt

∂ψi
=
∂at
∂ψi

+
∂Rt

∂ψi
β⊤Q−1

t vt +Rt
∂β

∂ψi
Q−1
t vt −Rtβ

⊤Q−1
t

∂Qt

∂ψi
Q−1
t vt +Rtβ

⊤Q−1
t

∂vt
∂ψi

(42)

and

∂Ct
∂ψi

=
∂Rt

∂ψi
− ∂Rt

∂ψi
β⊤Q−1

t βRt −Rt
∂β

∂ψi
Q−1
t βRt

+Rtβ
⊤Q−1

t

∂Qt

∂ψi
Q−1
t βRt −Rtβ

⊤Q−1
t

∂β

∂ψi
Rt −Rtβ

⊤Q−1
t β

∂Rt

∂ψi
. (43)

Note that ∂m0

∂ψi
= ∂C0

∂ψi
= 0 for i = 1, . . . , n and the required di�erentiation matrices ∂α

∂ψi
, ∂β
∂ψi

,
∂Σ
∂ψi

, ∂θ
∂ψi

and ∂σ2
ω

∂ψi
are displayed in Appendix A. The gradient-based estimation for the LC-H

model is described in Algorithm 1.

Algorithm 1 Gradient-based approach for estimating parameters ψ

1: Initialise ψ = ψ(0); specify m0 and C0.
2: while stopping criterion is not met do
3: Count the number of iteration performed as m;
4: Run Kalman �lter using ψ(m); obtain (39) and (40) for t = 1, . . . , T ;
5: Evaluate the score vector ∇ψ ℓ(ψ

(m)) using (37);
6: Evaluate the information matrix −E

[
∇2
ψ ℓ(ψ

(m))
]
given by (38);

7: Set ψ(m+1) = ψ(m) +
[
E[∇2

ψ ℓ(ψ
(m))]

]−1 ∇ψ ℓ(ψ
(m)).

8: end while

5 Bayesian State-Space Inference

In contrast to the classical maximum likelihood approach where parameters are deterministic
but unknown, in a Bayesian view the parameters are treated as random variables. In this
way the Bayesian paradigm can take parameter uncertainty into account and incorporate in a
consistent manner apriori beliefs on the important model parameters, as encoded through the
prior.

In this section we aim to develop modern approaches to Bayesian inference for state-space
modelling that do not rely on potentially ine�cient sampling approaches based on Gibbs or
Metropolis-within-Gibbs for the latent state process. Instead we will introduce to stochastic
mortality modelling state-space models of two classes of Bayesian inference:
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� Linear Gaussian Stochastic Mortality Models: a Rao-Blackwellised Gibbs sampler
approach which is based on a combination of Metropolis-within-Gibbs and Gibbs sampling
steps for the static model parameters, combined with a Forward-Backward Kalman �lter
recursion for the state process. We assume the proposed constraints (18) throughout,
avoiding the constraint issue when performing MCMC as discussed in Section 2.4.

� Non-Linear / Non-Gaussian Stochastic Mortality Models: in the case of non-
linear and or non-Gaussian state-space model dynamics such as the stochastic volatility
models of LC3-H2 and the LCSV models, the sampler we develop is based on novel de-
velopments of the Particle Metropolis Hastings samplers of Andrieu et al. (2010) adapted
to the stochastic mortality models. In particular we consider a combination of Rao-
Blackwellized Kalman �lter and particle �lter for the latent state process full posterior
conditionals, combined with a combination of Metropolis-within-Gibbs and Gibbs sam-
pling steps for the static model parameters.

In general under all the Bayesian approaches we consider, we aim to obtain the joint posterior
density

π(κ0:T ,ψ|y1:T ) (44)

of the states κ0:T as well as the parameters, ψ, given the observations y1:T . We begin with the
�rst case of the linear Gaussian state-space stochastic mortality models and we use the LC-H
model as an example where the parameter vector is ψ := (αx2:xp , βx2:xp , θ, σ

2
ε,x1:xp

, σ2
ω) as we use

the constraint proposed in (18).

5.1 Linear Gaussian State-Space Inference

We develop an e�cient approach involving a combined Gibbs sampling conjugate model sampler
for the marginal target distributions of the static model parameters along with a forward
backward Kalman �lter sampler for the latent process κ1:T . A sample of the targeted density
is obtained via Gibbs sampling where M is the number of MCMC iterations (Algorithm 2).

Algorithm 2 Rao-Blackwellized Forward-Backward Kalman Filter and Gibbs sampling for
π(κ0:T ,ψ|y1:T )
1: Initialise: ψ = ψ(0).
2: for i = 1, . . . ,M do
3: Sample κ

(i)
0:T from π(κ0:T |ψ(i−1),y1:T ) via FFBS (Section 5.1.1).

4: for h = 1, . . . , n do
5: Sample ψ

(i)
h from π(ψh|κ(i)0:T ,ψ

(i)
−h,y1:T ),

6: where ψ
(i)
−h = (ψ

(i)
1 , . . . , ψ

(i)
h−1, ψ

(i−1)
h+1 , . . . , ψ

(i−1)
n ).

7: end for
8: end for

The general block Gibbs sampling algorithm steps require to sample from the full conditional
densities π(κ0:T |ψ,y1:T ) and π(ψ|κ0:T ,y1:T ), which are shown in the following.

5.1.1 Sampling from the full conditional density π(κ0:T |ψ,y1:T )

Samples of the full conditional density π(κ0:T |ψ,y1:T ) can be obtained via the so-called forward-
�ltering-backward sampling (FFBS) procedure (Carter and Kohn (1994)). This sampling ap-
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proach is also utilized in Pedroza (2006). We can write

π(κ0:T |ψ,y1:T ) =
T∏
t=0

π(κt|κt+1:T ,ψ,y1:T ) =
T∏
t=0

π(κt|κt+1,ψ,y1:t), (45)

where the last term in the product, π(κT |ψ,y1:T ), is distributed as N(mT , CT ) which is obtained
from the last iteration of the Kalman �ltering procedure.

Once we draw a sample κT from N(mT , CT ), then (45) suggests that we can draw recursively
and backwardly κt from π(κt|κt+1,ψ,y1:t) where t = T − 1, T − 2, . . . , 1, 0. Moreover, we have

κt|κt+1,ψ,y1:t ∼ N(ht, Ht), (46)

where

ht = mt + CtR
−1
t+1(κt+1 − at+1), (47a)

Ht = Ct − CtR
−1
t+1Ct, (47b)

which can be derived based on Kalman smoother (Petris et al. (2009)).
The FFBS procedure is displayed in Algorithm 3. Note that the prior distribution for κ0 can

be set to be vague to run the Kalman �lter; the output of the algorithm includes the posterior
distribution of κ0.

Algorithm 3 FFBS Algorithm: Forward Filtering Backward Sampling

1: Run Kalman �lter to obtain mT and CT .
2: Sample κT from N(mT , CT ).
3: for t = T − 1, . . . , 0 do
4: Sample κt from N(ht, Ht) using the sample κt+1 obtained in the previous step.
5: end for

5.1.2 Sampling from the full conditional density π(ψ|κ0:T ,y1:T )

The �rst thing to observe is that under the reparameterization of the identi�cation constraints
(18), the following Gibbs sampling stages can be performed exactly.

