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Abstract 

We examine the impact of explanatory variables such as load, weather and capacity 

constraints on the occurrence and magnitude of price spikes in regional Australian electricity 

markets. We apply the so-called Heckman correction, a two-stage estimation procedure that 

allows us to investigate the impact of the considered variables on extreme price observations 

only, while correcting for a selection bias due to non-random sampling in the analysis. The 

framework is applied to four regional electricity markets in Australia and it is found that for 

these markets, load, relative air temperature and reserve margins are significant variables for 

the occurrence of price spikes, while electricity loads and relative air temperature are 

significant variables to impact on the magnitude of a price spike. The Heckman selection 

model is also found to outperform standard OLS regression models with respect to 

forecasting the magnitude of electricity price spikes.  

   

Keywords: Electricity Markets, Price Spikes, Selection Bias, Inverse Mills Ratio, Heckman 

selection model.
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1. Introduction 

 

In recent decades, many countries have transformed the electricity power sector from 

monopolistic, government controlled systems into deregulated, competitive markets. Like 

other commodities, electricity is now traded under competitive rules using spot and derivative 

contracts (Harris, 2006). Electricity prices are far more volatile than other commodity prices, 

as pointed out by e.g. Eydeland and Wolyniec (2012), Huisman (2009) or Weron (2006). The 

volatility of electricity, measured by daily standard deviation of returns, can be as high as 50 

percent, while the maximum volatilities of stocks are usually lower than 4 percent (Weron 

2000). Therefore, the risk of extreme outcomes in electricity spot markets is of significant 

concern to market participants. 

Electricity prices often exhibit unique behaviour compared to other commodity 

markets. Typical features include mean-reversion, seasonality, extreme volatility and so-

called price spikes (Bierbrauer et al., 2007; Higgs and Worthington, 2008; Huisman et al., 

2007; Janczura and Weron, 2010; Kanamura and Ohashi, 2008; Lucia and Schwartz, 2002). 

The latter usually describe abrupt, short-lived and generally unanticipated extreme changes in 

the spot price and can be considered as one of the most pronounced features of electricity 

spot markets. Despite their rarity, spikes account for a large part of the total variation of 

changes in the spot price and are therefore an important component of the risk faced by 

market participants. Spikes are also a key reason for designing derivatives contracts such as 

futures and options that have been introduced to allow electricity buyers and sellers to hedge 

against extreme price movements in the spot market (Anderson, 2007; Shawky et al., 2003). 

For example, in Australia, next to yearly and quarterly futures contracts, also option contracts 

or so-called ‘$300 cap products’ are traded in the ASX Australian Electricity Futures and 

Options Market. For these contracts, the payoff is determined based on both the frequency 

and magnitude of observed half-hourly price spikes during a calendar quarter. To evaluate 

these instruments accurately and to facilitate price spike risk management, it is necessary to 

understand the impacts of different factors on the occurrence and magnitude of price spikes.  

From a modelling perspective, price spikes are one of the most serious reasons for 

including discontinuous components in econometric models of electricity price dynamics. 

The literature suggests a variety of approaches how to achieve this, including, for example, 

autoregressive time-series models with thresholds (Misiorek et al., 2006), mean reverting 

jump-diffusion models (Cartea and Figueroa 2005, Clewlow and Strickland, 2000; Geman 

and Roncoroni, 2006, Knittel and Roberts, 2005) or Markov-switching models incorporating 
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spikes by proposing different price regimes (Becker et al., 2007; Bierbrauer et al., 2007; de 

Jong, 2006; Huisman and Mahieu, 2003; Kanamura and Ohashi, 2008; Kosater, 2008; Weron 

et al., 2004).  

Factors explaining the large variation of electricity prices in general, and the 

occurrence of price spikes in particular, have also been analysed in a number of studies, see, 

for example, Escribano et al. (2002), Huisman (2008), Kanamura and Ohashi (2007, 2008), 

Knittel and Roberts (2005), Kosater (2008), Mount et al. (2006).  

Escribano et al., (2002) and Knittel and Roberts (2005) suggest a jump-diffusion 

model with time-varying intensity parameter, where the intensity of the jump process is 

modelled as being dependent on deterministic seasonal and diurnal factors. Kanamura and 

Ohashi (2007) provide a structural model for electricity prices taking into account the 

nonlinear relationship between supply and demand in the market and spot electricity prices. 

In particular they focus on modelling the relationship between demand and occurring price 

spikes by formulating the supply function as a hockey-stick shaped curve and by 

incorporating the demand seasonality explicitly. Mount et al. (2006) confirm the hockey stick 

shape of the electricity supply curve and argue that supply is elastic when demand is lower 

than a certain threshold, but when demand exceeds this threshold, supply is virtually 

infinitely inelastic, what leads to price spikes. Due to the different phases of price behaviour 

for electricity prices, the authors suggest to use a regime-switching model with two different 

states where the price process itself as well as the transition probabilities between the regimes 

are dependent on explanatory variables such as demand and the reserve margin.  Kanamura 

and Ohashi (2008) follow a similar approach and employ a regime-switching model with a 

non-spike and a spike regime. Transition probabilities are then dependent on the relationship 

between demand levels and the threshold of supply capacity, changes in demand as well a 

trend caused by the deviation of temporary demand fluctuation from its long-term mean. 

Huisman (2008) introduces a temperature dependent regime-switching model, where either 

price levels or both price levels and the probability for a transition to the spike regime are 

dependent on the temperature deviation from its mean level. Kosater (2008) particularly 

focuses on the impact of weather on the price behaviour in different regimes while Cartea et 

al. (2009) relate the occurrence and magnitude of price spikes to forward looking capacity 

constraints. 

Generally, the literature agrees that electricity spot prices behave quite differently in 

the spike regime compared to the normal regime, see e.g. Huisman (2009) and Janczura and 

Weron (2010). Also, studies by, e.g., Cartea et al. (2009), Kanamura and Ohashi (2007, 
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2008), Mount et al. (2006), seem to provide evidence that also the relationship between 

determinants of electricity spot prices and the price itself is quite different when prices are 

extreme than under a normal regime. Therefore, when modelling the relationship between 

explanatory variables such as load, weather or capacity constraints and the magnitude of price 

spikes, a model that focuses on spike observations only and not the entire sample of spot 

electricity prices may be more appropriate. This idea motivated us to conduct this study. 

