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Abstract

Electricity markets are significantly more volatile than other comparable financial or
commodity markets. Extreme price outcomes, typically referred to as price spikes, as
well as periods of substantial price volatility and their transmission between intercon-
nected regional markets pose significant risks for market participants. We investigate
volatility spillover effects across different regions in the Australian National Electricity
Market (NEM), aiming to provide a better understanding of the transmission of risks in
electricity markets in a multi-regional context. Our analysis is based on the econometric
framework originally proposed by Diebold and Yilmaz (2009, 2012). We conduct both a
static and dynamic assessment of aggregated spillover effects as well as their directional
decomposition between the individual regions. We find that spillover effects are typically
more pronounced between physically interconnected markets. Our results further sug-
gest that the markets in New South Wales, South Australia and Victoria all transmit
and receive significant volatility spillovers, while Victoria is the market with the highest
net spillovers to others. The observed spillover effects also show time-varying and event-
dependent patterns. Our findings provide important insights to market participants with
regards to cross-regional trading of electricity or developing risk management strategies in
the Australian NEM. Further, as the Australian Energy Regulator considers building ad-
ditional interconnectors to facilitate regional market integration, our results also provide
important quantitative information on volatility transmission across regional electricity
markets to policy makers.
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1. Introduction

This study assesses volatility spillover effects for spot electricity prices across regional

markets in the Australian National Electricity Market (NEM). The objective is to provide

a better understanding of risk and volatility transmission in electricity markets in a multi-

regional context. In particular, we aim to examine patterns of volatility spillover effects

in the NEM as well as how these patterns are related to specific market characteristics,

events and regulatory policy.

Due to the non-storable nature of electricity, electricity markets are usually considered

to be significantly more volatile than other comparable financial or commodity markets.

Extreme price outcomes, typically referred to as price spikes, and periods of substantial

price volatility are major sources of risks for electricity market participants. For example,

for the regional South Australia electricity market, whereas normal price levels are below

$100 per megawatt hour (MWh), spot prices frequently jump above $1000 per MWh, and

even hit $14,000 per MWh at rare occasions (Potter, 2016). Factors that have contributed

to such price and volatility shocks typically include the maintenance of power plants, the

congestion of interconnectors or main transmission lines between South Australia and

Victoria as well as periods of no-wind scenarios, i.e. very low generation of renewable

energy. Interestingly, during such periods, often also significant spillover effects of price

volatility to the connected markets in the NEM can be observed (Australian Energy

Market Operator, 2016).

By definition, spillovers are the effects that shocks or crises in one region have on an-

other region through external links (Pesaran and Pick, 2007). For financial markets,

these spillover effects are typically characterized by the transmission of extreme price

outcomes and volatility. For the energy sector, the analysis of these effects is important,

especially for businesses that simultaneously operate in several electricity markets, since

the probability of joint price spikes and high volatility imposes significant risk.

This study focuses on the Australian NEM as a nationally interconnected system with

strong linkages between the individual regions (Ignatieva and Trück, 2016). The NEM

comprises five state-based regional markets: New South Wales (NSW), Queensland (QLD),

South Australia (SA), Tasmania (TAS) and Victoria (VIC) (Australian Energy Regula-

tor, 2015). Wholesale trading in the NEM is conducted in a spot market where electricity
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supply and demand are matched in real time to determine a price for each region, which

is known as the spot price. In addition, electricity can be transmitted across different

regions within the NEM through so-called interconnectors, which are high-voltage trans-

mission lines between adjacent regional markets. This allows electricity to be imported

from a low price region to a high price region. However, such transmission is limited by

the physical transfer capacity of interconnecters.

The assessment of spillover effects for the volatility of spot electricity prices is of particular

interest for the Australian electricity markets. Electricity spot prices in the Australian

NEM are even more volatile and spiky than in other comparable electricity markets,

partially due to the interconnection of regional markets (Higgs and Worthington, 2008;

Mayer and Trück, 2015). The analysis of volatility spillovers may therefore provide fur-

ther insights on the transmission of extreme outcomes in electricity prices for Australia.

Further, a long-run objective of the NEM is to provide a single integrated market with

similar electricity prices across the different states. Such an integrated market is expected

to provide an efficient electricity network that meets the long-term interests of consumers

(Australian Energy Market Commission, 2013). However, so far different regions in the

NEM are still considered to be relatively isolated, which is reflected by the sizeable price

differences across regions (Higgs, 2009; Ignatieva and Trück, 2016; Nepal et al., 2016).

One related concern that has been raised by stakeholders is the potential underinvestment

in interconnectors (Garnaut, 2011; Nepal et al., 2016; Productivity Commission, 2013).

Since volatility spillover effects are considered as required features for market integration

(Ciarreta and Zarraga, 2015), the analysis of these effects is also relevant for evaluating

the efficiency of existing market interconnections and the potential of the NEM to achieve

further integration.

Since the 1990s there is a small but rapidly growing literature on deregulated electricity

markets. However, to date more studies typically focus on analysing electricity prices

in a single market (e.g. Christensen et al., 2012; Clements et al., 2013; Eichler et al.,

2014; Herrera and González, 2014), while studies focusing on a multivariate analysis that

considers the interrelationship of electricity price or volatility between different markets

are still limited.

In the US context, De Vany and Walls (1999a) were the first to study the joint behaviour

of electricity spot prices in decentralised electricity markets. Using cointegration analysis,
2



the authors find evidence of a highly integrated and efficient wholesale power markets

in the western US. Nevertheless, based on an extended and more recent data set in

the same markets, Dempster et al. (2008) suggest only a moderate degree of market

integration. De Vany and Walls (1999b) and Park et al. (2006) use impulse-response

analysis and variance decompositions based on VAR models to assess the transmission

of electricity price dynamics. De Vany and Walls (1999b) find that price shocks tend to

transmit to other markets during peak periods rather than during off-peak periods. Park

et al. (2006) find that the interrelationship between regional electricity markets varies

across time. Although the western US markets are separated from the other markets in

contemporaneous time, over a longer time horizon, the separation seems to disappear.

In the European context, Haldrup and Nielsen (2006) examine price interdependence

between pairs of regional markets in the Nordic countries through a Markov switching

fractional integration model. They find that bilateral prices are identical during some

periods but are divergent during others. Micola and Bunn (2007) analyse the role of in-

terconnector congestion and find a threshold of interconnector capacity deployment after

which two interconnected markets split. Bollino and Polinori (2008) conduct a conta-

gion analysis of regional electricity markets in Italy and suggest that contagion and price

interdependence can be identified separately. Zachmann (2008) studies the integration

of European electricity markets. Although results for a conducted Principle Compo-

nent Analysis reject the existence of a single integrated market, using a Kalman filter,

the author finds pairwise price convergence between several countries after considering

congestion costs. Le Pen and Sévi (2010) estimate a VAR-BEKK (Baba, Engle, Kraft

and Kroner) model and show the existence of return and volatility spillovers in three

major European electricity forward markets. More recently, De Menezes and Houllier

(2014, 2015) use fractional cointegration methods to assess integration across European

electricity markets, suggesting that electricity spot prices in the considered markets are

intermediate between non-stationary and stationary. Multivariate GARCH models are

used in Ciarreta and Zarraga (2015) and De Menezes and Houllier (2015) to assess mean

and volatility spillovers of electricity prices. Furthermore, Füss et al. (2015) develop a

fundamental multi-market model to analyse the impacts of interconnectivity of electricity

markets on spikes, high volatility of electricity spot prices as well as on the term structure

of electricity futures prices.
3



Also in the Australian context, there are some existing studies focussing on the inter-

dependence of regional electricity prices. From a long-run perspective, after conducting

pairwise unit root tests, a Johansen cointegration test, and time-varying coefficient es-

timations, Nepal et al. (2016) suggest that the Australian NEM has not achieved full

integration. Furthermore, Apergis et al. (2016) test the price convergence across states

in Australia with a clustering group approach. Considering all five regions in the NEM

as well as the Western Australia (WA) market, they find three separate groups: NSW,

QLD and VIC; SA; and TAS and WA. The authors propose that generation mix of elec-

tricity as well as the ownership structure of electricity generation are important factors

that contribute to these separations. From a short-run perspective, Smith et al. (2012),

Smith (2015), Aderounmu and Wolff (2014a,b), Ignatieva and Trück (2016) and Manner

et al. (2016) apply a series of copula models to measure the nonlinearity in multivariate

electricity price modelling, especially in assessing tail dependence of spot prices between

different regions. Furthermore, Clements et al. (2015) find evidence of price spike trans-

missions across interconnected regions in the NEM using a multivariate point process

model.

Other studies focus on price volatilities and their transmission or spillover effects in the

Australian NEM. Worthington et al. (2005) employ a MGARCH model to investigate the

daily spot price and volatility dynamics in the NEM. Their results suggest insignificant

price transmission but significant volatility spillovers. This study is extended by Higgs

(2009) by further assessing the effects of interregional electricity price volatility spillovers

through three conditional correlation MGARCH models. Furthermore, Higgs et al. (2015)

investigate the impacts of a series of demand and supply factors on electricity price

volatility. Taking into account interregional electricity flows, they find that the generation

mix exerts a strong influence on electricity price volatility.

Overall, the existing literature on volatility spillovers in electricity markets does not

provide a complete picture on the strength, specific patterns or the direction of spillover

effects through time. This motivates us to conduct a more detailed analysis of volatility

spillover effects in the Australian NEM. In particular, we are interested to analyze the

overall degree of volatility spillover in the Australian NEM, including the direction of

spillovers between individual regional markets. We also investigate whether the markets

typically transmit or receive more volatility spillovers as well as the changing nature of
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spillovers through time. We also aim to examine whether the time variation in spillover

effects is influenced by specific events (e.g. extreme weather events, network congestion,

etc.), the electricity generation mix, or regulatory changes.