We assume that the prior for (αx2:xp , βx2:xp , θ, σ
2
ε,x1:xp

, σ2
ω) are given by

αx ∼ N(µ̃α, σ̃
2
α), βx ∼ N(µ̃β, σ̃

2
β), θ ∼ N(µ̃θ, σ̃

2
θ), (48a)

σ2
ε,x ∼ IG(ãε, b̃ε), σ2

ω ∼ IG(ãω, b̃ω), (48b)

where IG(ãω, b̃ω) denotes an inverse-gamma distribution with mean b̃ω/(ãω − 1) and variance
b̃2ω/((ãω−1)2(ãω−2)) for ãω > 2. We assume that the priors for all parameters are independent.
In this case the posterior densities of parameters are of the same type as the prior densities, a
so-called conjugate prior. The posterior distribution for each parameter is given by (we write,
for ease of notation, y = y1:T , κ = κ0:T , family ψ−λ means �parameter vector ψ without the
parameter λ"):

αx|y1:T ,κ,ψ−αx ∼ N

(
µ̃ασ

2
ε,x + σ̃2

α

∑
t(yxt − βxκt)

σ̃2
αT + σ2

ε,x

,
σ̃2
ασ

2
ε,x

σ̃2
αT + σ2

ε,x

)
, (49)

βx|y1:T ,κ,ψ−βx ∼ N

(
σ̃2
β

∑
t(yxt − αx)κt + µ̃βσ

2
ε,x

σ̃2
β

∑
t κ

2
t + σ2

ε,x

,
σ̃2
βσ

2
ε,x

σ̃2
β

∑
t κ

2
t + σ2

ε,x

)
, (50)
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θ|y1:T ,κ,ψ−θ ∼ N

(
σ̃2
θ

∑T
t=1(κt − κt−1) + µ̃θσ

2
ω

σ̃2
θT + σ2

ω

,
σ̃2
θσ

2
ω

σ̃2
θT + σ2

ω

)
, (51)

σ2
ε,x|y1:T ,κ,ψ−σ2

ε,x
∼ IG

(
ãε +

pT

2
, b̃ε +

1

2

T∑
t=1

(yxt − (αx + βxκt))
2

)
, (52)

σ2
ω|y1:T ,κ,ψ−σ2

ω
∼ IG

(
ãω +

T

2
, b̃ω +

1

2

T∑
t=1

(κt − (κt−1 + θ))2
)
. (53)

5.2 Non-Linear / Non-Gaussian State-Space Inference

In the case of non-linear / non-Gaussian state-space model dynamics such as the stochastic
volatility models of LC3-H2 and the LCSV models, the sampler we develop is based on novel
developments of the Particle Metropolis Hastings samplers of Andrieu et al. (2010) adapted to
the stochastic mortality models. In particular we consider a combination of Rao-Blackwellized
Kalman �lter and particle �lter for the latent state process full posterior conditionals, combined
with a combination of Metropolis-within-Gibbs and Gibbs sampling steps for the static model
parameters, both embedded within a PMCMC framework. We will illustrate the idea of this
methodology for the LCSV model where a stochastic volatility dynamics is included in the
latent process for the period e�ect.

5.2.1 Estimation for the LCSV Mortality Model

The static parameter vector is denoted as ψ = (αx2:xp , βx2:xp , θ, σ
2
ε , σ

2
γ, λ1, λ2, γ0). Note that

we treat γ0 as a static parameter and our task is to obtain samples from the joint posterior
distribution:

π(κ0:T , γ1:T ,ψ|y1:T ). (54)

In this setting one can try a number of di�erent approaches, the �rst would be to sample
jointly from the full posterior distribution (54) via PMCMC methods to be described below. A
second approach would be to combine PMCMC methods within a block-Gibbs based sampler
such as the following sampling scheme, where we apply Gibbs sampling to sample from the full
conditional densities

π(κ0:T |ψ, γ1:T ,y1:T ), (55a)

π(ψ|κ0:T , γ1:T ,y1:T ), (55b)

π(γ1:T |ψ, κ0:T ,y1:T ). (55c)

Note that sampling from (55a) can be achieved by the FFBS procedure described in Algorithm
3, as one can apply Kalman �ltering since γ1:T is assumed to be given. The only di�erence
compared to Section 5.1.1 is that the term σ2

ω is replaced by exp{γt} in Kalman �ltering.
In the following we provide details on how to sample from either the full posterior (54) or

from full conditionals such as the density in (55c), via PMCMC method. Sampling from the
posteriors of the static parameters (55b) is detailed in Section 5.2.4.

5.2.2 Particle Markov chain Monte Carlo (PMCMC) for Mortality Models

In this section we explain the generic form of the PMCMC methodology that can be applied
in a range of approaches for state-space stochastic mortality models. In general a PMCMC
sampling method is a class of MCMC method where SMC algorithm is used as a proposal
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distribution within a MCMC algorithm. Though this seems trivial, it is actually based on a
key observation that by using such a �lter within the MCMC, the dimension of the acceptance
probability in the Metropolis-Hastings acceptance-rejection stage is signi�cantly reduced and
can therefore facilitate much better mixing performance of the resulting Markov chain, reducing
variance in estimation, see discussion in detail in Andrieu et al. (2010).

To bring out the essence of PMCMC, we �rst discuss a generic approach to sample from a
target distribution

π(ϕ1:T ,ψ|z1:T ), (56)

where ϕ1:T and ψ are the latent state and static parameters of a general state-space model.
Note, the state processes in this context are generally non-linear and potentially non-Gaussian.

From the perspective of obtaining the most e�ciently mixing Markov chain to sample from
this posterior, the ideal proposal distribution for constructing the Markov chain for (ϕ′

1:T ,ψ
′)

is easily seen to be given by
q(ψ′|ψ)pψ′(ϕ′

1:T |z1:T ), (57)

where q(ψ′|ψ) is a proposal for the parameters and the proposal for the latent state, pψ′(ϕ′
1:T |z1:T ),

is from the state equation (given ψ′). Here (ϕ1:T ,ψ) is the current state at MCMC iteration
j − 1 and (ϕ′

1:T ,ψ
′) is the proposed next move at MCMC iteration j.

In this ideal case, the acceptance probability of this ideal proposal is given by:

α((ϕ′
1:T ,ψ

′), (ϕ1:T ,ψ)) = 1 ∧ p(ϕ′
1:T ,ψ

′|z1:T )q(ψ|ψ′)pψ(ϕ1:T |z1:T )
p(ϕ1:T ,ψ|z1:T )q(ψ′|ψ)pψ′(ϕ′

1:T |z1:T )
(58)

= 1 ∧ pψ′(ϕ′
1:T |z1:T )p(ψ′|z1:T )q(ψ|ψ′)pψ(ϕ1:T |z1:T )

pψ(ϕ1:T |z1:T )p(ψ|z1:T )q(ψ′|ψ)pψ′(ϕ′
1:T |z1:T )

(59)

= 1 ∧ p(ψ′|z1:T )q(ψ|ψ′)

p(ψ|z1:T )q(ψ′|ψ)
(60)

= 1 ∧ pψ′(z1:T )p(ψ
′)q(ψ|ψ′)

pψ(z1:T )p(ψ)q(ψ′|ψ)
, (61)

where r1 ∧ r2 := min(r1, r2). A desirable property of the ideal proposal is that the acceptance
probability depends only on the marginal likelihood, together with the prior and proposal
for the static parameters. This is optimal in the sense that the dimension of the numerator
and denominator is reduced signi�cantly to the static model parameter dimensions, and not
including explicitly the path-space latent process dimensions, a reduction of d× T dimensions
for a d-dimensional state vector ϕt. However, clearly one can never achieve this goal as it
requires perfect knowledge of pψ′(ϕ′

1:T |z1:T ) as well as the ability to sample this distribution,
both of which are unachievable except in the special case of the Linear-Gaussian case explained
in Section 5.1.1.