The contribution of this paper is twofold. First, this is one of the few studies to 

concentrate in particular on explaining and modelling the magnitude of price spikes in 

electricity spot markets. Many models that have been suggested in the literature for the 

behaviour of spot electricity prices feature components that have been designed to include 

price spikes, such as e.g. a jump-diffusion component or a separate regime for price spikes. 

However, often the suggested models do not include additional explanatory variables besides 

the price process itself (Bierbrauer et al., 2007; de Jong, 2006; Huisman and Mahieu, 2003) 

or the relationship between exogenous variables and electricity prices is modelled using the 

entire sample (Kanamura and Ohashi, 2007; Kosater, 2008; Mount et al., 2006). Given the 

changing nature in the relationship between exogenous variables and electricity prices, it may 

well be that a model that attaches all weight to spike observations and zero weight to non-

spike observations may perform better in modelling and forecasting the spikes. In a similar 

line of thought, Christensen et al. (2009, 2012) suggest that the intensity of the occurrence of 

price spikes is not homogenous, but is also driven by additional exogenous variables. 

Building on this fact, the authors suggest to focus more on forecasting extreme price events 

only instead of modelling the entire price trajectory. Note, however, that these authors are 

only concerned with modelling the occurrence of price spikes and not with modelling the 

actual magnitude of the extreme prices what is the focus of our study. Clearly, market 

participants will not only be interested in the occurrence of a price spike, but would also like 

to obtain an estimate for the size or magnitude of the extreme observation.  

   Second, to our best knowledge, in this paper we provide the first application of the 

Heckman selection model to electricity markets in order to determine appropriate models for 

the occurrence and magnitude of price spikes. Following Hill et al. (2008), the application of 

this technique can be used to appropriately estimate the relationship between exogenous and 

a dependent variable for a non-random subset of the observations. For our application of 

modelling electricity price spikes this means that we are able to estimate the relationship 

between the considered explanatory variables and the subsample of observed electricity 

prices spikes only while controlling for potential selection bias. Note that a similar approach 
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has been applied to modelling losses from operational risk in a recent paper by Dahen and 

Dione (2010). However, to our best knowledge this study presents the first application of the 

technique to electricity spot markets. 

The remainder of the paper is organized as follows In Section 2 we present a brief 

overview of regional Australian electricity markets, focusing on market price caps and 

products available to hedge the risk of occurring price spikes. Section 3 describes the 

theoretical basis for the inclusion of the considered explanatory variables. Section 4 reviews 

the Heckman selection method and illustrates how it can be applied to model the magnitude 

of electricity price spikes. Section 5 reports the estimation results for the Heckman selection 

model, different OLS models and evaluates their performance. Finally, in Section 6 we 

conclude and discuss future work. 

 

2. The Australian National Electricity Market 

 

Since the late 1990s the Australian electricity market has experienced significant changes. At 

that point in time, to promote energy efficiency and reduce the costs of electricity production, 

the Australian government commenced a significant structural reform. Key objectives of this 

reform were the separation of transmission from electricity generation, the merge of twenty-

five electricity distributors into a smaller number of distributors, and the functional separation 

of electricity distribution from the retail supply of electricity. Also retail competition was 

introduced through the reform such that state's electricity purchases could be made through a 

competitive retail market and customers were now free to choose their retail supplier. 

As a wholesale market, the National Electricity Market (NEM) in Australia began 

operating in December 1998. It is now an interconnected grid comprising several regional 

networks which provide supply of electricity to retailers and end-users. The NEM includes 

the states of Queensland (QLD), New South Wales (NSW), Victoria (VIC) and South 

Australia (SA), while Tasmania (TAS) is connected to VIC via an undersea inter-connector. 

The link between electricity producers and electricity consumers is established through a pool 

which is used to aggregate the output from all generators in order to meet the forecasted 

demand. The pool is managed by the Australian Energy Market Operator (AEMO). Unlike 

many other markets, the Australian spot electricity market is not a day-ahead market but 

electricity is traded in a constrained real-time spot market where prices are set each 5 minutes 

by AEMO. Therefore, generators are able to submit their offers every five minutes. This 

information is used to select generators to produce electricity in the most cost-efficient way. 
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The final price is determined in half-hour intervals for each of the regions as an average over 

the 5-minute spot prices for each trading interval. AEMO determines the half-hourly spot 

prices for each of the regional markets separately. Note that for Australian electricity markets 

until June 30, 2010 the market price cap was A$10,000/MWh. The market price cap 

determines the maximum possible bidding price and therefore, also the highest possible 

outcome for a half-hourly price. On July 1, 2010 the bid-cap was increased to 

A$12,500/MWh, while it was further increased to A$12,900/MWh on July 1, 2012 and to 

A$13,100/MWh on July 1, 2013. Price spikes play an important role in hedging decisions for 

NEM market participants, since Australian electricity markets can be considered as being 

significantly more volatile and spike-prone than other comparable markets (Higgs and 

Worthington, 2008). There have been several occasions in the regional markets, when the 

determined half-hourly price was close to or even reached the determined market price cap. 

Therefore, research on the determinants of the occurrence and magnitude of price spikes is of 

significant importance for market participants.  

In recent years, also the market for electricity derivatives has developed rapidly 

including electricity forward, futures and option contracts being traded at the Sydney Futures 

Exchange (SFE). Next to the futures contracts that are priced with respect to average 

electricity spot prices during a delivery period, the SFE also offers a number of alternative 

derivative contracts. These include, for example, option contracts or so-called ‘$300 cap 

products’ for a calendar quarter. For these contracts, the payoff is determined by the sum of 

all base load half hourly spot prices for the region in the calendar quarter greater than $300 

(i.e. the severity of the spikes) and the total number of half hourly spot prices for the region in 

the calendar quarter greater than $300 (i.e. the frequency of the spikes). While in this study 

we do not price these products, our results will be of great interest in particular with respect 

to modeling the payoff distribution of these contracts in future work.   