A major novelty of this study is that we employ a relatively new econometric framework

(Diebold and Yilmaz, 2009, 2012) to investigate spillover effects in the NEM to address

the above questions. This framework was developed by Diebold and Yilmaz (2009) based

on using forecast error variance decomposition from a vector autoregressive (VAR) model

(Sims, 1980). The method has further been extended by Diebold and Yilmaz (2012) based

on a generalised variance decomposition (GVD) framework (Koop et al., 1996; Pesaran

and Shin, 1998). The chosen approach allows us to quantify various spillover effects,

including pairwise spillovers between two regions, gross directional spillovers from/to each

region, net directional spillovers from each market, as well as a system-wide aggregated

spillover index over a specified time horizon. Furthermore, by using a rolling-window

approach, the applied analysis can monitor different the magnitude of spillover effects

through time.

The Diebold and Yilmaz (2009, 2012) method (hereafter, DY method) has some appealing

features in assessing spillover effects. First, the nature of the DY method is similar and

closely related to impulse response function analysis which is widely used to explore

time-paths of shock transmissions across economic systems (see, e.g. De Vany and Walls,

1999b; Le Pen and Sévi, 2010; Park et al., 2006). However, unlike standard applications

of impulse response analysis, the DY spillover measure has the advantage that it can

be easily aggregated so that the overall level of spillover effects in the whole system

can be estimated and monitored. Second, the DY method can conveniently provide

information on directional spillover flows across markets without having to conduct an

a priori analysis on the relative importance of all considered markets as might be the

case for other methodologies (Conefrey and Cronin, 2015). Third, the approach is also

advantageous in capturing time variations of spillovers. Using a rolling window approach,

a time-varying index can be specified, allowing to analyze spillover effects through time

without having to pre-specify a series of breakpoints or scenarios.

To the best of our knowledge, the DY framework has not been applied to analyse spillover

effects in spot electricity markets and its application is limited mainly to equity, bond and

foreign exchange markets (e.g. Allen et al., 2014a,b; Antonakakis and Vergos, 2013; Claeys
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and Vaš́ıček, 2014; Cronin, 2014; Maghyereh et al., 2015; McMillan and Speight, 2010;

Narayan et al., 2014; Sugimoto et al., 2014). Few authors have applied the method to

commodity markets (e.g. Antonakakis et al., 2014; Baruńık et al., 2015; Kang et al., 2014;

Zhang and Wang, 2014), while only one study (Jaeck and Lautier, 2016) has employed

the DY method to electricity derivative markets and assesses volatility spillovers across

electricity futures with different maturities. However, it is well-known that electricity spot

prices exhibit an entirely different, more ’spiky’ and volatile behaviour than derivatives

contracts.

Overall, the successful application of the DY method to various financial markets mo-

tivates us to use the approach for analysing spillover effects and dynamics in electricity

spot markets. We investigate volatility spillover effects in the five regional electricity

markets in the Australian NEM, namely, NSW, QLD, SA, TAS and VIC. Hereby, we

investigate both market aggregated and directionally decomposed spillovers for specific

markets, while the analysis is also conducted using a dynamic setting. By using daily

electricity price volatility from 1 January 2010 to 31 December 2015, we also cover the

periods before, during and after the Australian carbon pricing mechanism that was in

place between July 2012 and June 2014. Thus, our study also allows us to examine the

evolution of volatility spillover effects across these three sub-periods.

Our findings suggest that although spillover effects play an important role in the overall

market volatility in the NEM, regional market volatilities are still largely influenced by

local factors. Among the five regions in the NEM, VIC, NSW and SA all transmit and

receive significant volatility spillover effects, while VIC is the most important market

in transmitting shocks to others. The magnitude and direction of spillover effects both

exhibit time variations, and a large part of these time variations could be related to

extraordinary events and policy changes in the NEM. In addition, patterns of volatil-

ity spillovers are highly influenced by the interconnector structure of the NEM: greater

spillover effects are observed where physical interconnections exist, confirming the sig-

nificant role of interconnectors in facilitating integration between regions. Finally, our

findings are robust when separate assessments are conducted for sub-periods with regard

to the introduction and repeal of the Australian carbon tax policy. All results are also

relatively robust to the choice of alternative parameter or model specifications.

Overall, our results contribute to the literature in three ways. First, we conduct a pi-
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oneering study by applying the DY spillover method to electricity spot markets. Our

results suggest that this method can efficiently capture the transmission of electricity

price volatility. Second, compared with the existing literature, we provide a deeper anal-

ysis of volatility spillover effects in the Australian NEM by estimating more detailed

patterns of these effects, such as their magnitudes, directions and time variations. Fi-

nally, by using more recent data, our results add important empirical evidence on the

impacts of the recent introduction and abolishment of the carbon tax policy on spillover

effects in the NEM, which has not been documented in the literature yet.

From a practical perspective, our results provide important information for participants

in the NEM who are concerned about high volatility periods of spot prices and the

transmission of these events across regions. For example, retailers who are operating

simultaneously in several different regions have to take spillover effects into consideration

when making risk management and hedging decisions. Our results are also of great in-

terest to electricity traders and so-called merchant interconnectors who earn profits by

purchasing electricity in a market where prices are currently low, then selling it to a

market with currently higher prices, because price differences and spillover effects across

regions are highly relevant to their revenue. Furthermore, our results also provide im-

portant information for regulators who aim to evaluate current market interconnections

and systemic risks as a result of extreme events in a singular or multiple markets, the

potential of the NEM to achieve integration, and impacts of the inclusion of renewable

resources on market volatility.

The remainder of this paper is structured as follows. Section 2 provides a brief overview

of the institutional background and features of the Australian NEM. Section 3 introduces

our research methodology, while Section 4 summarises the properties of data used in this

study. Empirical findings are provided in Section 5. These include the results of both

static and dynamic spillover analyses, as well as several robustness checks for different

sub-periods and choice of model specifications. Finally, Section 6 concludes and discusses

possible directions for future research.

2. The Australian National Electricity Market

The Australian NEM began operating as a wholesale market in December 1998 (Aus-

tralian Energy Regulator, 2015). Prior to this, electricity markets in Australia were
7



separated with each state operating its own vertically integrated state-owned business

for electricity generation, transmission and distribution. Electricity prices were deter-

mined by state government regulations in order to cover costs with any required return

for the government. With the aim of increasing market efficiency for the electricity sec-

tor, the Australian government commenced the reform in the 1990s to restructure the

electricity market in three ways: the supply industry was separated into generation,

transmission, retail and distribution segments; competition was introduced to generation

and retail markets; and the states’ power systems were extended to be interconnected

(Australian Energy Regulator, 2015). The NEM now operates as a wholesale electricity

market, supplying electricity to retailers and end-users for the five state-based regional

markets in NSW, QLD, SA, VIC and TAS. Networks in each state are linked to others via

interconnectors, which are the physical transmission lines connecting adjacent regions.

The electricity spot market in the NEM operates as a central pool managed by Australian

Energy Market Operator (AEMO). It is an ‘energy only’ gross pool with mandatory

participation (Australian Energy Regulator, 2015),i.e. all electricity generated has to be

sold through this pool where the electricity output from all generators is aggregated to

meet demand in real-time. Generators submit bids every five minutes, specifying the

amount and the price they offer. AEMO then determines the generators to produce

electricity based on a least-cost optimisation. Thus, generators with lower marginal costs

will be given priority to supply electricity. Every five minutes AEMO determines a spot

price for each region. The final half-hourly electricity spot price is then determined as

the average of six five-minute interval prices.

Electricity spot prices are considered to be far more volatile than prices in other com-

modity markets. One major reason is the highly inelastic electricity demand due to the

non-storable nature of electricity. Even small changes in electricity load and genera-

tion may result in substantial changes in spot prices. In addition to the tight electricity

demand and supply relationship, there are various factors (including seasonal factors

and extraordinary events) imposing significant influence on electricity load. As a result,

electricity prices exhibit infrequent but extreme price spikes, as well as mean-reversion

behaviour and seasonality. Spikes in electricity spot prices are usually caused by demand

shocks, for example, peak-load during extreme weather, or supply disruptions such as gen-

eration outages and transmission failures (Kaminski, 2004; Knittel and Roberts, 2005).
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Within a period of as little as one hour, prices can increase tenfold and then fall back to

the previous level. As pointed out in the literature, spot prices in the Australian NEM

are even more spiky and volatile than in other comparable electricity markets (Higgs

and Worthington, 2008; Mayer and Trück, 2015). During our sample period, the market

price cap (the highest possible electricity spot price) has been increased from $10,000 to

$13,800 per MWh (Australian Energy Regulator, 2015); and spot prices have been close

to or reached the market price cap on several occasions. Furthermore, spot prices in dif-

ferent regional markets appear to exhibit tail dependence (Smith et al., 2012; Aderounmu

and Wolff, 2014a,b; Ignatieva and Trück, 2016), which means price spikes and high price

volatilities tend to occur jointly in different regions.

Electricity spot prices also exhibit strong mean-reversion. In storable commodity markets,

such as oil and gas markets, the mean-reversion process is usually related to annual cycles

in supply and demand or economic cycles, which can take months or even years. In

comparison, in electricity markets, it is common to observe extreme prices followed by

fast reversion to previous price levels (Benth et al., 2008; Pilipovic, 2007). For example,

when there is an increase in electricity demand due to extreme weather conditions, more

expensive generators enter the pool on the supply side and push up spot prices. As soon

as the weather conditions and electricity demand return to their normal levels (usually

within several hours or days), those expensive generators leave the pool and prices revert

back to their normal levels.

In addition, seasonality in electricity prices is stronger than in any other commodity mar-

ket, mainly driven by cyclical fluctuations in electricity demand, corresponding to, for

example, changes in climate conditions and business or household activities (Kaminski,

2004; Pilipovic, 2007; Weron, 2006). For instance, electricity prices tend to be higher

during summer and winter months and also exhibit intra-weekly and intra-daily patterns

due to a higher demand on weekdays and during peak hours. Overall, all these fea-

tures of electricity prices contribute to high volatility in general electricity markets and

particularly in the NEM.

Electricity generation in Australia predominantly relies on fossil fuels. For example, in

2015, about 88% of the overall electricity generation was from fossil fuels, with around

76% from black and brown coal and 12% from gas (Australian Energy Regulator, 2015).