To circumvent this problem, the particle marginal Metropolis-Hastings sampler (PMMH;
Andrieu et al. (2010)) applies SMC method to obtain an approximate of the state transition
density (which is also the state proposal)

p̂ψ′(ϕ1:T |z1:T ) =
N∑
i=1

w
(i)
T δϕ(i)

1:T
(ϕ1:T ), (62)

where w
(i)
T is the importance weight, δx(X) denotes a Dirac mass function centered at X and

a proposed next move of the latent state is drawn from this discrete approximate distribution.
Moreover, a by-product of a SMC algorithm is the marginal likelihood, p̂ψ(z1:T ), which has the
following important property:
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Lemma 5.1 A SMC proposal admits as a by-product an unbiased estimator of the marginal
likelihood pψ(z1:T ) given by

p̂ψ(z1:T ) :=
T∏
t=2

p̂ψ(zt|z1:t−1), (63)

where a SMC approximation with N-particles produces, for all t,

p̂ψ(zt|z1:t−1) =
1

N

N∑
i=1

w
(i)
t , (64)

which is an unbiased particle estimate of pψ(zt|z1:t−1). This non-trivial unbiasedness was �rst
presented in Del Moral (2004) and has since been utilised to great advantage as explained in
Chopin et al. (2013). In addition the variance of this estimator typically only grows linearly
with T .

The unbiased approximate marginal likelihoods are then used in the acceptance probability
(61):

α((ϕ′
1:T ,ψ

′), (ϕ1:T ,ψ)) = 1 ∧ p̂ψ′(z1:T )p(ψ
′)q(ψ|ψ′)

p̂ψ(z1:T )p(ψ)q(ψ′|ψ)
. (65)

Due to the unbiasedness of the estimated marginal likelihood, Andrieu et al. (2010) show that,
even though only SMC approximates are used (with �nite number of particles N), the invariant
distribution of PMMH is the target distribution π(ϕ1:T ,ψ|z1:T ).

To apply PMCMC for an e�cient estimation of the LCSV model, we �rst notice that we
can obtain explicitly the posteriors of static parameters via conjugate priors. As a result we
are only required to sample from the density π(γ1:T |ψ, κ0:n,y1:T ), instead of the joint density
π(γ1:T ,ψ|κ0:n,y1:T ). It turns out that there is a class of PMCMC algorithm, called Particle In-
dependent Metropolis-Hastings sampler (PIMH), which provide a mechanism to sample exactly
from π(γ1:T |ψ, κ0:n,y1:T ).

Our approach to sampling from the joint posterior distribution, π(κ0:T , γ1:T ,ψ|y1:T ), of the
LCSV model is summarised in Algorithm 4.

Algorithm 4 Sampling from π(κ0:T , γ1:T ,ψ|y1:T )

1: Initialise: ψ = ψ(0), γ1:T = γ
(0)
1:T .

2: for i = 1, . . . ,M do
3: Sample κ

(i)
0:T from π(κ0:T |γ(i−1)

1:T ,ψ(i−1),y1:T ) via FFBS;

4: Sample γ
(i)
1:T from π(γ1:T |κ(i)0:T ,ψ

(i−1),y1:T ) via PIMH (Section 5.2.3);
5: for h = 1, . . . , n do
6: Sample ψ

(i)
h from π(ψh|κ(i)0:T , γ

(i)
1:T , ψ

(i)
−h,y1:T ),

7: where ψ
(i)
−h = (ψ

(i)
1 , . . . , ψ

(i)
h−1, ψ

(i−1)
h+1 , . . . , ψ

(i−1)
n ) via conjugate prior.

8: end for
9: end for

5.2.3 PIMH: Sampling from π(γ1:T |ψ, κ0:n,y1:T )

We �rst note that π(γ1:T |ψ, κ0:n,y1:T ) = πψ(γ1:T |κ0:n) given the structure of the LCSV model.
Using an independent proposal density, qψ(γ1:T |κ0:n), in the Metropolis-Hastings algorithm, the
acceptance probability is given by

α(γ′1:T , γ1:T ) = 1 ∧ πψ(γ
′
1:T |κ0:n)qψ(γ1:T |κ0:n)

πψ(γ1:T |κ0:n)qψ(γ′1:T |κ0:n)
. (66)
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Ideally, one may take qψ(γ1:T |κ0:n) = πψ(γ1:T |κ0:n). However, in most cases such an ideal choice
is impossible to sample from and to evaluate. The PIMH sampler proposes instead to use
the SMC approximation π̂ψ(γ1:T |κ0:n) as the proposal density and calculate the acceptance
probability as

α(γ′1:T , γ1:T ) = 1 ∧ π̂ψ(κ0:n)
′

π̂ψ(κ0:n)[j − 1]
, (67)

where π̂ψ(κ0:n)
′ and π̂ψ(κ0:n)[j − 1] are unbiased marginal likelihoods estimated by SMC (see

Lemma 5.1) in the current MCMC iteration j and the previous iteration j − 1 respectively. It
can be shown that the invariant distribution of the PIMH sampler is the target distribution
πψ(γ1:T |κ0:n) (Andrieu et al. (2010)).

It remains to specify an SMC approximation π̂ψ(γ1:T |κ0:n) (Appendix B). We use the so-
called bootstrap �lter, that is, the proposal distribution in the SMC algorithm to draw γt is
given by the state equation (23c):

gt(γt|γ1:t−1, κ0:t) := πψ(γt|γt−1). (68)

Consequently, the importance weight is evaluated as

w̃t ∝ w̃t−1πψ(κt|γt, κt−1), (69)

where π(κt|γt, κt−1) is the incremental importance weight. Our approach for sampling from
πψ(γ1:T |κ0:T ) is summarised in Algorithm 5 (together with Algorithm 6).

Algorithm 5 PIMH: sampling from πψ(γ1:T |κ0:T )
1: Iteration j = 0: obtain an SMC approximation π̂ψ(γ1:T |κ0:T ) via Algorithm 6. Draw
γ1:T [0] ∼ π̂ψ(γ1:T |κ0:T ) and obtain the corresponding marginal likelihood estimate
π̂ψ(κ0:n)[0].

2: for j = 1, . . . , NPIMH do
3: Obtain an SMC approximation π̂ψ(γ1:T |κ0:T ) via Algorithm 6. Draw γ′1:T ∼ π̂ψ(γ1:T |κ0:T )

and obtain the corresponding marginal likelihood estimate π̂ψ(κ0:n)
′.

4: Draw u ∼ U(0, 1). If

u <
π̂ψ(κ0:n)

′

π̂ψ(κ0:n)[j − 1]
, (70)

set γ1:T [j] = γ′1:T and π̂ψ(κ0:n)[j] = π̂ψ(κ0:n)
′; otherwise set γ1:T [j] = γ1:T [j − 1] and

π̂ψ(κ0:n)[j] = π̂ψ(κ0:n)[j − 1].
5: end for
6: Obtain γ1:T [NPIMH ] as a sample of πψ(γ1:T |κ0:T ).

5.2.4 Sampling from π(ψ|κ0:T , γ1:T ,y1:T )

We assume the prior for (αx2:xp , βx2:xp , θ, σ
2
ε , σ

2
γ, λ1, λ2, γ0) is given by

αx ∼ N(µ̃α, σ̃
2
α), βx ∼ N(µ̃β, σ̃

2
β), θ ∼ N(µ̃θ, σ̃

2
θ), σ2

ε ∼ IG(ãε, b̃ε), (75a)

σ2
γ ∼ IG(ãγ, b̃γ), λ1 ∼ N[−1,1](µ̃λ1 , σ̃

2
λ1
), λ2 ∼ N(µ̃λ2 , σ̃

2
λ2
), γ0 ∼ N(µ̃γ0 , σ̃

2
γ0
), (75b)

where x = x2, . . . , xp and N[−1,1] denotes a truncated Gaussian with support [−1, 1]. It is
assumed that the priors for all parameters are independent.
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Algorithm 6 Bootstrap �lter of πψ(γ1:T |κ0:T ); see Appendix B

1: At t = 1: draw γ
(i)
1 from πψ(γ1|γ0). Set w̃(i)

1 = πψ(κ1|γ1, κ0) and w(i)
1 = w̃

(i)
1 /
∑N

j=1 w̃
(j)
1 .