Note that for electricity markets derivative contracts typically do not require physical 

delivery of electricity but are settled financially. Therefore, market participants can 

participate in electricity derivatives markets and increase market liquidity without owning 

physical generation assets.  
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3. Explanatory variables 

 

Generally, the reasons for the occurrence of a price spike can be manifold and may include 

the unexpected outage or shut-down of power plants, problems with the network transmission 

grid, extreme temperature events, unanticipated high loads, or they may be a result of the 

bidding behaviour of market participants, see, e.g., Eydeland and Wolyniec (2012), Harris 

(2006), Weron (2006). Therefore, as pointed out by Misiorek et al. (2006) the spot electricity 

price can be considered as the outcome of a vast number of variables including fundamentals 

(like loads and network constraints) but also unquantifiable psycho- and sociological factors 

that can cause an unexpected and irrational buyout of certain contracts leading to price 

spikes. 

The empirical literature suggests a number of variables that may have a significant 

impact on the occurrence and magnitude of price spikes, see e.g. Becker et al. (2007), Cartea 

et al. (2009), Huisman (2008), Kosater (2008), Lu et al. (2005), Mount et al. (2006), Weron 

and Misiorek (2008). Generally, these variables can be grouped into three classes: (i) factors 

related to electricity demand and load, (ii) factors related to weather conditions, and, (iii) 

factors related to the capacity of the system and the reserve margin.  

The load measures electricity demand and given that electricity supply is constrained 

in the short run, the load usually has a significant impact on wholesale electricity prices. Load 

patterns typically exhibit seasonality throughout the day, week and the year. The load has 

been determined as one of the key factors determining spot electricity prices in many studies.  

For example, Lu et al. (2005) suggest that electricity load is a significant variable in 

determining the probability of the occurrence of a price spike. Misiorek et al. (2006) conclude 

that day-ahead load forecasts issued by the system operator in California (CAISO) lead to 

more accurate day-ahead spot price forecasts than the actual load. They explain this 

phenomenon by the fact that the prices are an outcome of the bids, which in turn are placed 

with the knowledge of load forecasts but not actual future loads. Indeed, electricity suppliers 

generally do not know the exact system load by the time they enter their bids. Instead, they 

often have to rely on weather variables and/or past observations of load (Mount et al. 2006, 

Weron and Misiorek 2008).  

Also, weather conditions will have a significant impact on electricity consumption. It 

can be expected that during a cold winter or a hot summer, electricity consumption will 

increase due to the use of heating or air-conditioning, respectively. Various weather variables 

can be considered, but temperature and humidity are the most commonly used load 
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predictors. Hippert et al. (2001) report that of the 22 research publications considered in their 

electricity load prediction survey, 13 made use of temperature only, three made use of 

temperature and humidity, three utilized additional weather parameters, and three used only 

load parameters. Generally, with respect to temperature, electricity demand and hence spot 

prices depend more on the deviation from the normal temperature, rather than the temperature 

itself (Huisman 2008). For this reason, in our empirical analysis we will use the absolute or 

squared deviation of the air temperature from 18 degrees Celsius.  

Finally, the reserve margin measures the relationship between the available capacity 

in the system and peak demand. It provides a measure for the aptitude of the market to 

maintain reliable operation while meeting unforeseen increases in demand (e.g. extreme 

weather) and unexpected outages of existing capacity. It has been found to be a significant 

factor in determining the occurrence of price spikes in previous studies, see e.g. Cartea et al. 

(2009), Lu et al. (2005), Mount et al. (2006), just to mention a few. For this reason, we also 

consider the reserve margin as an explanatory variable for the occurrence and magnitude of 

price spikes in this study. 

 

4. Methodology 

 

This section discusses the Heckman correction that can be applied in order to overcome a 

selection bias in the modeling procedure when estimating the relationship between the 

considered explanatory variables and the magnitude of price spikes. We will also briefly 

review the so-called Box-Cox transformation technique that is applied to the raw price data in 

order to obtain approximate normality of the variables that is required by the Heckman 

selection model. We also provide an overview of measures for comparing the forecast ability 

of the different models that are applied in this paper. 

 

4.1. The Heckman selection model 

 

The Heckman selection model is a statistical approach developed by Heckman (1979) to 

correct for selection bias. Standard econometric literatures (Hill et al., 2008; Greene, 2008; 

Verbeek, 2008) argue that when the majority of the observations for the dependent variable 

takes on a value of 0, a standard Ordinary Least Squares (OLS) regression approach is not 

appropriate, for a detailed proof see, e.g., Kennedy (2003). Under these circumstances an 

alternative approach for regression analysis is required. In this paper, the dependent variable 
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of interest is the magnitude of observed price spikes in our sample. As argued by several 

authors, see e.g., Cartea et al. (2009), Kanamura and Ohashi (2007, 2008), Mount et al. 

(2006), the relationship between explanatory variables such as load, weather or capacity 

constraints and spot electricity prices may be very different for price spikes than for price 

observations under a normal price regime. Therefore, one of the motivations of this study is 

that we believe that a model that focuses on spike observations only and not the entire sample 

of spot electricity prices may be more appropriate to quantify this relationship for extreme 

observations. However, including observations of price spikes only into the analysis, is 

somehow critical due to the bias of pre-selecting data based on whether observations are 

classifies as a price spike or not. Such a systematic pre-selection violates the random sample 

principle and, therefore, we need to apply an econometric technique is able to correct 

estimates for the sample selection bias. In this paper we decide to use the Heckman correction 

for this task. 

The Heckman (1979) selection model is essentially a two-stage procedure and the 

resulting model can generally be described by a system of two equations. The first equation 

determines the probability of the occurrence of an event, i.e. a binary choice model, while the 

second equation estimating the relationship between the explanatory variables and the 

outcome of the dependent variable. The first step, i.e. the model for the occurrence of an 

event is typically modeled using a probit equation and estimated using Maximum Likelihood. 