However, encouraged by government policies with concerns regarding climate change and
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the dependence of the energy sector on fossil fuels, in recent years also an increasing

share of electricity generation from renewable energy sources could be observed (Higgs

et al., 2015; Ignatieva and Trück, 2016). Thus, during our sample period from 2010

to 2015, the share of generated renewable energy increased from 9.6% to 12% (Clean

Energy Council, 2011, 2015). Hereby, in particular hydropower (40.1%) and wind power

(33.7%) represent the largest share of renewable generation in the NEM for the year 2015.

Regarding generation by region, NSW, QLD and VIC rely heavily on coal generation,

while TAS and SA have larger shares of renewable energy generation. In 2015, 99.9% of

TAS’s generation and 43% SA’s generation came from renewable energy with the majority

of generation in TAS coming from hydropower, while the penetration of wind generation

is especially strong in SA (Clean Energy Council, 2015).

In terms of electricity consumption, from 2010 to 2015, NSW accounted for the largest

share (about 37%), followed by QLD (26%) and VIC (25%), while the shares of SA

and TAS were around 7% and 5% (Australian Energy Regulator, 2016). In interregional

trade, NSW, SA, and TAS were typically net electricity importers, with the exception of

TAS being a net exporter during the carbon tax period from July 2012 to June 2014. At

the same time QLD and VIC were typically net exporters (Australian Energy Regulator,

2015).

A key objective of establishing the Australian NEM is, in the long-run, to provide a

nationally integrated electricity market with efficient delivery of network services and

electricity infrastructure, limiting the market power of generators in each regional market

(Productivity Commission, 2013). This is supported by interconnectors between adjacent

regions. Currently there are six interconnectors linking five jurisdictions in the NEM: QNI

and Terranora between NSW and QLD, Heywood and Murraylink between VIC and SA,

the VIC-NSW interconnector between NSW and VIC, and Basslink (an undersea power

cable) between VIC and TAS (Australian Energy Regulator, 2015). Except for Basslink,

all of these interconnectors operate as regulated interconnectors1. Electricity can be

imported into one region through interconnectors when the output of local generators

is insufficient to meet demand, or when the electricity price in the adjoining market is

1 A regulated interconnector receives fixed revenue determined by the regulator based on the asset’s value.
The actual interconnector usage is not considered in calculating this revenue. In comparison, an unreg-
ulated interconnector, which is also called a merchant interconnector, derives revenue by participating
in interregional trades in the spot market (Australian Energy Regulator, 2015).
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low enough to replace local supply. Optimally, if the market operates efficiently, prices

align across regions, with the difference only to account for physical transmission losses

during the delivery of electricity (Australian Energy Regulator, 2015). This mechanism

facilitates market integration (Nepal and Jamasb, 2012) and promotes competition in

electricity wholesale markets, especially in a concentrated market with limited market

participants. However, as pointed out before, the efficient transmission of electricity

across regions is limited by the physical transfer capacity of the interconnectors.

The limitation of interconnecter capacity is one defining feature of the NEM (Higgs and

Worthington, 2005; Higgs, 2009; Nepal and Jamasb, 2012), limiting much generation ca-

pacity to remain within the local market. As a result, regional markets in the NEM are

still considered as isolated, which is reflected by the substantial price differences between

regions, and the occurrence of unnecessarily high price and volatility regimes2. Accord-

ingly, there is a concern about underinvestment in interconnectors in the Australian NEM

(Garnaut, 2011; Productivity Commission, 2013). In particular, Nepal et al. (2016) in-

vestigate the usage of interconnector capacity in the NEM. They find the existence of

significant transmission bottlenecks in all interconnectors and thus propose more invest-

ment in capacities of existing interconnector as well as into new interconnectors.

The Australian NEM has also experiencing several regulatory changes over the last de-

cae: one important change that is relevant to our sample period is the carbon tax policy

that operated between 1 July 2012 and 30 June 2014. This policy was introduced by

the Australian Labor Government in order to reduce carbon emissions in the electricity

sector what could possibly help to mitigate climate change (Australian Energy Regulator,

2015). Central to this policy was the mechanism that a fixed price (or tax), starting at

$23, was placed on each tonne of carbon dioxide equivalent emission. This policy had a

significant influence on the electricity sector, because electricity generation contributes a

large proportion to overall carbon emissions in Australia. The major impacts of the car-

bon tax policy can be summarised as follows: first, the carbon tax significantly increased

the cost of electricity generators during the two-year carbon pricing period between July

2 The important role of interconnectors is evidenced by a recent event related to the outage of the inter-
connector between TAS and VIC (Basslink) on December 20, 2015, when TAS was isolated from the
NEM and electricity spot prices in TAS spiked 400% from a normal level of around $40 per MWh to
prices exceeding $200 per MWh. High price levels and volatility lasted for a period of over four months
until Basslink was back in operation (Australian Energy Market Operator, 2016).
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2012 and July 2014. As a result, although electricity demand declined during this period,

spot prices in the NEM generally exhibited a substantial rise. However, increases in elec-

tricity spot prices were not even across all regions in the NEM. In particular, the increase

in electricity prices in TAS was much less than in the other four NEM regions (Apergis

et al., 2016; Australian Energy Regulator, 2015), because hydro generation had a large

share in the TAS market. Second, the carbon tax also slightly altered the composition

of electricity generation in the NEM. The market share of coal generation dropped and

even reached a historical low in the 2013-2014 financial year, while the share of generation

from renewables, especially hydro generation increased significantly (Australian Energy

Regulator, 2015). Finally, changes in regional prices and the generation mix in the NEM

further altered the interregional electricity flows, in particular for TAS. Typically, TAS

was a net electricity importer, while during the carbon tax period, due to the increased

local hydro output and the relatively low regional prices, TAS became a electricity ex-

porter. In the 2013-2014 financial year, it even recorded the highest ratio for exports of all

regions since the NEM operation (Australian Energy Regulator, 2015). In our empirical

analysis we will also investigate the impact of this major policy change on price spillover

effects across the markets.

3. Methodology

We apply Diebold and Yilmaz’s (DY) (2009, 2012) spillover method to estimate volatility

spillover effects in the Australian NEM. Specifically, the first step involves a VAR model

estimation for the price volatility. Next, based on H-step forecast error variance de-

compositions, various types of spillovers can be calculated, conveying a wealth of market

information. The following sections 3.1 to 3.3 will introduce the details of these individual

steps.

3.1. Vector Autoregressive (VAR) Model

Our spillover analysis starts from a covariance stationary N -variable VAR(p) model (in

this study, N = 5 for five regional markets) for a vector xt = (x1t, ..., xNt)
′ of price

volatilities in the considered markets:

xt = Ψ +

p∑
i=1

Φixt−i + εt, (3.1)
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where p is the lag length, εt ∼ (0,Σ) is a vector of independently and identically

distributed error terms, Σ is the variance-covariance matrix for εt, and Ψ is an intercept

vector. According to Greene (2003) and Park et al. (2006), one advantage of such a

VAR model is that it captures regularities in the data without imposing as many prior

restrictions as structural models may impose.

Then the moving average representation of the covariance stationary VAR model can be

denoted by

xt = A0εt + A1εt−1 + A2εt−2 + ... =
∞∑
i=0

Aiεt−i. (3.2)

The N ×N coefficient matrices follow the recursion:

Ai = Φ1Ai−1 + Φ2Ai−2 + ...+ ΦpAi−p, (3.3)

where A0 is an N ×N identity matrix and Ai = 0 for i < 0. The moving average coeffi-

cients and their transformations are the key to analysing the dynamics of the considered

system, because they measure the effects of shocks at different time points on the value

of variables in the future.

Since the definition of our spillover measures relies on forecast error variance decomposi-

tion, we then look at the H-step-ahead forecast at time t:

xt+H,t = AHεt + AH+1εt−1 + AH+2εt−2 + ... =
∞∑
i=0

AH+iεt−i. (3.4)

The corresponding forecast error is

et+H,t = xt+H − xt+H,t =
∞∑
i=0

Aiεt+H−i −
∞∑
i=0

AH+iεt−i =
H−1∑
i=0

Aiεt+H−i (3.5)

and the variance-covariance matrix of the forecast error can then be calculated as:

Σe,H = A0ΣA′0 + A1ΣA′1 + A2ΣA′2 + ...+ AH−1ΣA′H−1 =
H−1∑
h=0

AhΣA′h. (3.6)

3.2. Forecast Error Variance Decomposition

The next step of our spillover analysis is to decompose the forecast error variance (i.e. the

diagonal elements of Σe,H) into parts that are attributable to different system shocks.
13



More precisely, the variance decomposition aims to examine what fraction of the H-

step-ahead error variance in forecasting variable xi (i = 1, 2, ..., N) can be attributed to

exogenous shocks (typically including rising demand, generation outage and transmission

failure in electricity markets) to variable xj (j = 1, 2, ..., N). In particular, the fraction

of the H-step-ahead error variance in forecasting variable xi due to shocks to xi itself

is defined as own-variance share; and the fraction of the H-step-ahead error variance in

forecasting variable xi due to shocks to xj (j 6= i) is defined as cross-variance share.

The cross-variance share then measures the spillover effects. This decomposition of fore-

cast error variance requires isolated shocks. However, economic data generally exhibit

contemporaneously correlated shocks or innovations (Park et al., 2006). To address this

issue, identifying uncorrelated shocks is necessary.

Diebold and Yilmaz (2009, 2012) propose two identification schemes to deal with this

issue. Diebold and Yilmaz (2009) use a Cholesky-based VAR variance decomposition

(Sims, 1980) to orthogonalise shocks. Nevertheless, this first version of the DY method

(2009) is sensitive to variable ordering by nature, because Cholesky-based orthogonalisa-

tion assumes a recursive ordering, i.e. it assumes that the first variable in the ordering is

only contemporaneously influenced by its own innovations, while the second variable is

only contemporaneously influenced by innovations of itself and the first variable, and so

on (Diebold and Yilmaz, 2012; Gaspar, 2012). Therefore, in later applications Diebold

and Yilmaz (2012) propose an alternative version of the above method based on a gen-

eralised variance decomposition (GVD) framework that was introduced by Koop et al.