2: for t = 2, . . . , T do
3: Draw γ

(i)
t from πψ(γt|γ(i)t−1) and set

γ
(i)
1:t = (γ

(i)
1:t−1, γ

(i)
t ); (71)

4: Evaluate
w̃

(i)
t = w̃

(i)
t−1 · πψ(κt|γ

(i)
t , κt−1); (72)

5: Normalise:

w
(i)
t =

w̃(i)∑N
j=1 w̃

(j)
t

; (73)

6: Evaluate

Neff =

(
N∑
i=1

(w
(i)
t )2

)−1

; (74)

7: If Neff < 0.8N , resample γ
(i)
1:t from

(
w

(j)
t , γ

(j)
1:t

)N
j=1

and set w
(i)
t = 1

N
.

8: end for
9: Obtain π̂ψ(γ1:T |κ0:T ) =

∑N
i=1w

(i)
T δγ(i)1:T

(γ1:T ).

Samples from the density π(ψ|κ0:T , γ1:T ,y1:T ) are obtained by sampling from the following
posteriors:

αx|y1:T ,κ,γ,ψ−αx ∼ N

(
µ̃ασ

2
ε + σ̃2

α

∑
t(yxt − βxκt)

T σ̃2
α + σ2

ε

,
σ̃2
ασ

2
ε

T σ̃2
α + σ2

ε

)
, (76)

βx|y1:T ,κ,γ,ψ−βx ∼ N

(
σ̃2
β

∑
t(yxt − αx)κt + µ̃βσ

2
ε

σ̃2
β

∑
t κ

2
t + σ2

ε

,
σ̃2
βσ

2
ε

σ̃2
β

∑
t κ

2
t + σ2

ε

)
, (77)

θx|y1:T ,κ,γ,ψ−θ ∼ N

(
µ̃θ/σ̃

2
θ +

∑
t(κt − κt−1)/e

γt

1/σ̃2
θ +

∑
t 1/e

γt
,

1

1/σ̃2
θ +

∑
t 1/e

γt

)
, (78)

σ2
ε |y1:T ,κ,γ,ψ−σ2

ε
∼ IG

(
ãε +

pT

2
, b̃ε +

1

2

T∑
t=1

p∑
x=1

(yxt − (αx + βxκt))
2

)
, (79)

σ2
γ|y1:T ,κ,γ,ψ−σ2

γ
∼ IG

(
ãγ +

T

2
, b̃γ +

1

2

T∑
t=1

(γt − λγt−1)
2

)
, (80)

λ1|y1:T ,κ,γ,ψ−λ1 ∼ N[−1,1]

(
σ2
γµ̃λ1 + σ̃2

λ1

∑
t γt−1γt

σ2
γ + σ̃2

λ1

∑
t γ

2
t−1

,
σ̃2
λ1
σ2
γ

σ2
γ + σ̃2

λ1

∑
t γ

2
t−1

)
, (81)

λ2|y1:T ,κ,γ,ψ−λ2 ∼ N

(
σ2
γµ̃λ2 + σ̃2

λ2

∑
t(γt − λ1γt−1)

σ2
γ + T σ̃2

λ2

,
σ̃2
λ2
σ2
γ

σ2
γ + T σ̃2

λ2

)
, (82)

γ0|y1:T ,κ,γ,ψ−γ0 ∼ N

(
σ2
γµ̃γ0 + σ̃2

γ0
λγ1

σ2
γ + σ̃2

γ0
λ2

,
σ̃2
γ0
σ2
γ

σ2
γ + σ̃2

γ0
λ2

)
. (83)

where the posterior distributions are obtained similarly as in Section 5.1.2.
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6 Empirical Analysis: Danish Male Population

In this section a comprehensive empirical study4 is conducted on Danish mortality data using
the models summarised in Table 2. The LC, LC-H, LCSV and LCSV-H models are described in
Section 3. While the LC-H model addresses heteroscedasticity in the observation equation, the
LCSV model attempts to incorporate stochastic volatility in the state dynamics. The LCSV-H
model includes both features of the LC-H model and the LCSV model, thus allowing for a full
consideration of variability in long term mortality dynamics.

Note that we have omitted the LC2-H model (a cohort model) in this analysis as a detailed
account of the formulation, Bayesian estimation and forecasting of state-space cohort models is
considered in a separate paper, see Fung et al. (2017). We are also aware that there are growing
interests in the literature to consider more realistic models for the latent factor; for example
Li et al. (2011), van Berkum et al. (2014) and Liu and Li (2016b)) all study trend-changing
stochastic behavior for the latent period e�ects. For this reason we will focus on the LCSV and
LCSV-H models, where stochastic volatility is introduced in the latent dynamics, instead of the
LC3-H2 model where stochastic volatility enters via the observation equation, in our empirical
studies.

The Human Mortality Database5 provides a particularly long time series of mortality data
from year 1835 to 2011 for the Danish population, supplemented with a detailed document
analysing the data (Andreev (2002)). The provision of a long time series is important to
our analysis concerning stochastic volatility. In the past several decades, mortality trend for
developed countries generally exhibit a rather smooth pattern. The inclusion of periods that
involve wars, epidemics or other life-critical events are crucial factors in witnessing signi�cant
volatility in mortality time series. In the following we analyse the population mortality from
Denmark based on the models in Table 2 and Bayesian methodologies studied in this paper.
We then examine the models in terms of the forecasting properties of death rates and life
expectancies. We also comment on the linear trend assumption and jump-o� bias in mortality
forecasting.

Model Name Dynamics

Lee-Carter (LC) model LC (3) - (4)

LC model with heteroscedasticity LC-H (21)

LC stochastic volatility (SV) model LCSV (23)

LC SV model with heteroscedasticity LCSV-H (24)

Table 2: A summary of state-space mortality models considered in our empirical study.

6.1 Data description

The data set consists of Danish male population death rates for 21 age groups (0, 1-4, 5-9, . . . ,
95-99) from year 1835-2010 where we �x year 2010 as the end year. Figure 1 displays some
of the time series of the log death rates for the Danish male population. It is clear that the
multi-dimensional time series exhibit di�erent volatility for di�erent age groups, which justify
the introduction of heteroscedasticity into the observation equation as discussed in Section 3.1.
We also observe that, mainly before 1950, there are periods that the volatility of death rates for

4We have also performed numerous simulation studies using synthetic data to con�rm the e�ectiveness of
our estimation approaches but these are omitted here for space considerations. They are available upon request.

5http://www.mortality.org/ (accessed on September 2015)
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some age groups are markedly di�erent. Such a change of volatility in the temporal dimension
suggests that stochastic volatility may be present in the underlying time preiod e�ect.
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Figure 1: Time Series of log death rates for Danish male population from year 1835-2010.

6.2 Estimation Results

In our empirical study we focus on Bayesian inference and forecasting. We assume vague priors
so that all inferences are mainly based on the data and the impact of the prior is not material.
Taking the LCSV model as an example, we assume κ0 ∼ N(0, 10), αx ∼ N(0, 10), βx ∼ N(0, 10),
θ ∼ N(0, 10), σ2

ε ∼ IG(2.001, 0.001), σ2
γ ∼ IG(2.001, 0.001), λ1 ∼ N(0, 10), λ2 ∼ N(0, 10) and

γ0 ∼ N(0, 10), where x ∈ {x2, . . . , xp}. The number of iterations of the Markov chain is 15000

with 5000 burn-in. We �x αx1 =
1
T

∑T
t=1 yx1,t and βx1 = 0.2 as an identi�cation constraint; see

Remark 3.1 for a discussion of our choice of values here.
Estimated values of the static parameters (except α and β) for the Danish mortality data

(1835-2010) are shown in Table 3. The rest of the estimated parameters and states are displayed
in Figure 2. Here we only show the plots for the LCSV-H model since the corresponding �gures
obtained from the LC, LC-H and LCSV model are visually similar to the case of the LCSV-H
model.