Then for each observation the so-called Inverse Mills Ratio (IMR) is calculated as the 

standard normal density function divided by the cumulative standard normal distribution 

function of the probit model for the occurrence of the event. Then, in a second step, the 

dependent variable, i.e. the size or magnitude of an event, is regressed on the explanatory 

variables and the IMR using standard OLS. Then a test to detect the presence of a sample 

selection bias can be conducted by testing whether the coefficient of the IMR is significantly 

different from zero (Hill et al., 2008). If the coefficient of the IMR is significantly different 

from zero, a selection bias is present and the Heckman correction is favorable to applying 

standard OLS to the selected data. Note that the full model, i.e. the selection equation (the 

binary choice model) and the equation (the standard OLS equation) are typically estimated 

jointly using maximum likelihood.  
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4.2 The Lognormal and Box-Cox transformation 

 

In the Heckman selection model, it is assumed that error terms are normally distributed such 

that large deviations of the dependent variable from normality would possibly provide 

spurious results. Spot electricity prices, however, usually exhibit positive skewness and 

excess kurtosis, indicating that the empirical distribution is far more heavy-tailed than the 

normal distribution. Therefore, often a transformation of the observed spot prices is 

conducted before the estimation of an econometric model, see e.g. Bierbrauer et al. (2007), 

Huisman (2009), Weron and Misiorek (2008). The most popular transformation in the 

econometric literature for electricity markets is to use the logarithm of the actually observed 

prices in order to dampen the extreme volatility, skewness and excess kurtosis. In our 

empirical analysis, we therefore also consider log-transformed spot electricity prices for 

estimation of the model instead of the originally observed prices.    

An alternative and more general technique for the transformation of heavy-tailed price data is 

to apply the Box-Cox (1964) transformation in order to obtain approximate normality of the 

considered variables (Davidson and MacKinnon, 1993). The Box-Cox transformation of a 

variable y is defined as 

                                                    (1) 

 

where y denotes the original observation,  is the so-called transformation parameter and y(𝜆) 

denotes the transformed variable. Clearly, this technique offers a more flexible way of 

transforming data, depending on the choice of the parameter . Note that for the special case 

when   is chosen to be zero, the Box-Cox transformation becomes the logarithmic 

transformation. To estimate the optimal value for   that generates transformed observations 

being as close as possible to a normal distribution, maximum likelihood estimation is used, 

see, e.g., Davidson and MacKinnon (1993) for further details. Due to the popularity of the 

log-transformation in the literature on modeling electricity spot prices, in our empirical 

analysis we will provide the results for models based on the logarithm transformation as well 

as the Box-Cox transformation with 0  .  
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4.3. Measures to compare forecast accuracy 

 

In our empirical analysis we will compare the performance of different models with respect 

to their ability to appropriately model the magnitude of a spike. In particular, we will 

compare the results for the estimated Heckman correction-based model in comparison to 

standard OLS regression approaches. Clearly, there has been a variety of measures suggested 

in the literature in order to compare the performance of econometric models. Given that we 

are mainly interested in the ability of the models to appropriately quantify or forecast price 

spikes, we will focus on the following three measures: the Mean Absolute Error (MAE), the 

Mean Absolute Percentage Error (MAPE) as well as Log likelihood of the estimated models. 

Note that we decided to rather use the MAE instead of the Mean Squared Error (MSE), since 

the latter is usually much more dominated by a few large outliers. Since price spikes can be 

of quite extreme magnitude and for the considered time period take on values up to $10,000, 

it is likely that a comparison of models based on the MSE would be dominated by the few 

really extreme observations only. The MAE is defined as 

1

1 T

t t

t

MAE y f
T 

  ,                                             (2) 

where T denotes the number of observations, yt the transformed spot price (either using the 

natural log or Box-Cox transformation), and ft is the model forecast for the transformed price. 

In a similar manner the MAPE is defined as 

1

100 T
t t

t t

y f
MAPE

T y


  .                                              (3) 

Clearly, the MAPE focuses more on the relative forecast error and will, therefore, give less 

weight to extreme spike observations that are also expected to coincide with large model 

forecast errors.  

 

5. Empirical Results 

 

5.1. Data and Models 

We consider data on price spikes for four Australian regional markets, namely NSW, QLD, 

SA and VIC. Note that these are the states with the highest electricity demand in Australia 

(Higgs, 2009), while SFE offers a variety of derivatives contracts, including futures as well as 

$300 cap options in those states only. Electricity spot prices and system loads at the half-
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hourly frequency are obtained from AEMO. We use data from the period April 1, 2002 to 

June 30, 2010, the time period where the market price cap had been set to A$10,000/MWh 

(AEMO, 2012). As mentioned previously, from July 1, 2010 onwards the cap was increased 

to A$12,500/MWh, while it was further increased to A$12,900/MWh on July 1, 2012 and to 

A$13,100/MWh on July 1, 2013 such that data on price spikes from later periods may exhibit 

different properties due to the revised market price caps. We therefore decided to exclude all 

price observations from July 1, 2010 onwards from the conducted analysis.  

Half-hourly weather data are obtained from the Bureau of Meteorology (BOM) and includes 

relative air temperature, wet bulb temperature, dew point temperature, relative humidity and 

mean sea level pressure (BOM, 2012). We decided to use observations on weather that are 

measured at airport weather stations in Sydney for NSW, Brisbane for QLD, Adelaide for SA 

and Melbourne for VIC. Data on the capacity in the system is obtained from AEMO. Based 

on the information provided on the capacity and load in the market, we define the reserve 

margin as r = [capacity / load] – 1. Clearly, with this specification values of r close to zero 

indicate that there is only little reserve capacity available. On the other hand, larger values of 

r illustrate more reserve capacity in the market. Note, however, that we have data on the so-

called supply capacity only which reflects the installed capacity for each market, rather than 

the actual operational capacity. 

To illustrate the extremely spiky behaviour in the Australian NEM, consider Figure 1. 