(1996) and Pesaran and Shin (1998). Instead of orthogonalising shocks, GVDs allow for

correlated shocks but accounts for their correlations based on an assumed multivariate

normal distribution of the shocks. Like Cholesky-based decomposition, GVD is largely

data based. However, GVD has the advantage that the decomposition results are in-

sensitive to the ordering of variables. Our spillover analysis with regard to variance

decompositions therefore relies on the approach proposed in Diebold and Yilmaz (2012),

rather than Diebold and Yilmaz (2009).

Using the 2012 version of the DY framework, H-step-ahead error variance decompositions

are calculated as

θgij(H) =
σ−1jj

∑H−1
h=0 (s′iAhΣsj)

2∑H−1
h=0 (s′iAhΣA′hsi)

. (3.7)
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Hereby, θgij(H) denotes the ijth element of the variance decomposition matrix, where g

refers to the generalised variance decomposition method. Σ is the variance-covariance

matrix of the error vector εt; σjj is the jth element of Σ; and si, sj are selection vectors,

i.e., the ith element of si and jth element of sj are one, and all other elements are zero.

Each element of the variance decomposition matrix is then normalised,

θ̃gij(H) =
θgij(H)∑N
j=1 θ

g
ij(H)

, (3.8)

such that the sum of each row equals one (i.e.
∑N

j=1 θ̃
g
ij(H) = 1) and

∑N
i,j=1 θ̃

g
ij(H) = N .

The resulting Table 1 is then the so-called spillover table (Diebold and Yilmaz, 2009,

2012). The upper left N × N block provides the H-step-ahead forecast error variance

decomposition matrix. Based on the decomposition matrix, this table allows to examine

various spillover effects as will be explained in the following section.

Table 1: Spillover table based on forecast error variance decomposition.

From

x1 x2 · · · xN From others

x1 θ̃g11(H) θ̃g12(H) · · · θ̃g1N (H)
∑N

j=1 θ̃
g
1j(H), j 6= 1

x2 θ̃g21(H) θ̃g22(H) · · · θ̃g2N (H)
∑N

j=1 θ̃
g
2j(H), j 6= 2

To
...

...
. . .

...
...

...

xN θ̃gN1(H) θ̃gN2(H) · · · θ̃gNN (H)
∑N

j=1 θ̃
g
Nj(H), j 6= N

To others

∑N
i=1 θ̃

g
i1(H),

i 6= 1

∑N
i=1 θ̃

g
i2(H),

i 6= 2
· · ·

∑N
i=1 θ̃

g
iN (H),

i 6= N

Aggregated Spillover Index

= 1
N

∑N
i=1 θ̃

g
ij(H),

i 6= j

Notes: x1, ..., xN are the considered variables from N markets. θ̃gij(H), i, j = 1, ..., N is
defined in Equations 3.7 and 3.8.

3.3. Spillover Measures

Pairwise Net Spillover

In the forecast error variance decomposition matrix in Table 1, the ijth entry is considered

to be the spillover of shocks transmitted by market j and received by market i (i.e.,

Sg
i←j(H) = θ̃gij(H), based on equations 3.7 and 3.8). Thus, the off-diagonal elements of

this matrix (θ̃gij(H), i 6= j) measure pairwise directional spillovers. Hence the pairwise
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net directional spillover from market j to market i can be defined as:

Sg
ij(H) = Sg

i←j(H)− Sg
j←i(H) = θ̃gij(H)− θ̃gji(H) (3.9)

Gross Directional Spillovers

The off-diagonal row and column sums measure gross directional spillovers for each mar-

ket. In particular, gross spillovers received by market i (i.e. the ‘from others’ column) is

measured as the ith off-diagonal row sum:

Sg
i←•(H) =

N∑
j=1,j 6=i

θ̃gij(H). (3.10)

Similarly, gross spillovers transmitted by market j (i.e. the ‘to others’ row) is measured

as the jth off-diagonal column sum:

Sg
•←j(H) =

N∑
i=1,i 6=j

θ̃gij(H). (3.11)

Total Net Directional Spillover

Next, by calculating the difference between gross spillovers transmitted from and received

by a certain market i, the net spillover from market i to all other markets is obtained:

Sg
i (H) = Sg

•←i(H)− Sg
i←•(H). (3.12)

Aggregated Spillover Index

Finally, an aggregated spillover index can be calculated where the sum of all off-diagonal

elements is divided by the sum of all elements:

Sg(H) =

∑N
i,j=1;i 6=j θ̃

g
ij(H)∑N

i,j=1 θ̃
g
ij(H)

∗ 100 =

∑N
i,j=1;i 6=j θ̃

g
ij(H)

N
∗ 100. (3.13)

This index measures the overall degree of spillover effects in the whole system.

In practice, different parties might have particular interest in different measures. For

example, market participants who aim to hedge risk or earn revenue might be more in-

terested in spillovers between particular regions. In contrast, regulators could be more
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concerned with monitoring the overall spillover magnitude, or identifying the most sys-

temically influential market.

4. The Data

The data used in this study are half-hourly spot prices for the five regional electricity

markets (NSW, QLD, SA, TAS and VIC) in the Australian NEM from 1 January 2010

to 31 December 20153.

We apply two realized measures to estimate daily volatilities of electricity spot prices.

The first measure is the standard deviation of spot prices4,5 over the 48 half-hour intervals

during each day, as represented in Equation 4.1:

SDt =

√
ΣN

i=1(pit − p̄t)2
N

, (4.1)

where SDt measures the market volatility on day t, pit is the half-hourly spot price for

the ith half-hourly interval on day t, p̄t is the average half-hourly price on day t, and N

equals 48.

The second measure is the daily range of prices that takes into account the highest and

lowest price on a day:

Ranget = Ht − Lt, (4.2)

where Ht and Lt are the highest and lowest prices on day t, respectively6.

3 Half-hourly electricity spot prices are obtained from the Australian Energy Market Operator (AEMO)
website, https://www.aemo.com.au/.

4 We choose to use the standard deviation of prices as the volatility estimator rather than that of returns,
because price-based functions have the advantage that they contain information on the present price
level, and our analysis is also concerned with volatility during extreme price periods than volatility
during low or normal price periods. For example, consider a low-price scenario where electricity price
jumps from $5 to $10 and an extreme-price scenario where the price jumps from $500 to $1000, both
scenarios give a return of 100%; however, for electricity market participants, only the second scenario is
of concern. In comparison, price-based measures are much less sensitive to such scenarios. In addition,
as pointed out in Chan et al. (2008) and Ullrich (2012), ‘returns’ in the traditional sense do not exist in
electricity markets because electricity is non-storable and thus cannot be used as a store of value.

5 Note that we also conducted the analysis by estimating volatility as the standard deviation of half-hourly
price changes (i.e. pt− pt−1). Obtained results for this definition were very similar and are not reported
here, but are available upon request to the authors.

6 This daily price range has been used as volatility estimator in, for example, Frömmel et al. (2014);
Reboredo (2014); Auer (2016); Hansen and Huang (2016). It differs from the original range-based
estimator developed by Parkinson (1980) by not being scaled with the adjustment factor 4 ln 2. We omit
the adjustment factor because this factor depends on the underlying data generating process (Patton,
2011; Frömmel et al., 2014), while the derivation of an appropriate adjustment factor for electricity
market is beyond the scope of this study.
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With either of these two measure, the calculated volatility for each day is based on intra-

day prices for this day and we obtain a time series of daily price volatilities for each

regional market (2,191 observations). The empirical results based on the two measures

are very similar, suggesting that our spillover analysis is relatively robust to the choice

of the volatility estimator7.

Table 2 presents descriptive statistics for electricity price volatilities (SD) and log-

volatility (log(SD)) for each regional market in the Australian NEM. Note that since

the calculated volatility time series are positively skewed and strongly leptokurtic, fol-

lowing Diebold and Yilmaz (2014) we take the natural logarithm of these series to obtain

approximate normality. The applied transformation is helpful not only because of the

superior statistical properties of the normal distribution, but also because normality is

invoked by generalised variance decompositions (Koop et al., 1996; Pesaran and Shin,

1998) that are applied in the following spillover analysis. After the natural logarithm

transformation, the skewness and kurtosis of volatility are largely reduced. In addition,

the augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979) statistics suggest that

for all volatility series a unit root can be rejected at the 1% significance level, i.e. each

series is stationary. In the following, we will concentrate on log-volatility data.

According to Table 2, among the five markets in the NEM, price volatility in SA has the

highest mean and median values, indicating that the electricity market in SA is the most

volatile. The relatively high penetration of wind generation in SA can be considered as

one of the factor contributing to this high volatility, because of the intermittent nature of

wind energy. Other market conditions in SA also contribute to volatile prices, including

a relatively high concentration of generator ownership, strategic rebidding by generators

aiming for more favourable electricity prices, and the tight demand-supply balance due to

limited import capacity and recent withdrawal of thermal power plant (Australian Energy

Regulator, 2015). QLD is also a relatively volatile market, due to the high concentration

level in its electricity generation sector as well as rebidding by generators in recent years

(Australian Energy Regulator, 2015).

Figure 1 depicts daily logarithmic price volatilities estimated using the two realized mea-

7 Since the results based on the two measures are very similar, most results reported in the following main
text are generated with the first measure (i.e. SD), while the results based on the second measure (i.e.
Range) can be found in Appendix B or are available upon request to the authors.
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Table 2: Descriptive statistics for electricity price volatility for NSW, QLD, SA, TAS
and VIC from 1 January 2010 to 31 December 2015 (2191 daily observations). Price
volatility is estimated as the standard deviation of 48 half-hourly intraday prices on each
day. Statistics for both raw and logarithmic volatility are reported.

Mean Median Max. Min. Std.dev Skew. Excess Kurt. ADF Stat.