It is evident from Figure 2 that there are periods, namely 1850-1870, 1910-20, 1930-1950,
that the time e�ect κ exhibits higher volatility compared with other periods. We also observe
that κ accelerates markedly downward after 1990 and is relatively smooth in the recent period
1950-2010. The �ltering of the log-volatility process γ1835:2010 (Figure 2) quanti�es the volatility
level (eγt) of the time e�ect and gives further evidence on the stochastic volatility nature of
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mortality. To see more clearly the phenomenon of changing volatility, we plot the �rst di�erence
∆κ̄t = κ̄t − κ̄t−1 in Figure 2 for the LCSV-H model, where κ̄t denotes the posterior mean of
κt, t = 1836, . . . , 2010. It shows evidently the change of volatility level in the latent process κt.
The patterns of the estimated log-volatility γ1835:2010 and the �rst di�erence ∆κ̄t clearly suggest
that it is not appropriate to assume constant volatility (σ2

ω) for the time e�ect.
The state-space modelling approach is able to uncover the age-speci�c heteroscedasticity

structure hidden in the Danish mortality time series. Figure 2 reveals that variability is par-
ticularly high for the very young and very old age group. Implications of the heteroscedastic
structure on forecasting will be discussed in Section 6.4.

To investigate the forecasting properties of the stochastic volatility model, we also estimate
the models based on calibration periods 1835-1990 and 1950-1990. Figure 3 and 4 show the
estimated parameters and states for the LCSV-H model in those periods.

LC LC-H LCSV LCSV-H
θ -0.11 (-0.17, -0.06) -0.11 (-0.17, -0.06) -0.11 (-0.15, -0.07) -0.09 (-0.14, -0.04)
σ2
ε 0.023 (0.022, 0.024) Similar to Fig. 2 0.023 (0.022, 0.024) Fig. 2
σ2
ω 0.13 (0.09, 0.18) 0.15 (0.10, 0.21) N.A. N.A.
λ1 N.A. N.A. 0.989 (0.962, 0.999) 0.984 (0.949, 0.999)
λ2 N.A. N.A. -0.025 (-0.11, 0.042) -0.03 (-0.15, 0.05)
σ2
γ N.A. N.A. 0.15 (0.03, 0.48) 0.25 (0.06, 0.67)
γ0 N.A. N.A. -2.09 (-4.52, 0.23) -2.11 (-5.04, 0.47)

Table 3: Estimated values of the static parameters (except α and β) for the Danish male mortality

data (1835-2010). The range in (, ) represents 95% credible interval. (N.A.: Not Applicable)
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Figure 2: Estimation of (upper panels) α, β and σ2
x1:x21,ε; (lower panels) time e�ect κ1834:2010, log-

volatility γ1835:2010 and �rst di�erence ∆κ̄t, for Danish male mortality data (1835-2010) using the

LCSV-H model.
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Figure 3: Estimation of (upper panels) α, β and σ2
x1:x21,ε; (lower panels) time e�ect κ1834:1990, log-

volatility γ1835:1990 and �rst di�erence ∆κ̄t, for Danish male mortality data (1835-1990) using the

LCSV-H model.

6.3 Model Assessment

To compare the �t of the models to the data, we apply deviance information criterion (DIC)
as a Bayesian measures of model complexity and �t (Spiegelhalter et al. (2002)). It is common
to assess and compare models with latent variables using conditional DIC (Berg et al. (2004),
Celeux et al. (2006)). Speci�cally, we use the so-called conditional log-likelihood which is
calculated as

ln f(y1:T |ψ, κ1:T ) =
xp∑

x=x1

T∑
t=1

(
−1

2
ln 2π − lnσε,x −

1

2

(
yx,t − (αx + βxκt)

σε,x

)2
)
. (84)

Note that the likelihood is conditional on parameters that include both static parameters and
the latent process κ. Using the conditional log-likelihood function, the deviance is de�ned as

D(Ψ) = −2 ln f(y1:T |Ψ) + 2 lnh(y1:T ), (85)

where Ψ = (ψ, κ1:T ) and we assume h(y1:T ) = 1 since in the models we consider it plays the
role of a constant which is the same for competing models. The e�ective dimension, pD, is
evaluated as

pD = D̄(Ψ)−D(Ψ̄), (86)

where D̄(Ψ) and Ψ̄ denote, respectively, the mean of D(Ψ) and the mean of the posterior
distribution of Ψ. The conditional DIC is then given by

DIC := D̄(Ψ) + pD = 2D̄(Ψ)−D(Ψ̄), (87)

29



5 10 15 20

−
8

−
6

−
4

−
2

α

age group

Mean
95% CI

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

β

age group

Mean
95% CI

5 10 15 20

0.
02

0.
04

0.
06

0.
08

σε
2

age group

Mean
95% CI

1950 1960 1970 1980 1990

−
4

−
2

0
2

4

κ

year

Mean
95% CI

1950 1960 1970 1980 1990

−
7

−
6

−
5

−
4

−
3

−
2

−
1

γ

year

Mean
95% CI

1950 1960 1970 1980 1990

−
2

−
1

0
1

2

∆κt

year

Figure 4: Estimation of (upper panels) α, β and σ2
x1:x21,ε; (lower panels) time e�ect κ1949:1990, log-

volatility γ1950:1990 and �rst di�erence ∆κ̄t, for Danish male mortality data (1950-1990) using the

LCSV-H model.

Calibration period: 1835 - 2010 1835 - 1990 1950 - 1990
LC -3218.6 -3087.5 -1567.3

LC-H -4469.1 -4269.7 -1793.6
LCSV -3250.8 -3109.7 -1559.7
LCSV-H -4518.3 -4326.8 -1794.1

Table 4: DIC of models with di�erent calibration periods.

which can be evaluated straightforwardly using MCMC samples.
The DIC values for the models with di�erent calibration periods are shown in Table 4.6

The LCSV-H model clearly outperforms other models for all calibration periods considered.
The LC-H is the second best; in fact it even outperforms the LCSV model for long calibration
periods 1835-2010 and 1835-1990. These results suggest that one is strongly encouraged to
include heteroscedasticity structure when modelling Danish mortality data. Note that for long
calibration periods, the incorporation of stochastic volatility can markedly improve model �t as
can be seen by comparing the LCSV-H model and the LC-H model, as well as the comparison
between LCSV model and the LC model.

6.4 Forecasting

In this section, we investigate the forecasting properties of the mortality models summarised
in Table 2 where heteroscedasticity as well as stochastic volatility structures are incorporated.

6The lower the DIC value, the better the model in terms of a trade-o� of �t and complexity.
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Our analysis is based on the forecasting distributions of (log) death rates and life expectancy.
The Bayesian state-space framework allows us to obtain the forecasting distributions using
MCMC samples which is shown below.