The figure provides a plot of half-hourly electricity prices in QLD for the considered time 

period April 1, 2002 – June 30, 2010 and illustrates that half-hourly electricity prices exhibit 

extreme variation and a high number of spikes. We also observe that for the QLD market, 

half-hourly prices reach the bid-cap of 10,000 A$/MWh in a few cases. There are also 

occasions on which prices are negative. This situation occurs when the cost of turning off 

electricity generators is high and producers are willing to put negative bids into the system to 

ensure that they can dispatch the generated electricity. 

Table 1 provides detailed descriptive statistics for half-hourly electricity prices in the 

four states, both for the entire sample as well as for the pre-selected sample that only contains 

price spikes. Note that in this study we classify all price observation greater than 

A$300/MWh as price spikes. Recall that in Australia, option contracts or so-called A$300 
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Figure 1: Half-hourly electricity price (A$/MWh) for the QLD market during the considered 

time period April 1, 2002 – June 30, 2010. 

 

cap options are traded in the ASX Australian Electricity derivatives market. The payoff for 

these products is determined based on both the frequency and magnitude of observed half-

hourly prices in excess of A$300/MWh during a calendar quarter. Therefore, given these 

products available in the market, we believe that the most natural definition of a spike is an 

observation greater than A$300/MWh. 

 

State Obs Mean Std Dev Min Max Skewness Kurtosis 

All Prices 

NSW 144,624 41.16 229.96 -264.31 10,000.00 29.71 1,005.33 

QLD 144,624 37.33 198.85 -675.46 9,920.99 30.30 1,076.61 

SA 144,624 46.29 296.32 -1,000.00 9,999.92 29.37 924.00 

VIC 144,624 36.84 170.21 -496.71 10,000.00 41.71 2,043.70 

Price Spikes (Prices > A$ 300 / MWh) Only 

NSW 743 2037.29 2488.34 300.03 10000.00 1.65 4.74 

QLD 590 2176.19 2228.11 300.04 9920.99 1.52 4.56 

SA 549 3252.93 3556.68 300.82 9999.92 1.04 2.45 

VIC 408 2057.05 2448.91 300.13 10000.00 1.94 6.02 

 

Table 1: Descriptive statistics of half-hourly electricity prices for NSW, QLD, SA, VIC for the 

period April 1, 2002 – June 30, 2010. The upper panel contains descriptive statistics for the 

entire sample, while the lower panel provides descriptive statistics for the pre-selected 

sample of spikes, i.e. price observations greater than A$300/MWh. 
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For the entire sample we find that the average price is around $35-45/MWh, while the 

maximum half-hourly price during the sample period is $10,000/MWh or very close to 

$10,000/MWh for each of the four markets. The standard deviation can be as high as 

$296/MWh for SA, but is greater than four times the average spot price for each of the 

markets. As it is typical for spot electricity prices, data is heavily skewed to the right and 

exhibits excess kurtosis. For the selected sample of price spikes only, we find that with 408 

observations VIC exhibits the lowest number of spikes during the sample period, while in 

NSW for the same period 743 spikes can be observed. The average magnitude of a spike 

ranges from A$2,037 in NSW up to A$3,253 in SA. As mentioned before, in each state here 

are spikes that reach the A$10,000 market price cap during the considered sample period.   

 

     
 

    

 

Figure 2: Scatter plot for the relationship between the log transformation of observed price 

spikes (dependent variable) and the explanatory variables market load (upper left panel), 

relative air temperature (upper right panel), reserve margin (lower left panel, humidity 

(lower right panel) for QLD market. 
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Figure 2 shows the relationship between the log transformed price spikes in the QLD 

market (i.e. the plot contains only price observations greater than A$300/MWh) and the 

explanatory variables market load, relative air temperature, reserve margin and humidity for 

this market. From a first glance, the plots do not indicate a strong relationship between the 

explanatory variables and the observed magnitude of price spikes in the QLD market.  

We now specify the following model for a more detailed analysis of the relationship between 

the considered explanatory variables and observed spot electricity prices. For our analysis, 

the Heckman selection model can be specified by a system containing the two equations (4) 

and (5). Equation (4) denotes the probit model, i.e. the first stage of the Heckman selection 

procedure. The probit model is concerned with the determinants of the occurrence of a price 

spike and, therefore, is estimated using all observations on price data available: 

 

 

0 1 2 3 4 5 6 7t t t t t t t tDPS L r rat webt dwpt humi selp                 (4) 

1

0

when a price spikeoccurs
DPS





 

 

Hereby, DPS a dummy variable for the occurrence of a price spike, L is the market load and r 

is the reserve margin that is defined as r = [capacity / load] – 1. Further, rat denotes the 

relative air temperature that is based on the deviation of the temperature from 18 degrees 

Celcius, i.e.  rat = [air temperature – 18]
^2

, webt denotes the wet bulb temperature measured 

using a standard mercury-in-glass thermometer, dwpt is the dew point temperature, i.e. a 

measure of the moisture content of the air and  the temperature to which air must be cooled in 

order for dew to form. Finally, humi denotes the air humidity and selp is the sea level 

pressure that is affected by changing weather conditions. 

Then equation (5) denotes the second stage of the estimation procedure, and, i.e. the model 

for the magnitude of the occurred price spikes: 

 

0 1 2 3 4t t t t tLNP L rat r IMR                                    (5) 

 

Hereby, LNP denotes the log transformation (alternatively, the Box-Cox transform) of the 

observed electricity price spikes, L is the market load, rat the relative air temperature (as 
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defined earlier), r = [capacity / load] – 1 is the reserve margin and IMR denotes the so-called 

Inverse-Mills-Ratio that is specified as  

 

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

( )

( )

L r rat webt dwpt humi selp
IMR

L r rat webt dwpt humi selp

        

       

      

       

            (6) 

 

and can be calculated for each observation based on equation (5).  Table 2 shows the number 

of observations for each market for the original sample and the censored sample that only 

contains observations of price spikes greater than A$300/MWh. Obviously, for all markets, 

the sample size for the probit model is quite large, since all price observations greater than 0 

are included, while the sample size for the second step in the Heckman selection model, 

equation (5), is much smaller but is still reasonable to provide reliable estimation results. 