NSW
raw 16.3617 4.4698 2959.2 0.3791 121.0935 17.0961 346.1559 -25.1293
log. 1.6156 1.4973 7.9927 -0.9699 0.8858 2.2386 10.5955 -9.7339

QLD
raw 35.6339 6.1428 3677.8 1.2287 168.3130 13.3573 231.7753 -21.4077
log. 2.1475 1.8153 8.2101 0.2060 1.1755 1.9615 4.3352 -10.2821

SA
raw 39.9123 7.9997 4561.0 1.4131 184.6812 14.6202 282.4003 -28.2617
log. 2.3492 2.0794 8.4253 0.3458 1.1440 1.9548 4.4093 -12.1903

TAS
raw 17.5981 5.7353 2712.3 0.0040 95.6022 18.2822 422.1824 -30.1501
log. 1.8260 1.7466 7.9055 -5.5223 1.0108 0.9720 7.7300 -12.0041

VIC
raw 18.2451 5.8989 3045.6 0.6644 124.0542 17.2056 344.8485 -29.4006
log. 1.8818 1.7748 8.0214 -0.4088 0.8367 2.3015 11.1680 -10.8024

Notes: The hypotheses of the augmented Dickey-Fuller (ADF) test is H0: a unit root (non-stationary);
against H1: no unit root (stationary). An intercept is included in the ADF regression; and the lag
length is determined by Bayesian information criterion (BIC) (Schwarz et al., 1978). The null
hypothesis is rejected for a given significance level when the test statistic is less than the corresponding
critical value (-2.57 (10%), -2.86 (5%) and -3.44 (1%)).

sures (SD and Range) for the NSW, SA and VIC electricity markets8. In general, the

time series plots based on the two volatility estimators show very similar patterns. For

each market, especially SA, there are frequent peaks in the plot, suggesting the existence

of regular price spikes in the considered markets. Meanwhile, some degree of co-movement

between the volatility series for each market can be observed, indicating some extent of

spillover effects. Furthermore, volatilities appear to be persistent or serially correlated,

which justifies the use of autoregressive models.

Table 3 reports pairwise correlations (Pearson correlation coefficients) between log-volatilities

(log(SD)) over the sample period. It provides an initial idea on the connectedness among

different regional markets in the NEM. Overall, all pairwise correlations are positive; and

higher correlations are typically found between regions where there are direct intercon-

nections (e.g. NSW and VIC, VIC and SA, and VIC and TAS). In contrast, the lowest

correlation coefficients can be observed between regions that are geographically distant

and not physically connected (e.g. QLD and TAS, and QLD and SA). Interestingly, al-

though there are two interconnectors in place between QLD and NSW, the correlation

8 We chose to show the plots for these three regional markets because NSW and VIC are the two markets
with the highest electricity consumption and high interconnection levels with other regions, while SA is
the most volatile market in the NEM.
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(a) Realized standard deviation of prices (b) Intraday price range

Figure 1: Logarithmic volatility (daily) of electricity prices for NSW, SA and VIC from 1
January 2010 to 31 December 2015. Price volatility is estimated as the standard deviation
(left panel) and the intraday range (right panel) of half-hourly prices, respectively.
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of volatility between these two markets is lower in comparison to the ther markets with

direct intercnnection (NSW,VIC), (SA,VIC) and (TAS,VIC).

Since the interaction and transmission of shocks between markets in reality might be far

more complex than what can be captured by a simple correlation analysis (for example,

these effects have directions and may vary over time), in the following, we will further

investigate volatility transmission by analysing specific patterns of spillover effects across

the NEM.

Table 3: Unconditional pairwise correlation based on log-volatility (log(SD)) from 1
January 2010 to 31 December 2015.

NSW QLD SA TAS VIC
NSW 1.0000
QLD 0.3957 1.0000
SA 0.3979 0.1376 1.0000
TAS 0.3196 0.1616 0.2954 1.0000
VIC 0.6376 0.2359 0.6357 0.4335 1.0000

5. Empirical Results

This section provides empirical findings on the constructed spillover indices as well as a

thorough analysis of volatility spillovers between individual markets and through time.

We also conduct several robustness checks in order to examine the sensitivity of the

obtained results to alternative model specifications.

5.1. Model Specification

As the first step of our spillover analysis, the specification of a VAR model is required.

Overall, there are three main parameters to be decided: the optimal lag length (p) of the

VAR model, the forecasting horizon (H) in the VAR forecast error variance decomposi-

tion, as well as the choice of window length (w) for the dynamic spillover analysis.

A VAR model with one lags (p = 1) is selected based on Bayesian (Schwarz) information

criterion (BIC) (Schwarz et al., 1978). However, alternative choices of p will also be

assessed in the robustness check section.

The choice of the forecasting horizon H in variance decompositions allows us to decide

whether ‘long-run’ or ‘short-run’ spillover effects are to be assessed. As H lengthens, the

conditioning information in the short run is becoming less valuable; and an unconditional
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variance decomposition will be obtained if H → ∞ (Diebold and Yilmaz, 2014). In

this study we choose H = 1 because we are more interested in short-term volatility

transmissions in highly volatile electricity markets9, while a longer forecasting horizon is

used for robustness assessment.

In order to track time variations of volatility spillover effects, a rolling-window approach

is employed. In particular, a one sided estimation window is used to sweep through the

entire sample. In each window, than a VAR model is estimated and spillover measures

are calculated so that time series data can be generated and indexed by the end date of

each window. The choice of optimal window length w reflects a trade-off between the

reliability of the estimated results and the amount of information obtained. On the one

hand, a longer sample provides more robust estimates. On the other hand, by using more

windows with shorter samples, more information could be gained (i.e. information on the

build-up of spillovers across time) (Alter and Beyer, 2014). We choose a window length

w = 365 days (one calendar year) in the main analysis, but also use a shorter window

(180 days) and a longer window (540 days) to examine the robustness of the results.

5.2. Static Spillover Analysis

Results for a conducted static spillover analysis for price volatility (log(SD)) in the Aus-

tralian NEM is are reported in Table 4. Note that these results are based on a VAR

forecast error variance decomposition for the entire sample.

The aggregated index (32.09%) shown in the lower right corner of Table 4 measures the

degree of volatility spillover effects at a system-wide level. THe interpretation of this

result suggests that 32.09% of the one-day-ahead forecast error variance for the entire

market can be attributed to spillover effects. At the same time, a significantly higher

proportion (100% - 32.09% = 67.91%) is due to shocks within each of the regional markets.

It indicates that it is typically local factors in each region that dominate the volatility

in this market. In comparison to results reported in the literature for equity markets,

9 As explained in Diebold and Yilmaz (2014), the selection of H usually relates to specific considerations
in certain contexts. For example, for equity markets, H = 10 which corresponds to the 10-day Value-at-
Risk required by the Basel Capital Accord is commonly used in a risk management context. Similarly,
H might be related to the rebalancing period in a portfolio management context. In electricity markets,
spillover effects estimated with H = 1 are of greater interest because the level of electricity price and
volatility can change significantly within a very short period of time. In addition, in many electricity
markets around the world generators typically submit bids one day ahead.
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Table 4: Spillovers effects based on daily log-volatility (log(SD)) for the entire sample
period from 1 January 2010 to 31 December 2015.

From
NSW QLD SA TAS VIC From Others (Sg

i←•)

To

NSW 59.79 8.02 7.58 3.46 21.15 40.21
QLD 12.10 81.79 0.97 1.17 3.97 18.21

SA 6.44 0.64 65.96 3.70 23.26 34.04
TAS 4.53 1.17 5.24 76.90 12.15 23.10
VIC 15.38 2.11 20.20 7.18 55.13 44.87

To Others (Sg
•←j) 38.45 11.94 34.00 15.52 60.53 160.43

Net (Sg
•←j − S

g
i←•, i = j) -1.77 -6.27 -0.05 -7.58 15.66

Spillover Index (Sg) = 160.43
500.00 = 32.09%

Notes: This spillover table is generated based on one-day-ahead generalised forecast error variance
decomposition of a VAR(1) model. The ijth entry estimates the fraction of one-day ahead error
variance in forecasting market i due to exogenous shocks to market j (i.e. the spillover from market j
to market i: Sg

ij).

the calculated volatility spillover index for the NEM is lower than the one reported in

Diebold and Yilmaz (2009) for nineteen global stock markets (40%) and in Zhang and

Wang (2014) for three oil markets (China, the US and UK, 43.3%). It is also significantly

lower than the spillover index reported for thirteen major US financial institutions’ stocks

(78.3%) (Diebold and Yilmaz, 2014).

In terms of pairwise volatility spillover effects, the highest level of spillover can be observed

from VIC to SA (Sg
SA←V IC = 23.26%). The spillover from SA to VIC is also relatively

high (Sg
V IC←SA = 20.20%). However, the difference between these two indicates that net

spillover is from VIC to SA, rather than from SA to VIC. High spillover effects can also

be observed between NSW and VIC (Sg
NSW←V IC = 21.15%, Sg

V IC←NSW = 15.38%). In

contrast, much lower pairwise volatility spillovers are observed between QLD and TAS

(Sg
TAS←QLD = Sg

QLD←TAS = 1.17%), and between QLD and SA (Sg
SA←QLD = 0.64%,

Sg
QLD←SA = 0.97%).

Overall, as expected greater spillover effects are observed between adjoining markets that

are physically connected. In particular, spillovers between the pairs SA–VIC (two inter-

connectors) and NSW–VIC (one interconnector) are of high magnitude. Relatively high

spillovers can also be observed between the pairs NSW–QLD (two interconnectors) and

TAS–VIC (one interconnector). In contrast, spillovers between geographically distant

and unconnected markets are significantly lower (e.g. QLD–TAS and QLD–SA). This

indicates the important role of interconnectors in facilitating price convergence and in-
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tegration between regional markets and confirms the findings in Higgs (2009), Ignatieva

and Trück (2016) and Smith (2015).

With regards to gross directional spillovers shown in the ‘To Others’ row and the ‘From

Others’ column of Table 4, the major transmitters are VIC (Sg
•←V IC = 60.53%), NSW

(Sg
•←NSW = 38.45%) and SA (Sg

•←SA=34.00%). These three regions are also the major

gross spillover receivers in the NEM (Sg
V IC←• = 44.87%, Sg

NSW←• = 40.21%, Sg
SA←•=34.04%).