6.4.1 Death rates

For the LC (LC-H) model, the k-step ahead forecasting distribution of yT+k, given y1:T , is given
by

π(yT+k|y1:T ) =
∫
π(yT+k|κT+k,ψ)π(κT+k|κT+k−1,ψ) . . . π(κT ,ψ|y1:T ) dψdκT :T+k, (88)

where ψ is the parameter vector for the LC (LC-H) model. (88) suggests that we can sample
recursively to obtain the forecasting distribution, for k ≥ 1, as follows

κ
(ℓ)
T+k ∼ N

(
κ
(ℓ)
T+k−1 + θ(ℓ),

(
σ2
ω

)(ℓ))
, (89a)

y
(ℓ)
T+k ∼ N

(
α(ℓ) + β(ℓ)κ

(ℓ)
T+k,Σ

(ℓ)
)
, (89b)

where ℓ = 1, . . . , L and L is the number of MCMC iterations after burn-in. Here Σ is a diagonal
matrix with σ2

ε,x on the diagonal for the LC-H model and σ2
ε for the LC model. This procedure

generates an estimate of the forecasting distribution.
Similarly, the forecasting distribution of yT+k, given yT , for the LCSV (LCSV-H) model is

given by

π(yT+k|y1:T ) =
∫
π(yT+k|κT+k,ψ)π(κT+k|κT+k−1, γT+k,ψ) . . .

π(γT+1|γT ,ψ)π(κT , γT ,ψ|y1:T ) dψdκT :T+kdγT :T+k. (90)

For k ≥ 1, the forecasting distribution can be obtained by sampling recursively

γ
(ℓ)
T+k ∼ N

(
λ
(ℓ)
1 γ

(ℓ)
T+k−1 + λ

(ℓ)
2 ,
(
σ2
γ

)(ℓ))
, (91a)

κ
(ℓ)
T+k ∼ N

(
κ
(ℓ)
T+k−1 + θ(ℓ), exp{γ(ℓ)T+k}

)
, (91b)

y
(ℓ)
T+k ∼ N

(
α(ℓ) + β(ℓ)κ

(ℓ)
T+k,Σ

(ℓ)
)
, (91c)

where ℓ = 1, . . . , L, and Σ is a diagonal matrix with σ2
ε,x on the diagonal for the LCSV-H model

and σ2
ε for the LCSV model.

Figure 5 shows the forecasted log death rates based on the LC-H, LCSV and LCSV-H
model, using the LC model as a benchmark. We show age groups 5-9, 35-39, 65-69 and 95-99
as representatives of young, adult, old and very old age. The models are estimated using data
for the period 1835-2010 and forecast for 30 years.

The heteroscedasticity structure, from the LC-H model, gives rise to materially larger fore-
casting intervals for the young and very old age group, while the forecasting interval for the
age group 35-39 is narrower than predicted by the LC model. The LCSV model, on the other
hand, produces a wider forecasting interval compared to the LC model except for the very old
age group. The observed wider forecasting interval is due to the fact that the volatility level
is increasing in the last estimation periods and is larger than σ2

ω estimated in the LC model.
Moreover, as the estimated βx is close to zero at older ages (Figure 2), the impact of the fore-
casted κ on the prediction of death rates diminished signi�cantly as older ages are considered.
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The LCSV-H model exhibits similar features of the LC-H and the LCSV model. It is interesting
to note that the forecasted means obtained from the di�erent models are very similar and their
di�erences mainly lie in the forecasting interval.

To illustrate further the forecasting property of the LCSV model, we estimate the models
for the period 1835-1990 and plot 20-year out-of-sample forecasted log death rates in Figure 6.
It turns out the forecasting intervals predicted by the LCSV model tends to be narrower than
the LC model, as the estimated σ2

ω in the LC model is larger than the volatility level at the
last estimation period for the LCSV model in this case. Note that the forecasted distributions
produced by the LC-H model are biased compared to the benchmark LC model since the �tted
rates at the last estimation period, that is year 1990, are di�erent for the LC and LC-H model.
This feature is known as jump-o� error (Lee and Miller (2001)). One may remove this jump-o�
bias by forcing the forecasted death rates to start at the actual rates instead of the �tted rates
(Bell (1997) and Shang et al. (2011)). In this paper we do not perform this procedure, however.

Figure 7 shows the forecasting distributions of log death rates where we assume a shorter
calibration period from 1950 to 1990. For all the models, the estimated βx for all age groups,
except for age groups 0, 1-4 and 5-9, are very close to zero. It is in fact expected since there
is no clear downward trend in the observed mortality data besides the �rst few age groups,
during the period 1950-1990. Therefore there is only small di�erence between the forecasting
distributions produced by the LC model and the LCSV model, except for young age groups.
Note that there is a clear change of downward trend for some of the middle age groups for the
Danish male mortality data as shown in Figure 7. It results in the out-of-sample data falling
out of the lower bound of the 95% credible intervals and its consequence for the forecasting of
life expectancy will be discussed in Section 6.4.2 and generally in Section 6.4.3.

By comparing the forecast performance using in-sample data from 1835-1990 and from
1950-1990 displayed in Figure 6 and 7, we expose the in�uence that leaving out important
historical events, that may a�ect the mortality rates markedly in a population, can have on
the ability to accurately model trend and volatility structures in population dynamics. In
particular we observe that one must be cautious as forecast performance can degrade markedly
when important historical events are excluded from the sample as the forecast using data from
1835-1990 has clearly outperformed the forecast using only shorter calibration data from 1950-
1990.

6.4.2 Life expectancy

Using the samples of the forecasted log death rates y
(ℓ)
x,t = ln m̂

(ℓ)
x,t, where ℓ = 1, . . . , L and L is

the number of MCMC samples, we can obtain the so-called period life expectancy at di�erent
ages by constructing an abridged life table, since we use age group data, as follows (Koissi et al.
(2006), Yusuf et al. (2014)). We consider age group x ∈ {0, 1-4, 5-9, . . . , 95-99} and x̃ is de�ned
as the initial age of age group x, that is x̃ ∈ {0, 1, 5, . . . , 90, 95}. De�ne nx̃ as the length of the
interval of age group x (corresponds to x̃) and hence we have n0 = 1, n1 = 4, n5 = 5, . . . , n95 = 5.
We then calculate the (crude) death probability7 that a person aged x̃ in year t will die in the
next nx̃ years as

nx̃
q̂
(ℓ)
x̃,t =

nx̃ m̂
(ℓ)
x,t

1 + nx̃(1− a(x̃, nx̃))m̂
(ℓ)
x,t

, (92)

where a(x̃, nx̃) is the average fraction of the nx̃ years lived by the people who is initially
aged x̃ in that interval. Using the assumption that deaths are distributed uniformly in the

7The death probability is �crude" in the sense that the crude death rate is used for the calculation. For a
discussion of crude and true death probabilities, see Dowd et al. (2010).
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interval, we set a(x̃, nx̃) = 0.5 for every x̃.8 The hypothetical number of people alive at age

x̃ + nx̃, l
(ℓ)
x̃+nx̃,t

, is determined by l
(ℓ)
x̃+nx̃,t

= l
(ℓ)
x̃,t

(
1− nx̃

q
(ℓ)
x̃,t

)
where l

(ℓ)
0,t is assumed to be 100, 000.

We can then calculate the number of deaths nx̃
d
(ℓ)
x̃,t = l

(ℓ)
x̃,t − l

(ℓ)
x̃+nx̃,t

and the person-years lived

nx̃
L
(ℓ)
x̃,t = nx̃

(
l
(ℓ)
x̃+nx̃,t

+ a(x̃, nx̃)× nx̃
d
(ℓ)
x̃,t

)
. The total future lifetime of the l

(ℓ)
x̃,t persons who attain

age x̃ is T
(ℓ)
x̃,t =

∑
i≥x̃ nx̃

L
(ℓ)
i,t , where i ∈ {0, 1, 5, . . . , 90, 95}. Finally, a sample of the period life

expectancy at age x̃ is obtained as
e
(ℓ)
x̃,t = T

(ℓ)
x̃,t /l

(ℓ)
x̃,t (93)

and the distributions are obtained in di�erent forecasting year t = T + k where k ≥ 1.