Note that we excluded negative and zero prices from the analysis, since both the logarithmic 

and the Box Cox transformation can only be applied to positive numbers.  

 

State NSW QLD SA VIC 

Observations (No Missing Data) 141,358 143,853 142,666 140,505 

Censored Observations 140,645 143,267 142,128 140,108 

Uncensored Observations 713 586 538 397 

Table 2:  Sample sizes (number of observations) details for each state 

 

5.2. Estimation results  

 

5.2.1. Heckman selection model with log transformation 

Table 3 reports the estimation results of the Heckman selection model with log-transformed 

data for the spot electricity prices. We find that for the estimated probit model the variables 

load, relative air temperature and reserve margin are significant. As expected, load and 

relative air temperature have a positive impact on the probability of occurrence of a price 

spike while the reserve margin has a negative impact, i.e. the closer the system is to full 

capacity (reserve margin r close to zero), the higher is the probability of a price spike. 
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Region   NSW     QLD     SA     VIC   

Variable Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign 

Dependent Variable: LNP 

Cons 1.0252 0.50   4.8838 5.13 ***) -3.3654 -1.26   5.0556 2.95 ***) 

L 0.0004 3.10 ***) 0.0002 2.58 ***) 0.0029 4.33 ***) 0.0002 1.46   

rat 0.0026 2.99 ***) 0.0015 2.50 **) 0.0025 3.22 ***) 0.0007 1.26   

r 0.4989 1.22   -0.6766 -1.54   0.3381 0.44   2.7471 4.01 ***) 

IMR 0.3958 1.53   0.3838 2.98 ***) 1.5296 2.10 **) -0.1988 -0.61   

                          

Dependent Variable: DPS 

Cons 14.2095 4.78 ***) 38.9371 10.28 ***) 2.8418 0.80 ***) -7.7089 -2.29 **) 

L 0.0006 26.24 ***) 0.0003 7.41 ***) 0.0012 10.32 ***) 0.0005 12.82 ***) 

r -1.3859 -10.33 ***) -1.4679 -10.17 ***) -0.9129 -7.48 ***) -1.7051 -9.42 ***) 

rat 0.0033 10.14 ***) 0.0031 8.88 ***) 0.0012 4.07 ***) 0.0031 10.46 ***) 

webt 0.0615 3.12 ***) -0.1481 -5.70 ***) -0.0133 -0.85   -0.0301 -1.63   

dwpt -0.0545 -3.22 ***) 0.0569 2.45 **) -0.0070 -0.63   0.0529 3.47 ***) 

humi 0.0122 4.51 ***) -0.0031 -0.89   0.0028 1.13   0.0016 0.55   

selp -0.0231 -8.05 ***) -0.0397 -11.11 ***) -0.0065 -1.89 *) 0.0019 0.59   

                          

Adj-R2   0.05     0.06     0.14     0.08   

 

Table 3: Estimation results for Heckman selection method for the log transformation of spot 

electricity prices. The upper reports results for equation (5) referring to the model for the 

magnitude of the observed price spikes, while the lower panel provides results for the probit 

model for the occurrence of a spike specified in equation (4).    

 

In the equation for the magnitude of price spikes, the IMR is significant for the QLD 

and SA market, while it is almost significant at the 10 percent level for NSW. The Heckman 

correction for sample selection bias is therefore important when examining factors affecting 

the magnitude of price spikes in electricity spot markets. Also, the variables load L and 

relative temperature rat are significant and have the expected positive sign in all markets 

except for VIC. Note, however, that the reserve margin r is only significant in VIC and yields 

a coefficient with a positive sign for three of the regional markets. This is counterintuitive, 

since it suggests that price spikes are of greater magnitude with more reserve capacity in the 

system. These results may be due to the low quality of data on supply capacity which reflects 

only the installed capacity, rather than the actual operational capacity. 

In general, the estimated models do not have a very high explanatory power and yield 

adjusted R
2 

coefficients of determination between 0.05 for NSW and 0.14 for SA. This is not 

surprising since by definition, price spikes are rather unexpected events and can be 
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considered as the outcome of a vast number of variables including fundamentals (like loads 

and network constraints) but also unquantifiable psycho and sociological factors that can 

cause an unexpected and irrational buyout of certain contracts (Misiorek et al., 2006). 

Therefore, for example, an R-squared of 14 percent as it is obtained for the SA market can be 

considered quite high, since it explains a significant fraction of the variation in the magnitude 

of the spikes. 

State  Λ 

NSW -0.6608 

QLD -0.5643 

SA -0.2189 

VIC -0.2405 

 

Table 4: Optimal Box-Cox parameter estimates for each state based on Maximum-Likelihood 

estimation (Davidson and MacKinnon, 1993) 

 

Region   NSW     QLD     SA     VIC   

Variable Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign 

Dependent Variable: BCP 

Cons 1.4317 70.42 ***) 1.6943 92.68 ***) 1.3069 2.32 **) 3.0458 9.85 ***) 

L 0.0000 3.22 ***) 0.0000 2.09 **) 0.0006 4.26 ***) 0.0000 1.28   

rat 0.0000 3.08 ***) 0.0000 3.00 ***) 0.0006 3.53 ***) 0.0001 1.23   

r 0.0067 1.65 *) -0.0172 -2.03 **) -0.0407 -0.25   0.4687 3.79 ***) 

IMR 0.0044 1.72 *) 0.0098 3.95 ***) 0.3916 2.53 **) -0.0316 -0.54   

                          

Dependent Variable: DPS 

Cons 14.2095 4.78 ***) 38.9371 10.28 ***) 2.8418 0.80   -7.7089 -2.29 **) 