Although VIC is not the most volatile market in the NEM, it is the most significant

volatility spillover transmitter and receiver according to Table 4, possibly due to its large

electricity consumption, its high degree of interconnection with other regions, and its

relatively high share of generation and export of electricity to other markets. VIC is di-

rectly connected to three other regional markets with four interconnectors in place. The

aggregated interconnector capacity for interregional electricity transmission to and from

VIC is the highest among all regions in the NEM (Australian Energy Market Operator,

2015). Therefore, it is reasonable to expect VIC to have the highest connectedness and

spillover effects with other regional markets. The high spillovers to and from NSW could

be explained in a similar way. As the largest regional market in the NEM, there are three

interconnectors with relatively high capacity between NSW and two other regions. For

SA, the high gross spillover effects are not surprising because of the extremely high price

volatility in this region, which is largely due to high reliance on wind generation and the

intermittent nature of wind power.

In contrast, relatively low gross spillover effects are observed for QLD and TAS, indi-

cating lower connectedness between either of these two regions and others. Particularly,

spillovers from and to QLD are both the lowest (Sg
•←QLD=11.94%, Sg

QLD←•=18.21%),

while its own shocks (Sg
QLD←QLD) explain 81.79% of the forecast error variance. A possi-

ble reason for this may be the market structure in QLD: the electricity generation sector

in QLD is more concentrated than in any other region in the NEM (Australian Energy

Regulator, 2015) such that the high degree of local generator market power makes QLD

relatively isolated from other markets.

Regarding the ‘Net’ row, for each market, positive net spillovers for a market indicate

that spillover effects transmitted by that market are higher than spillover effects received

by it, while negative net spillovers for a market suggest that spillover effects transmitted

by that market are lower than spillover effects received. Only VIC (15.06%) is a net
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volatility spillover transmitter, while NSW (-1.77%), QLD (-6.27%), SA (-0.05%) and

TAS (-7.58%) all receive net spillovers from others. The highest net spillover for VIC

indicates that this market is the most influential in the NEM. In contrast, net spillovers

transmitted by TAS are the lowest, indicating that TAS is the least influential market.

This is not surprising because TAS is the smallest market in the NEM and relatively

distant with other regions, connected only to VIC through a submarine cable.

5.3. Dynamic Spillover Analysis

The analysis based on the full-sample in the previous section has provided a summary

of the average pattern of spillover effects in the Australian NEM. This analysis is static

because it implies an assumption that spillover effects remain constant across the sample.

However, during our sample period from January 2010 to December 2015, a number of

events occurred in the Australian NEM that could be expected to impact on spillovers

across the markets. These events include long-term evolutions, such as changes in mar-

ket policies and structures, and also short-term extraordinary events, such as extreme

weather, temporary generation outages and transmission failures. These changes or mar-

ket events are likely to cause variations in spillover effects over time. Therefore, it may be

inadequate to assume that spillovers are time-invariant. Thus, in the following sections,

a series of dynamic analyses are conducted.

5.3.1. Aggregated Spillover Analysis

Figure 2 plots the time-varying aggregated volatility spillover index based on the two

volatility measures with a 365-day rolling window. Since the results based on the two

measures are very similar, only log(SD)-based results (Figure 2(a)) are discussed. As

shown in the figure, the overall degree of volatility spillover effects in the NEM is not con-

stant but time-varying, which can largely deviate from the average (static) level (32.09%).

Initiated at 35% in the first window, the spillover index ranges from 25% and 45% across

the sample period. Two major patterns can be observed from those time variations,

which are described as follows.

First, some significant upward movements of the spillover index could be related to cer-

tain market events. In particular, the shaded areas in Figure 2 indicate periods when

extraordinary market events (Events A to K) are recorded in Australian Energy Regulator
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(2015). These events typically include extremely high demand, congestion of intercon-

nectors and generation outages. The spillover plots are found to indicate responses to

these market events. More precisely, the spillover index tends to jump during major

market events, reflecting a higher likelihood of joint price spikes and high price volatility

in different regions during significant market events. They typically drop once the rolling

sample window leaves the period of events behind, given the absence of other shocks.

Second, volatility spillovers in the NEM appear to be impacted significantly by the carbon

tax policy. The level of aggregated volatility spillover in the NEM was generally lower

during the carbon pricing period than during the periods before and after. In particular,

before the introduction of the carbon tax policy, the spillover index mostly stayed between

35% and 45%, except that the index experienced a significant drop from around 42.5%

to 26% before the establishment of carbon pricing in Australia (January 2012 to June

2012). When the carbon tax was in place, the spillover index generally fluctuated within a

lower band between 25% and 35%, except for a short period around the beginning of 2013

when the index was slightly higher. After the abolishment of the carbon tax, the spillover

index typically fluctuated around 35%, with a range between 32% and 38%. A possible

reason for this pattern is the non-even impact of the carbon tax on different regions,

which is also discussed in Apergis et al. (2016). For example, electricity prices in NSW,

QLD and VIC were more sensitive to the carbon tax due to their reliance on coal-based

generation, while prices in TAS were most insensitive due to its large share of hydropower.

These divergent reactions of regional prices might have lowered the connectedness and

convergence level between regions, and thus the overall volatility transmission in the NEM

during the carbon tax period.

5.3.2. Net Directional Spillover Analysis

We now investigate dynamic spillovers (log(SD)-based) and their directions for partic-

ular regional markets in the NEM. Panel (a) of Figure 3 plots time variations of total

net directional volatility spillovers contributed by each of the five regional markets in

the NEM, corresponding to the dynamic estimation of the ‘Net’ row of the spillover ta-

ble (Table 4)10. Panel (b) of Figure 3 provides the time-varying plots of pairwise net

10Gross spillovers (i.e. the ‘To Others’ row and the ‘From Others’ column of the spillover table) and net
spillovers are not substitutes (Diebold and Yilmaz, 2014), but should be considered as complements.
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(a) Aggregated spillover index based on log(SD)

(b) Aggregated spillover index based on log(Range)

Figure 2: Plots of aggregated volatility spillover index estimated based on one-day-ahead generalised
forecast error variance decomposition of a VAR(1) model with a 365-day rolling window. The underlying
data are log-volatilities (log(SD) in Panel (a) and log(Range) in Panel (b)). Shaded areas (A to K)
represent recorded events in the NEM according to Australian Energy Regulator (2015), which are
specified as follows:
A: record demand (NSW and SA); B: outages of the Basslink interconnector (VIC and TAS); C: high
demand (SA and VIC); D: congestion (QLD); E: temporary shutdown and tight supply conditions (SA);
F: high demand and rebidding (SA), high demand and network issue (NSW); G: high demand (SA and
VIC); H: rebidding (QLD); I: record demand (QLD); J: tight supply conditions and rebidding (SA); K:
network issues (NSW)
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volatility spillovers between each pair of regional markets. Figure 3 indicates that both

the degree and direction of spillover effects are not constant but clearly exhibit some

variation through time. Some major events in the NEM are still reflected by significant

upward or downward jumps in net directional spillover plots. Furthermore, directional

spillover plots allow us to observe the influence of a certain event on each particular

market. In the following, the dynamic pattern of total net spillovers for each market is

discussed together with pairwise net spillovers, since pairwise net spillovers can be viewed

as decompositions of total net directional spillovers.

Although NSW was identified as a net volatility spillover receiver in the static analysis,

dynamic plots of net spillovers in Figure 3(a) indicate that NSW was typically a net

transmitter across the sample period. In addition, this net position changed through

time what could not be captured by the static analysis. There was one episode (over

the year 2014) during which NSW received significant net volatility spillovers from other

markets. Particularly, Figure 3(b) shows that during the year 2014, net spillovers received

by NSW mainly came from SA and VIC. This episode could be relevant to the high

electricity demand in NSW, SA and VIC around the beginning of 2014 (Events F and G

in Figure 2). After the influence of these events disappears around the beginning of 2015,

NSW changed back to being a net spillover transmitter. During other periods, NSW

mainly received net volatility spillovers from VIC and transmitted net spillovers to QLD,

SA and TAS. This indicates that based on a pairwise comparison, NSW is typically more

influential than QLD, SA and TAS, but less influential than VIC.

QLD was a net volatility spillover receiver (Figure 3(a)) throughout the entire sample

period. Noticeably, the magnitude of net spillovers received by QLD was much higher

during 2011 (mainly between 10% and 20%) than during the rest of the studied period,

where it was around 5%. These net spillovers to QLD mainly came from NSW and

VIC (Figure 3(b)). Similarly, their magnitudes also was significantly reduced from the

beginning of 2012 onwards. Furthermore, the same pattern was also observed in gross

spillovers transmitted and received by QLD11, indicating a decreased level of interactions

between QLD and other regions in the NEM from 2012 onwards. A possible reason for

However, in this study we focus more on net spillovers because they are informative on the relative
influencing power of different markets. For completeness, plots for gross spillovers are provided in
Appendix A.

11See Appendix A.
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(a) Total net volatility spillovers based on log(SD)

Figure 3: Total and pairwise net volatility spillovers, estimated based on log(SD), one-day-ahead
generalised forecast error variance decompositions of VAR(1) with a 365-day rolling window. The two
dashed lines on each plot refer to the beginning and end dates of the carbon tax policy. Shaded areas
represent recorded events in the NEM according to Australian Energy Regulator (2015), see also Figure
2.
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(b) Pairwise net volatility spillovers based on log(SD)

Figure 3: Total and pairwise net volatility spillovers (continued)
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this could be the integration of two local generators in QLD in 2011 (Australian Energy

Regulator, 2015), which has increased the degree of QLD electricity market concentration.

SA was typically a net volatility spillover receiver over the sample period, except for 2014,

when the market transmitted net spillovers to others (Figure 3(a)). Similar to the case

of NSW, this reversion of net spillover position could be related to the high demand in

NSW, SA and VIC around the beginning of 2014. According to Figure 3(b), over the year

2014, the positive net volatility spillover transmitted by SA mainly impacted on NSW

and TAS. Meanwhile, VIC also received low but positive net spillovers from SA. During

other periods, SA mainly received net spillover effects transmitted by NSW and VIC.