Remark 6.1 (Period and cohort life expectancy) Period life expectancy assumes there
is no trend for future death rates (it is evaluated based on the age-speci�c death rates in a
�xed year t) while cohort life expectancy assumes death rates following the lifetime of a co-
hort and hence it takes mortality trend into account. For example, to evaluate period life ex-
pectancy at age 65 in year t, one needs {5q65,t, 5q70,t, . . . , 5q95,t} while for cohort life expectancy,
{5q65,t, 5q70,t+5, . . . , 5q95,t+30} are used instead. However, the cohort life expectancy for people
born in recent years cannot be evaluated using data alone since some of the death rates data are
yet to be observed. As a result we focus on period life expectancy so that our forecasts can be
compared with the observed data.

Figure 8 shows the forecasted life expectancy at birth, age 65 and age 85 for all the models
estimated using data from 1835-2010. Interestingly, the forecasted life expectancy at birth is
very similar for the LC model and LC-H model for the calibration period 1835-2010. It re�ects
the fact that forecasting intervals of death rates produced by the LC-H model are wider for
some age groups and narrower for other, compared to the LC model, as can be seen from Figure
5. It turns out that these e�ects almost cancel each other out for this case as death rates are
aggregated for all age groups to form the life expectancy at birth distribution. This explanation
does not apply to life expectancy at age 65 and 85, however, since only forecasted death rates
for age groups larger than 65 and 85 are used to obtain the corresponding life expectancy
distribution. As the forecasting intervals of death rates generated by the LC-H model tend to
be narrower for old age groups compared with the LC model, the interval for the forecasted life
expectancy at age 65 and 85 distribution produced by the LC-H model is observably narrower
than the LC model. Note that we only show four di�erent age groups in Figure 5; projected
death rates for other age groups are also relevant but are not displayed due to limited space.
In contrast to the LC-H model, we can observe from Figure 5 that LCSV model produces
generally wider forecasting intervals for death rates at di�erent age groups compared to the
LC model. Consequently the forecasting intervals for life expectancy at various ages generated
by the LCSV model is wider than the LC model, as shown in Figure 8. Similarly to the case
of death rates forecasting, the LCSV-H model has both the features of the LC-H and LCSV
model in terms of life expectancy prediction.

Results for forecasted life expectancy using data from 1835-1990 are shown in Figure 9. It is
clear that the forecasting intervals for life expectancy at di�erent ages produced by the LCSV

8The Human Mortality Database provides abridged life tables with speci�c values for a(x̃, nx̃) in di�erent
period. For ease of comparison we use the typical assumption that a(x̃, nx̃) = 0.5. For the special case when
age, instead of age group is considered (that is x̃ = x), the one-year death probability qx,t in year t is de�ned as
the ratio of death counts and the population at the beginning of the year. Assuming half of the deaths occurred
during the �rst half of the year, then we have qx,t := Dx,t/(Ex,t + 0.5Dx,t) = m̂x,t/(1 + 0.5 m̂x,t) where Ex,t

is the population at the middle of the year. The nx̃-year death probability (92) for the general case when age
group is considered can be derived similarly.
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model are narrower compared to the LC model, which can be traced back to the fact that the
LCSV model predicts narrower forecasting intervals for death rates at various age groups than
the prediction by the LC model, see Figure 6. Apparently the jump o� bias are quite di�erent
for the LC-H (LCSV-H) model and the LC model. Note also that the �cancel out" e�ect of
aggregated death rates (Figure 6) for the life expectancy at birth for the LC-H model is less
prominent for the calibration period 1835-1990 than the period 1835-2010.

As we use the �tted death rates instead of the observed death rates in the jump-o� year
(that is year 2010), there is a jump-o� bias in the forecasted death rates. The forecasted life
expectancy at age 65 is particularly sensitive to this jump o� bias. It comes from a sudden
decline of death rates for age groups larger than 65 beginning in year 1990, hence a signi�cant
increase of life expectancy at age 65 is observed. The jump-o� bias is signi�cantly smaller
when the calibration period 1835-1990 is considered, see Figure 9. As expected, the forecasted
distributions of life expectancy at birth and age 65 are similar for all the models estimated
using mortality data from year 1950-1990 (Figure 10). Note that the 95% credible intervals
capture poorly the out-of-sample data in this case except for the life expectancy at age 85. It is
a consequence of the sudden change of signi�cant downward trend for the death rates observed
in the middle age groups of the Danish mortality data starting from around 1990, see Figure 7,
as well as the jump-o� bias. We discuss about the linear trend assumption and jump-o� bias
in the next section.

6.4.3 Linear trend assumption and jump-o� bias

In performing the forecasting of death rates and life expectancies, we use the models summarised
in Table 2 where the LC-H, LCSV and LCSV-H models are variants of the Lee-Carter model
in which a linear trend of the period e�ect is assumed. However, for the Danish male mortality
data that we used, the overall trend is reasonably linear for the whole period 1835-2010, but
the same may not be said for the shorter period 1950-2010 as Figure 6-7 indicate.

In particular, we observe in Figure 7 that there is a clear change of trend for the death rates
of middle age groups. Such a change of trend is di�cult, if not impossible, to predict in terms
of timing and magnitude. We also perform the analysis on French male mortality data and
found similar patterns. For forecasting purpose, one may therefore argue that expert opinion
will be an important factor in predicting mortality. Even though any change of mortality
trend in the short run cannot be predicted with reasonable accuracy using data alone, it can
be detected if the instantaneous volatility of mortality is quanti�ed. For example, using the
LCSV-H model, the log-volatility γ is quanti�ed and we observe from Figure 2 that γ started
to increase around 1990 after several decades of declining. The change of volatility level not
only a�ect the prediction intervals as discussed in previous sections, but also indicates that
the change of mortality is heightened and one should be cautious whether a change of trend is
taking place.

We also �nd that jump-o� bias, discussed in Section 6.4.1-6.4.2, is an important factor in
predicting deaths rates and life expectancies. We note that it is straight forward to remove the
jump-o� bias by adjusting (89)-(91) so that the actual death rates, instead of the �tted death
rates, are used in the beginning of the forecasting period. We do not provide the corresponding
plots in the paper but one can envisage the results simply by shifting the forecasted distribution
so that the forecasted mean is attached to the (in-sample) data at the end of the estimation
year. Removing the jump-o� bias will have a signi�cant impact on the accuracy of mortality
forecasting especially when data exhibit clear trending.
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7 Concluding Remarks

We developed and presented a comprehensive state-space framework for stochastic mortality
modelling. The state-space approach has two key advantages. First, it puts modelling, esti-
mation and forecasting of mortality in a uni�ed framework in contrast to common practice in
this area. Second, the methodology permits realistic and sophisticated mortality models to be
estimated and forecasted, which could be di�cult to handled using other approaches.

We show that many of the popular mortality models exist in the literature can be cast in
state-space form. We then suggest several classes of mortality models that can be classi�ed
as linear Gaussian state-space models and non-linear / non-Gaussian state-space models. Our
proposals are not exhaustive but aim to illustrate the �exibility of the methodology. In par-
ticular we incorporate heteroscedasticity and stochastic volatility in mortality modelling, as an
examination of mortality data suggests that volatility of death rates is not constant in the age
and time dimension over a long time period. Moreover, we propose an alternative identi�cation
constraint for the Lee-Carter type modelling, which is tailored for the state-space approach.

Frequestist state-space inference for stochastic mortality models is carried out and explained
based on the gradient and Hessian of the marginalized likelihood developed recently in statistics
literature. We also utilise a modern approach to Bayesian inference for state-space modelling
hinged on the PMCMC framework. In particular we develop a sampler using a combination
of Rao-Blackwellized Kalman �lter and particle �lter for the latent state process full posterior
conditionals, combined with Gibbs sampling steps for the static model parameters to estimate
a stochastic volatility model for mortality proposed in this paper.