L 0.0006 26.24 ***) 0.0003 7.41 ***) 0.0012 10.32 ***) 0.0005 12.82 ***) 

r -1.3859 -10.33 ***) -1.4679 -10.17 ***) -0.9129 -7.48 ***) -1.7051 -9.42 ***) 

rat 0.0033 10.14 ***) 0.0031 8.88 ***) 0.0012 4.07 ***) 0.0031 10.46 ***) 

webt 0.0615 3.12 ***) -0.1481 -5.70 ***) -0.0133 -0.85   -0.0301 -1.63   

dwpt -0.0545 -3.22 ***) 0.0569 2.45 **) -0.0070 -0.63   0.0529 3.47 ***) 

humi 0.0122 4.51 ***) -0.0031 -0.89   0.0028 1.13   0.0016 0.55   

selp -0.0231 0.00 ***) -0.0397 -11.11 ***) -0.0065 -1.89 *) 0.0019 0.59   

                          

Adj-R2   0.06     0.06     0.11     0.07   

 

Table 5: Estimation results for Heckman selection method for the Box-Cox transformation of 

spot electricity prices. The upper reports results for equation (5) referring to the model for 

the magnitude of the observed price spikes, while the lower panel provides results for the 

probit model for the occurrence of a spike specified in equation (4).    
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5.2.2. Heckman selection model with Box-Cox transformation 

Table 4 reports the estimation of the Box-Cox transformation parameter , based on 

Davidson and MacKinnon (1993), for each of the considered states, while Table 5 presents 

the estimation results for the Heckman selection model after applying the Box-Cox 

transformation. We obtain results very similar to when the log transformation had been used 

for the observed spot electricity prices. Note that in the estimated model, the two variables 

load L, relative air temperature rat are significant for all markets and show the expected sign. 

Also the reserve margin r is significant for three of the four markets and yields the expected 

negative coefficient for QLD and SA, while the coefficient is positive and significant for 

VIC. Also results for the explanatory power of the model are very similar to those obtained 

for the log transformation. Interestingly, the explanatory power of the model with the Box-

Cox transformation is slightly lower than when the log transformation is applied. 

 

Region   NSW     QLD     SA     VIC   

Variable Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign 

Dependent Variable: LNP, All Prices 

Cons 1.3997 107.74 ***) 0.9257 36.47 ***) 1.6226 89.14 ***) 0.6716 49.19 ***) 

L 0.0002 183.77 ***) 0.0004 121.33 ***) 0.0012 154.19 ***) 0.0005 238.43 ***) 

rat 0.0016 53.96 ***) -0.0001 -4.09 ***) 0.0002 7.47 ***) 0.0004 20.88 ***) 

r -0.1278 -26.37 ***) 0.1253 15.57 ***) -0.0525 -12.94 ***) -0.0920 -18.04 ***) 

Adj-R2   0.44     0.28     0.48     0.49   

Region   NSW     QLD     SA     VIC   

Variable Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign 

Dependent Variable: BCP, All Prices 

Cons 1.1393 988.33 ***) 1.1416 338.17 ***) 1.7190 212.00 ***) 1.1080 189.88 ***) 

L 0.0000 215.73 ***) 0.0001 136.07 ***) 0.0005 143.08 ***) 0.0002 246.87 ***) 

rat 0.0001 21.15 ***) -0.0001 -20.84 ***) -0.0001 -10.98 ***) 0.0000 4.80 ***) 

r -0.0154 -35.72 ***) 0.0095 8.91 ***) -0.0596 -33.00 ***) -0.0462 -21.21 ***) 

Adj-R2   0.50     0.34     0.48     0.50   

 

Table 6: Estimation results using OLS for the entire sample of electricity spot prices from 

April 1, 2002 to June 30, 2010. Note that the results on the explanatory power of the model 

cannot be compared to Table 3 and 5, since the estimation refers to a much larger data set 

that contains mainly price observations from a ‘normal’ price regime. 

 

5.2.3. OLS model estimated with all electricity prices 

Table 6 reports the estimation results for a standard OLS regression model when all 

transformed electricity prices are regressed on the explanatory variables (load, reserve 
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margin, relative air temperature). Results are presented both for the log transformation (upper 

panel) as well as for the Box-Cox transformation (lower panel). The results indicate that all 

three explanatory variables are significant for each of the considered markets and for both 

transformations. The coefficient for load always has the expected sign while relative air 

temperature yields a negative sign for QLD when the log transformation is used and for QLD 

and SA when the Box-Cox transformation is employed. Surprisingly, also the coefficient for 

the reserve margin is positive for QLD for both types of transformation. The explanatory 

power of the models measured by the adjusted R-square is quite high, indicating that the 

considered variables provide significant explanatory power for the level of spot electricity 

prices. However, since all price observations are considered in this model, results for the 

coefficient of determination are not really comparable to the Heckman selection model that is 

applied to observed price spikes in excess of A$300/MWh only. 

 

Region   NSW     QLD     SA     VIC   

Variable Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign 

Dependent Variable: LNP, Price Spikes only (Prices > A$ 300 / MWh) 

Cons 4.0378 7.91 ***) 6.2360 7.43 ***) 1.9256 2.57 **) 4.0665 7.35 ***) 

L 0.0002 5.16 ***) 0.0001 1.58   0.0016 6.79 ***) 0.0003 4.10 ***) 

rat 0.0014 4.12 ***) 0.0014 2.37 **) 0.0013 3.04 ***) 0.0010 2.67 ***) 

r 0.9574 3.44 ***) -0.2017 -0.49   1.7630 5.52 ***) 2.4064 6.06 ***) 

Adj-R2   0.07     0.05     0.17     0.12   

Region   NSW     QLD     SA     VIC   

Variable Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign Coef t-Stat Sign 

Dependent Variable: BCP, Price Spikes only (Prices > A$ 300 / MWh) 

Cons 1.4654 287.26 ***) 1.7288 107.47 ***) 2.6651 17.57 ***) 2.8885 28.91 ***) 

L 0.0000 5.01 ***) 0.0000 0.67   0.0003 5.77 ***) 0.0000 3.59 ***) 

rat 0.0000 3.91 ***) 0.0000 2.85 ***) 0.0003 3.19 ***) 0.0002 2.53 **) 

r 0.0119 4.29 ***) -0.0051 -0.64   0.3223 4.99 ***) 0.4145 5.78 ***) 

Adj-R2   0.07     0.04     0.14     0.11   

 

Table 7: Estimation results using OLS for the sub-sample of price spikes, i.e. prices greater 

than A$300/MWh only.  