Similar to QLD, TAS was also a net volatility spillover receiver (Figure 3(a)) throughout

the sample period, receiving spillover effects mainly from VIC but also NSW (Figure

3(b)). While net spillovers received by TAS were generally below 10%, its degree increased

from the beginning of 2014 onwards and fluctuated between 10% and 20% until September

2015, mainly due to the increased spillover effects from VIC and SA to TAS12.

Throughout the sample period VIC is always classified as a net volatility spillover trans-

mitter, while net spillovers transmitted from VIC were generally higher than those for

other markets (Figure 3(a)). For the pairwise analysis (Figure 3(b)), VIC typically had

a positive net spillover position, indicating a higher influence in comparison to any of the

other four markets.

Overall, the provided net directional spillover plots suggest that VIC is the most influen-

tial market with regards to spillover effects. NSW and SA also exert significant influence

on other markets during certain subperiods with positive net spillover positions. In con-

trast, QLD and TAS appear to have the lowest impact on spillovers and always receive

a net transmission of volatility shocks from other markets. Additionally, two patterns

are worth noticing. First, although most findings based on Table 4 are supported by

the time-varying net spillover plots, there are clear differences between the static and

dynamic analysis (e.g. for NSW) since the dynamic analysis is based on a rolling window

with smaller sample size. Second, certain extraordinary events can reverse the direction

12Note that directional spillover effects regarding TAS appeared to be influenced by the carbon tax sig-
nificantly. During the carbon tax period from July 2012 to June 2014, both gross spillovers transmitted
and received by TAS were lower than those estimated in other periods, see Appendix A. This influence
of the carbon tax is not obvious in net spillover plots due to the calculation of the difference between
spillovers from and to TAS.
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of net spillover effects, which could be observed, for example, for NSW and SA at the

beginning of 2014.

5.4. Robustness Assessment

Finally, we investigate the robustness of our results, including the reliability of our findings

with regards to the impacts of the carbon tax and different choices of parameters for the

applied model.

5.4.1. Carbon Tax Period

In this section, the static spillover analysis is conducted separately for three subperiods:

these subperiods include the period before the implementation of the carbon pricing

mechanism (January 2010 to June 2012), the period when the carbon tax was effective

(July 2012 to June 2014), and the post-carbon tax period (July 2014 to December 2015).

Results for each of these subperiods are presented in Table 5.

The aggregated volatility spillover indices for the three subperiods, i.e. before, during

and after the carbon tax are 34.18%, 32.27% and 34.07%, respectively. This confirms our

earlier finding that the aggregated volatility spillover index was slightly lower during the

carbon tax period, in comparison to pre- and post-tax periods. In each subperiod, higher

spillover effects were still observed between adjoining and interconnected markets, while

significantly lower spillovers were found between distant and unconnected markets.

Regarding gross directional spillovers, in each subperiod, NSW, SA and VIC were still

major gross volatility spillover transmitters and receivers. In addition, it is observed in

Table 5 that for QLD, gross spillovers from and to others in the first subperiod (Panel

(a)) were significantly higher than those in the following two subperiods (Panel (b) and

(c)). This confirms our finding that the overall connectedness between QLD and other

markets in the NEM has been reduced since 2012.

In net terms, Table 5 confirms that the net direction of spillover effects can change in

different subperiods (e.g. NSW and SA). Additionally, it is noticeable that on average,

net spillovers received by TAS during the carbon tax period were around twice the degree

of those prio and after the carbon pricing mechanism was in place. This indicates that

increased electricity imports of other markets from TAS during the carbon tax period

(as discussed in Section 2) resulted in a higher net influence exerted by other markets on

TAS.
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Table 5: Spillovers based on daily log-volatility (log(SD)) before, during and after the
carbon tax period.

From
NSW QLD SA TAS VIC From Others

Panel (a) : Volatility spillovers (in percentage) before the carbon tax period (01/2010 - 06/2012)

To

NSW 59.92 14.47 6.95 2.55 16.11 40.08
QLD 17.74 71.09 1.87 1.64 7.66 28.91

SA 4.53 1.42 64.01 3.93 26.12 35.99
TAS 3.05 1.71 4.23 79.24 11.76 20.76
VIC 9.62 4.38 23.56 7.60 54.84 45.16

To Others 34.94 21.98 36.62 15.71 61.65 170.90
Net Spillovers -5.14 -6.93 0.63 -5.05 16.49

Spillover Index = 170.90
500.00 = 34.18%

Panel (b) : Volatility spillovers (in percentage) during the carbon tax period (07/2012 - 06/2014)

To

NSW 58.07 4.55 11.04 2.77 23.57 41.93
QLD 8.32 89.01 0.09 0.87 1.71 10.99

SA 9.96 0.08 63.19 2.53 24.24 36.81
TAS 4.77 1.30 4.88 76.46 12.60 23.54
VIC 19.08 0.92 21.88 6.19 51.93 48.07

To Others 42.12 6.85 37.88 12.37 62.12 161.34
Net Spillovers 0.18 -4.15 1.08 -11.17 14.06

Spillover Index = 161.34
500.00 = 32.27%

Panel (c) : Volatility spillovers (in percentage) after the carbon tax period (07/2014 - 12/2015)

To

NSW 53.15 7.25 5.84 6.81 26.95 46.85
QLD 11.99 82.39 0.31 1.11 4.19 17.61

SA 6.17 0.12 68.94 5.85 18.92 31.06
TAS 7.05 0.46 7.97 70.42 14.10 29.58
VIC 20.17 1.88 13.95 9.27 54.74 45.26

To Others 45.39 9.71 28.07 23.04 64.16 170.37
Net Spillovers -1.46 -7.90 -3.00 -6.54 18.90

Spillover Index = 170.37
500.00 = 34.07%

Notes: The spillover table for each subperiod is generated based on one-day-ahead generalised forecast
error variance decomposition of VAR(1). The ijth entry estimates the fraction of one-day ahead error
variance in forecasting market i due to exogenous shocks to market j (i.e. the spillover from market j
to market i: Sg

ij).
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In summary, the separate assessment of volatility spillover effects in the NEM for periods

before, during and after the carbon tax confirms empirical findings of this study presented

in Sections 5.2 and 5.3. Our results also confirm the ability of dynamic spillover plots to

continuously track the changes in spillover levels through time.

5.4.2. Alternative Model Specification

Finally, we assess the robustness of our findings to different model specifications, including

alternative choices of the identification method of shocks in the forecast error variance

decomposition, the lag length p for the VAR model, the forecasting horizon H, and the

rolling window length w.

Choice of Identification Method

We assess the robustness of our results to the choice of the shock identification method,

by comparing the earlier version of the DY method (2009) with the version (Diebold and

Yilmaz, 2012) that is employed in the main analysis of this study. The 2009 version of

the DY method uses a Cholesky decomposition to identify shocks, while the 2012 version

uses a generalised variance decomposition (GVD).

Figure 4 plots the aggregated volatility spillover index generated by the two versions (i.e.

2009 and 2012) of the DY method. Recall that the Cholesky decomposition is sensitive to

the variable ordering; therefore, for the 2009 version, we employ a ‘fast spillover method’

developed by Klößner and Wagner (2014) to compute the results for all possible orderings

in each window, and show the intervals between the minimum and maximum values of

the spillover index in the plots.

Overall, the dynamics of the spillover indices generated by the two versions of the DY

method are quite similar. However, the aggregated spillover index obtained from the DY

method (2012) is at a higher level than that obtained from the DY method (2009). This

is because the generalised forecast error variance decomposition treats each variable as

the first variable in the Cholesky decomposition and thus tends to yield higher estimates

for spillover effects (Diebold and Yilmaz, 2014; Klößner and Wagner, 2014).

Choice of VAR Lag Length p

In addition to p = 1 that is used in the VAR estimation in the main analysis of this study,

we examine alternative lag lengths p = 2, p = 7 and p = 14, i.e. referring to two days,

one week and two weeks. The results are provided in Figure 5. We find that the overall
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Figure 4: Robustness of the results to the choice of the identification method, based
on log(SD). The solid line refers to the spillover indices calculated from a generalised
variance decomposition (Diebold and Yilmaz, 2012). The grey band corresponds to a
interval between the minimum and maximum values of the spillover index calculated from
a Cholesky decomposition (Diebold and Yilmaz, 2009) based on all possible orderings.

qualitative patterns of the spillover plots are similar for different VAR lag lengths.

Figure 5: Robustness to the choice of VAR lag length p, based on log(SD).

Choice of Forecasting Horizon H

In addition to a one-day horizon in the forecast error variance decomposition, we consider

a seven-day horizon. According to Figure 6, spillover patterns are not particularly sensi-

tive to the choice of the forecasting horizon H, despite the fact that the identified spillover

effects are slightly higher when H is larger. Similar patterns are found in, for example,

Diebold and Yilmaz (2009, 2014) and Maghyereh et al. (2015). Generally, more spillover

effects are expected to be observed when the forecasting horizon is higher. The reason is
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that shocks in one market could spill over to others with a short lag or only with a long

lag. With a short forecasting horizon, only short-term spillover effects are considered. As

the forecasting horizon lengthens, also spillover effects which might only happen in the

longer term are included. Therefore, as indicated by Diebold and Yilmaz (2014), there is

no reason why the spillover effects should be ‘robust’ to different forecasting horizons.

Figure 6: Robustness to the choice of forecasting horizon H, based on log(SD).

Choice of Window Length w

In addition to w = 365 days, we consider a shorter window length (180 days) and a

longer window length (540 days) for the rolling-sample analysis. The results are plotted

in Figure 7. As expected, the identified spillover effects exhibit higher variation for a

shorter window length and more stable for a longer rolling window choice. Overall, for

the window lengths w = 180, 365 and 540 days, the qualitative features of spillover plots

are relatively similar. However, it should be noted that due to a different window length

(backward-looking), different time intervals may be classified as periods with high (or

low) spillover effects. Similar results are found in Diebold and Yilmaz (2014). Thus, the

applied window length for model estimation has to be considered as an important factor

when interpreting the results.