Using mortality data of Danish male population, we assess the extended models based on
deviance conditional criterion. It is found that incorporating heteroscedasticity is a crucial im-
provement factor in model �tting, while model complexity is accounted for. The incorporation
of stochastic volatility clearly enhances model performance for �tting of long term mortality
time series. Estimation results for long calibration period support the assumption of stochastic
volatility. We show that forecasting can be carried out straightforwardly in state-space frame-
work under a Bayeisan setting. We examine the forecasting properties of the models using
di�erent calibration periods. The inclusion of heteroscedasticity and stochastic volatility sub-
stantially a�ects prediction intervals of death rate and life expectancy distributions. The linear
trend assumption commonly found in mortality modelling and jump-o� bias are discussed in
light of the Danish mortality data.

State-space framework provides attractive features that are of importance to mortality mod-
elling. The methods and results developed and shown in the paper will have signi�cant implica-
tions for longevity risk management in actuarial applications. In particular, we anticipate the
models and methods introduced in this paper can be employed to longevity risk applications
such as the state-space longevity hedging methods proposed in Liu and Li (2016a) and Liu and
Li (2016b) which is a topic of future research.
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Appendix A Di�erentiation Matrices in Gradient-based Es-

timation

For the LC-H model, the parameter vector is denoted by ψ = (αx2:xp , βx2:xp , σ
2
ε,x1:xp

, θ, σ2
ω) with

dimension n = 3p where p is the number of age group considered. We are required to evaluate
∂α
∂ψi

, ∂β
∂ψi

, ∂Σ
∂ψi

, ∂θ
∂ψi

and ∂σ2
ω

∂ψi
in the gradient-based estimation (Section 4.2). De�ne

ψα := ψ1:p−1 = αx2:xp(:= α−x1), ψβ := ψp:2p−2 = βx2:xp(:= β−x1)

ψσ2
ε
:= ψ2p−1:3p−2 = σ2

ε,x1:xp
, ψθ := ψ3p−1 = θ, ψσ2

ω
:= ψ3p = σ2

ω.

Then we have

∂(α−x1)j
∂(ψα)i

= δij =
∂(β−x1)j
∂(ψβ)i

, i, j = 1, . . . , p− 1

∂(Σ)jj
∂(ψσ2

ε
)i

= δij, i, j = 1, . . . , p

∂θ

∂ψθ
= 1 =

∂σ2
ω

∂ψσ2
ω

,

where δij = 1 if j = i and zero otherwise; Σ is a diagonal matrix with diagonal σ2
ε,x1:xp

. Note

that ∂(α)1
∂(ψα)i

= ∂(β)1
∂(ψβ)i

= 0 for i = 1, . . . , p− 1, where α = αx1:xp and β = βx1:xp .

Appendix B A Review of SMC Method

SMC, also known as particle �ltering, can be viewed as a generalisation of Kalman �ltering in
state-space modelling context. The method is based on importance sampling and it has become
an essential sampling-based tool in many domains (Doucet et al. (2001)). In the following we
give a brief review of the method using the LCSV model, (23b)-(23c), as an example to derive
a basic particle �ltering algorithm. Our target density is the joint posterior distribution of the
states for stochastic volatility:

π(γ1:t|κ0:t) (94)

where the parameters of the model are assumed to be known and is suppressed here for ease of
notation. To apply importance sampling, we �rst calculate

π(γ1:t|κ0:t) =
π(κt|γ1:t, κ0:t−1)π(γ1:t|κ0:t−1)

π(κt|κ0:t−1)

=
π(κt|γ1:t, κ0:t−1)π(γt|γ1:t−1, κ0:t−1)

π(κt|κ0:t−1)
π(γ1:t−1|κ0:t−1)

=
π(κt|γt, κt−1)π(γt|γt−1)

π(κt|κ0:t−1)
π(γ1:t−1|κ0:t−1). (95)

The importance density is assumed to satisfy

g1:t(γ1:t|κ0:t) := gt(γt|γ1:t−1, κ0:t)g1:t−1(γ1:t−1|κ0:t−1) (96)

and the importance weight is given by

w̃t =
π(κt|γt, κt−1)π(γt|γt−1)

π(κt|κt−1)gt(γt|γ1:t−1, κ0:t)

π(γ1:t−1|κ0:t−1)

g0:t−1(γ1:t−1|κ0:t−1)
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∝ π(κt|γt, κt−1)π(γt|γt−1)

gt(γt|γ1:t−1, κ0:t)
w̃t−1

:= ŵt w̃t−1, (97)

where ŵt is called the incremental importance weight. The normalised importance weights are
then obtained as w

(i)
t := w̃

(i)
t /
∑N

j=1 w̃
(j)
t . To summarise, suppose we have N particle paths

(γ
(i)
1:t−1, w

(i)
t−1)

N
i=1 to approximate the density π(γ1:t−1|κ0:t−1) at time t − 1. Then, from (96),

the i-th particle path at time t is given by γ
(i)
1:t = (γ

(i)
1:t−1, γ

(i)
t ) where γ

(i)
t is sampled from

gt(γt|γ(i)1:t−1, κ0:t). The target density π(γ1:t|κ0:t) is approximated by (γ
(i)
1:t, w

(i)
t )Ni=1 where the

normalised weight w
(i)
t is obtained from (97) and normalisation is carried out.

The problem of degeneracy, that is a majority of the particle paths may have negligible
weight, can be handled by resampling. Speci�cally, we de�ne the so-called e�ective sample size

Neff :=

(
N∑
i=1

(w
(i)
t )2

)−1

. (98)

At each time t, if Neff is smaller than some threshold (for example 80% of N) then we draw
N samples (denoted by N(i), i = 1, . . . , N) from a multinomial distribution with probability

weights w
(i)
t , i = 1, . . . , N , and replace the particle paths γ

(i)
1:t by γ

(N(i))
1:t , and set w

(i)
t = 1/N .

The resampling step allows to keep the particle paths in proportion to their weights and tend
to discard those that have negligible weights.
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Figure 5: (Colour online) 30-year forecasted log death rates (2011-2041) for Danish male population

under (left column) LC-H model, (middle column) LCSV model and (right column) LCSV-H model in

comparison with LC model. Calibration period: 1835-2010.
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Figure 6: (Colour online) 20-year out-of-sample forecasted log death rates for Danish male populatio-

nunder (left column) LC-H model, (middle column) LCSV model and (right column) LCSV-H model

in comparison with LC model. Calibration period: 1835-1990.
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Figure 7: (Colour online) 20-year out-of-sample forecasted log death rates for Danish male population

under (left column) LC-H model, (middle column) LCSV model and (right column) LCSV-H model in

comparison with LC model. Calibration period: 1950-1990.
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Figure 8: (Colour online) 30-year forecasted life expectancy (2011-2041) at birth, age 65 and 85 for

Danish male population under (left column) LC-H model, (middle column) LCSV model and (right

column) LCSV-H model in comparison with LC model. Calibration period: 1835-2010.
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Figure 9: (Colour online) 20-year out-of-sample forecasted life expectancy (1991-2010) at birth, age

65 and 85 for Danish male population under (left column) LC-H model, (middle column) LCSV model

and (right column) LCSV-H model in comparison with LC model. Calibration period: 1835-1990.
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Figure 10: (Colour online) 20-year out-of-sample forecasted life expectancy (1991-2010) at birth, age

65 and 85 for Danish male population under (left column) LC-H model, (middle column) LCSV model

and (right column) LCSV-H model in comparison with LC model. Calibration period: 1950-1990.
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