 

5.2.4. Standard OLS results for price spike sub-sample 

Table 7 presents the estimation results of for the transformed price spikes on the considered 

explanatory variables ignoring the selection bias. Results are quite similar to those for the 

Heckman selection procedure with significant and positive coefficients for the variables load 

L and relative air temperature rat for most of the regional markets. Interestingly, load is not 
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significant for the QLD market anymore. However, reserve margin r is significant for three of 

the four markets (NSW, SA, VIC) but in each case yields a counterintuitive positive sign. As 

indicated by the results for the Heckman selection model where the IMR was significant for 

several of the considered markets, estimation results of a simple OLS model are not reliable 

because they are biased. However, results on adjusted R
2
 are very similar to the results we 

obtain for the Heckman selection model. 

 

5.3. Comparing the forecasting ability of the models 

 

In the following, we compare the forecasting ability of the three estimated models (Heckman 

selection model, OLS model using all prices, OLS model using price spikes only) for the 

observed price spikes in the sample. Hereby, as pointed out in Section 4.3, we focus on the 

following three performance measures: MAE, MAPE and log likelihood of the estimated 

models. Results for all three models and performance criteria are shown in Table 8. We find 

that for each of the considered measures and markets, the Heckman selection model yields 

the best performance. This is true both for the logarithmic and the Box-Cox transformation of 

the price data. For all markets, the estimated OLS model that uses price spikes only performs 

second best, while the OLS model using all prices performs significantly worse.  

The poor performance of the standard OLS model that is estimated using all prices 

can be explained by the fact that the model is calibrated using mainly non-spike observations 

and only gives a small weight to actual price spikes. It also points towards the non-linear 

relationship between wholesale prices and the considered explanatory variables as it has been 

suggested e.g. by Kanamura and Ohashi (2008), Mount et al. (2006) or Weron (2006). These 

studies also suggest that the relationship between load or demand and electricity wholesale 

prices can be characterized by a hockey stick shape. Overall, the weaker performance of a 

standard OLS model for quantifying the magnitude of price spikes is not very surprising.  

More interestingly, the estimated Heckman selection model also outperforms an OLS 

model that is estimated using price spikes only. This indicates that a correction for the 

selection bias in the estimation as well as the inclusion of the Inverse Mills Ratio into the 

model plays an important role and should be further examined in future studies.  
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Natural Log Transformation for Price 

METHOD 1) OLS - All Prices 2) OLS - Price Spikes 3) Heckman Selection 

NSW 

MAE 2.75 0.94 0.94 

MAPE 38.20 13.57 13.54 

Log Likelihood -1,784.76 -1,067.90 -1,067.05 

QLD 

MAE 3.57 0.87 0.86 

MAPE 48.81 12.39 12.26 

Log Likelihood -1,600.50 -833.97 -829.90 

SA 

MAE 2.81 0.95 0.94 

MAPE 36.80 13.43 13.28 

Log Likelihood -1,362.85 -820.71 -814.70 

VIC 

MAE 2.75 0.84 0.84 

MAPE 37.92 12.03 12.08 

Log Likelihood -993.98 -557.55 -557.21 

    

Box Cox Transformation for Price 

METHOD 1) OLS - All Prices 2) OLS - Price Spikes 3) Heckman Selection 

NSW 

MAE 0.08 0.01 0.01 

MAPE 5.25 0.65 0.65 

Log Likelihood 764.57 2,217.11 2,217.85 

QLD 

MAE 0.21 0.02 0.02 

MAPE 11.96 0.96 0.95 

Log Likelihood 77.47 1,483.25 1,490.47 

SA 

MAE 0.76 0.19 0.19 

MAPE 20.64 5.40 5.33 

Log Likelihood -651.99 38.92 46.39 

VIC 

MAE 0.69 0.15 0.15 

MAPE 20.31 4.54 4.54 

Log Likelihood -443.89 121.95 122.29 

 

Table 8: MAE, MAPE and log likelihood of the estimated models for the OLS using the entire 

sample, OLS applied to price spikes only and the Heckman selection model. Note that results 

are reported for log transformation and Box-Cox transformation of the original prices.   
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6. Summary and Conclusions 

 

In this paper, we propose the Heckman selection model framework to examine factors driving 

the frequency and magnitude of price spikes. Using this framework, estimation results are not 

influenced by low (or normal) electricity prices while the selection bias due to non-random 

sampling is overcome. The literature suggests that electricity spot prices behave quite 

differently in the spike regime compared to the normal regime, see e.g. Huisman (2009) and 

Janczura and Weron (2010). Studies by, e.g., Cartea et al. (2009), Kanamura and Ohashi 

(2007, 2008), Mount et al. (2006), seem to provide further evidence that also the relationship 

between determinants of electricity spot prices and the price itself is quite different when 

prices are extreme than under a normal regime. Therefore, when modelling the relationship 

between explanatory variables such as load, weather or capacity constraints and the 

magnitude of price spikes, a model that focuses on spike observations only and not the entire 

sample of spot electricity prices may be more appropriate.  

The Heckman procedure is applied to four regional electricity markets in Australia and it is 

found that for each of these markets, load, relative air temperature and reserve margins are 

significant variables for the occurrence of price spikes, while load and relative air 

temperature are have a significant impact on the magnitude of a price spike. It is also found 

that the Inverse Mills Ratio is significant for several of the considered markets, what 

indicates that estimation results of a standard OLS model to pre-selected data of price spikes 

will generally lead to biased results. The performance of the Heckman selection model for the 

quantification of price spikes is also compared with the performance of an OLS model using 

all prices and an OLS model using price spikes only. We find for all of the considered 

measures that the Heckman selection model performs best in each of the considered markets. 

Our results encourage further application of the Heckman selection model to electricity 

markets.
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