6. Conclusions

This study provides a detailed examination of volatility spillover effects for five regional

markets in the Australian NEM, based on a sample period from 1 January 2010 to 31

December 2015. In particular, we empirically assess the specific patterns of volatility
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Figure 7: Robustness to the choice of window length w, based on log(SD).

spillover effects, including their degree, direction between regions, time variation, and

the impacts of changing market conditions on these effects, applying spillover indices

that were originally proposed by Diebold and Yilmaz (2009, 2012). To the best of our

knowledge, this is the first study to apply this relatively new econometric framework to

interconnected spot electricity markets.

We find that for the entire sample period, the degree of a system-wide aggregated volatil-

ity spillover index for the NEM is 32.09%. Interestingly, despite several existing inter-

connectors between the regional markets, the overall level of volatility spillover across

the electricity spot markets seems to be lower than results typically reported for equity

and other financial markets. Our interpretation of these results is that in comparison to

other financial markets, for electricity spot markets a significantly higher proportion of

volatility is due to market-specific factors and shocks within each region. Thus, volatility

spillover effects across markets seem to play an overall important role, regional market

volatility is typically dominated by local effects. We also find that the degree of volatility

spillovers is time-varying. During the carbon tax period from July 2012 - June 2014,

spillovers are typically lower, possibly due to a different impact of the tax on regions

with a higher share of fossil fuels (NSW, QLD and VIC) and those with a higher share

of renewables (SA and TAS).

Regarding the direction of volatility spillovers, we find that VIC, NSW and SA can

be classified as major volatility spillover transmitters and receivers, suggesting a higher

importance as well as a higher level of connectedness with other regions in the NEM for

these markets. In contrast, much lower spillover effects from and to QLD and TAS can
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be observed for these more isolated markets.

Interestingly, VIC is the only net spillover transmitter, indicating that VIC exerts the

highest relative influence on other markets. This is in line with VIC’s high share of

electricity generation from fossil fuels resulting in typically lower price levels and its high

share of electricity exports to other markets such as NSW and SA. However, we find that

the direction of spillover effects across different regions is time-varying: NSW and SA

exhibit both periods where the market can be classified as net spillover transmitter or

net spillover receivers. On the other hand, VIC is a permanent net spillover transmitter,

while QLD and TAS are net receivers throughout the entire sample period.

We also find that the patterns of spillover effects could be related to specific market

events and market structures. In particular, some periods of increased spillover effects

correspond to significant market events, such as extremely high demand, congestion of

transmission lines, and generation outages. In addition to the magnitude, certain extraor-

dinary market events also change the direction of spillovers between different regions.

Meanwhile, factors such as the generation mix, electricity consumption, market policy

and interregional electricity trade also exert influence on spillover effects. Furthermore,

interconnectors are found to play an important role in facilitating higher connectedness

and integration level between regional markets through greater spillover effects.

Finally, our results are robust when separate assessments are conducted for sub-periods

with regard to the introduction and repeal of the Australian carbon tax policy. Our

results are also robust to the choice of model specification such as the shock identification

method, the lag length of the applied VAR model, the predictive horizon for the forecast

error variance decomposition, and with some limitations also to the length of the rolling-

window.

Overall, our results suggest that the framework by Diebold and Yilmaz (2009, 2012) is

well suited to capture spillover dynamics across a system of wholesale electricity spot

markets. Our results provide important insights for market participants, especially for

those who simultaneously operate in different regional markets in the NEM. In particular

we provide an analysis on the transfer of risks between the considered highly volatile

markets. Compared to the previous literature on Australian electricity markets, using

more recent sample period also allows us to consider the influence of the carbon tax period

on volatility spillover effects in the NEM. Our analysis therefore also provides regulators
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with information on how climate change policies inpact on volatility transmission and

the overall stability of the NEM. In addition, the conducted spillover analysis will enable

regulators to examine the impacts of current market structure on volatility transmissions

across regions, which is of significance for making investment decisions on, for example,

inclusion of renewables and, in particular investment into new generation plants and

interconnectors.

Finally, there are some directions for future research. First, a further exploration on the

influence of using different volatility estimators could be of interest. Estimated spillover

effects based on more alternative volatility measures could be compared to current re-

sults. A comparison between the spillover analyses using various volatility measures (e.g.

volatilities extracted from a GARCH or alternative model) could be of interest. Second,

in this study we use generate a daily time series of volatility calculated based on half-

hourly prices. Given that electricity spot prices in the NEM are originally determined

and recorded every five minutes, it is possible that the current choice of data frequency

may miss some relevant information within shorter time horizons. Thus, another possible

extension could be to look at spillover effects based on high-frequency data. Furthermore,

additional factors could be considered in the VAR model, such as variations in electricity

demand, weather and congestion of interconnectors or in other transmission lines.
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Appendix A. Gross Directional Spillovers

Figure A1: Gross volatility spillovers transmitted from each market, estimated based on log(SD)
data, one-day-ahead generalised forecast error variance decompositions of VAR(1) with a 365-day rolling
window. The two dashed lines on each plot refer to the beginning and end dates of the carbon tax policy.
Shaded areas represent recorded events in the NEM according to Australian Energy Regulator (2015),
see Figure 2.
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Figure A2: Gross volatility spillovers received by each market, estimated based on log(SD) data, one-
day-ahead generalised forecast error variance decompositions of VAR(1) with a 365-day rolling window.
The two dashed lines on each plot refer to the beginning and end dates of the carbon tax policy. Shaded
areas represent recorded events in the NEM according to Australian Energy Regulator (2015), see Figure
2.
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Appendix B. Results for Range-based Volatility Measure

Table B1: Descriptive statistics for electricity price volatility for NSW, QLD, SA, TAS
and VIC from 1 January 2010 to 31 December 2015 (2191 daily observations). Price
volatility is estimated as the intraday price range on each day. Statistics for both raw
and logarithmic volatility are reported.

Mean Median Max. Min. Std.dev Skew. Excess Kurt. ADF Stat.

NSW
raw 84.5376 19.5300 13383.0 1.9300 617.1803 14.5382 243.4082 -25.9667
log. 3.1167 2.9720 9.5018 0.6575 0.9431 2.1718 9.6243 -9.7090

QLD
raw 192.2101 26.9400 13476.0 3.8200 784.4014 9.6310 127.2779 -19.5963
log. 3.6732 3.2936 9.5087 1.3403 1.2870 1.8058 3.4561 -10.4321

SA
raw 207.3156 32.5700 12183.0 6.2400 775.5271 8.1033 88.4539 -27.2561
log. 3.8261 3.4834 9.4078 1.8310 1.2491 1.8991 3.7843 -12.4883

TAS
raw 99.4686 26.2400 12388.0 0.0200 569.4338 15.7775 309.1479 -30.0995
log. 3.3435 3.2673 9.4245 -3.9120 1.0767 1.1974 7.3115 -12.1461

VIC
raw 88.3251 24.5000 9985.6 3.5200 549.9719 13.5911 207.8469 -29.0516
log. 3.3405 3.1987 9.2089 1.2585 0.9088 2.2305 9.3344 -10.8042

Notes: Hypotheses of the augmented Dickey-Fuller (ADF) test are H0: a unit root (non-stationary);
H1: no unit root (stationary). An intercept is included in the ADF regression; and the lag length is
determined by Bayesian information criterion (BIC) (Schwarz et al., 1978). The null hypothesis is
rejected at a certain significance level when the test statistic is less than the corresponding critical
value (-2.57 (10%), -2.86 (5%) and -3.44 (1%)).

Table B2: Unconditional pairwise correlation based on log-volatility (log(Range)) from
1 January 2010 to 31 December 2015.

NSW QLD SA TAS VIC
NSW 1.0000
QLD 0.3831 1.0000
SA 0.4176 0.1320 1.0000
TAS 0.3419 0.1789 0.3057 1.0000
VIC 0.6604 0.2366 0.6369 0.4477 1.0000
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Table B3: Full sample spillovers based on daily log-volatility (log(Range)) from 1 January
2010 to 31 December 2015.

From
NSW QLD SA TAS VIC From Others (Sg

i←•)

To

NSW 57.45 7.56 8.10 4.19 22.70 42.55
QLD 11.64 81.57 0.92 1.60 4.27 18.43

SA 7.73 0.65 64.23 4.00 23.39 35.77
TAS 5.81 1.53 5.63 73.87 13.17 26.13
VIC 17.51 2.24 19.42 7.68 53.14 46.86

To Others (Sg
•←i) 42.69 11.99 34.06 17.47 63.54 169.74

Net Spillovers (Sg
•←i − S

g
i←•) 0.14 -6.45 -1.72 -8.66 16.68

Spillover Index (Sg) = 169.74
500.00 = 33.95%

Notes: This spillover table is generated based on one-day-ahead generalised forecast error variance
decomposition of VAR(1). The ijth entry estimates the fraction of one-day ahead error variance in
forecasting market i due to exogenous shocks to market j (i.e. the spillover from market j to market i:
Sg
ij).
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Figure B1: Total and pairwise net volatility spillovers, estimated based on log(Range) data, one-day-
ahead generalised forecast error variance decompositions of VAR(1) with a 365-day rolling window. The
two dashed lines on each plot refer to the beginning and end dates of the carbon tax policy. Shaded areas
represent recorded events in the NEM according to Australian Energy Regulator (2015), see Figure 2.

47



(a) Robustness to the choice of VAR lag length p.

(b) Robustness to the choice of forecasting horizon H.

(c) Robustness to the choice of window length w.

Figure B2: Robustness to alternative model specification based on log(Range).
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Figure B3: Gross volatility spillovers transmitted from each market, estimated based on log(Range)
data, one-day-ahead generalised forecast error variance decompositions of VAR(1) with a 365-day rolling
window. The two dashed lines on each plot refer to the beginning and end dates of the carbon tax policy.
Shaded areas represent recorded events in the NEM according to Australian Energy Regulator (2015),
see Figure 2.
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Figure B4: Gross volatility spillovers received by each market, estimated based on log(Range) data,
one-day-ahead generalised forecast error variance decompositions of VAR(1) with a 365-day rolling win-
dow. The two dashed lines on each plot refer to the beginning and end dates of the carbon tax policy.
Shaded areas represent recorded events in the NEM according to Australian Energy Regulator (2015),
see Figure 2.
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