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Intraday financial time series

1 CAPM considers returns using low-frequency spot prices, where price
changes are ignored

2 Intraday high-frequency1 financial data take form of curves that can
be sequentially observed over time

3 High-frequency data give rise to (dense) functional time series ->
‘bless of dimensionality’ 2

1T. Andersen, T. Su, V. Todorov and Z. Zhang (2023+), Intraday periodic volatility
curves, Journal of the American Statistical Association, in press

2D. Donoho and J. Tanner (2009), Observed universality of phase transitions in
high-dimensional geometry, with implications for modern data analysis and signal
processing, Philosophical Transactions of the Royal Society A, 367, 4273-4293
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Examples of functional time series (FTS)
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A time series of functions is generated from a stochastic process
Xt(u) where u ∈ I ⊂ R, t ∈ Z
Modeling temporal dependence within & among functions
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Advantages of functional time series

1 Study temporal correlation of an intraday functional object & learn
about how correlation progress over days

2 Handle missing values via interpolation or smoothing

Interpolation is fine for dense functional data
Smoothing is needed for sparse functional data

3 Study not only level but also derivatives3 of functions –> dynamic
modeling

3G. Hooker and S (2022) Selecting the derivative of a functional covariate in
scalar-on-function regression, Statistics and Computing, 32(3), 35
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Road map

1 Introduce a functional time-series forecasting method for
one-day-ahead prediction

2 When partially observed data in most recent day becomes available,
incorporate them to improve forecast accuracy

3 Apply a sieve bootstrap method for uncertainty quantification
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Data

1 S&P/ASX All Ordinaries (XAO), 500 largest companies in Australian
equities market

2 According to UBS, Australian market is highly concentrated, with
financial, resources, technology companies

3 As first major financial market to open each day, it’s a world leader is
raising capital & active managers with chances to beat market

4 5-minute4 intraday close prices of XAO from January 4 to December
23, 2021 from Refinitiv

4Hansen and Lunde (2006) Realized variance and market microstructure noise, JBES,
24(2), 127-161
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Cumulative intraday return (CIDR)

1 Let Pt(ui), t ∈ Z+, i = 2, . . . , τ , τ = 75 be 5-minute close price of
XAO at intraday time ui between 10:00 & 16:10 Sydney time on day t

2 Any overnight trading will be reflected at beginning close price next
day

3 Apply a functional KPSS test of Horváth et al. (2014), series is trend
stationary with p-value of 0.737

4 For a stationary series, compute CIDR

Xt(ui) = 100× [lnPt(ui)− lnPt(u1)]

5 Via inverse transformation,

Pt(ui) = exp
Xt(ui)

100 ×Pt(u1)



Intro Data Forecasting method Sieve bootstrap Updating forecasts Evaluation Results Conclusion

Cumulative intraday return (CIDR)

1 Let Pt(ui), t ∈ Z+, i = 2, . . . , τ , τ = 75 be 5-minute close price of
XAO at intraday time ui between 10:00 & 16:10 Sydney time on day t

2 Any overnight trading will be reflected at beginning close price next
day

3 Apply a functional KPSS test of Horváth et al. (2014), series is trend
stationary with p-value of 0.737

4 For a stationary series, compute CIDR

Xt(ui) = 100× [lnPt(ui)− lnPt(u1)]

5 Via inverse transformation,

Pt(ui) = exp
Xt(ui)

100 ×Pt(u1)



Intro Data Forecasting method Sieve bootstrap Updating forecasts Evaluation Results Conclusion

Cumulative intraday return (CIDR)

1 Let Pt(ui), t ∈ Z+, i = 2, . . . , τ , τ = 75 be 5-minute close price of
XAO at intraday time ui between 10:00 & 16:10 Sydney time on day t

2 Any overnight trading will be reflected at beginning close price next
day

3 Apply a functional KPSS test of Horváth et al. (2014), series is trend
stationary with p-value of 0.737

4 For a stationary series, compute CIDR

Xt(ui) = 100× [lnPt(ui)− lnPt(u1)]

5 Via inverse transformation,

Pt(ui) = exp
Xt(ui)

100 ×Pt(u1)



Intro Data Forecasting method Sieve bootstrap Updating forecasts Evaluation Results Conclusion

Cumulative intraday return (CIDR)

1 Let Pt(ui), t ∈ Z+, i = 2, . . . , τ , τ = 75 be 5-minute close price of
XAO at intraday time ui between 10:00 & 16:10 Sydney time on day t

2 Any overnight trading will be reflected at beginning close price next
day

3 Apply a functional KPSS test of Horváth et al. (2014), series is trend
stationary with p-value of 0.737

4 For a stationary series, compute CIDR

Xt(ui) = 100× [lnPt(ui)− lnPt(u1)]

5 Via inverse transformation,

Pt(ui) = exp
Xt(ui)

100 ×Pt(u1)



Intro Data Forecasting method Sieve bootstrap Updating forecasts Evaluation Results Conclusion

Cumulative intraday return (CIDR)

1 Let Pt(ui), t ∈ Z+, i = 2, . . . , τ , τ = 75 be 5-minute close price of
XAO at intraday time ui between 10:00 & 16:10 Sydney time on day t

2 Any overnight trading will be reflected at beginning close price next
day

3 Apply a functional KPSS test of Horváth et al. (2014), series is trend
stationary with p-value of 0.737

4 For a stationary series, compute CIDR

Xt(ui) = 100× [lnPt(ui)− lnPt(u1)]

5 Via inverse transformation,

Pt(ui) = exp
Xt(ui)

100 ×Pt(u1)



Intro Data Forecasting method Sieve bootstrap Updating forecasts Evaluation Results Conclusion

Functional principal component regression

1 For a time series of functions [X1(u), . . . ,Xn(u)], mean function

X (u) =
1

n

n∑
t=1

Xt(u)

2 Covariance function is

cov[X (u),X (v)] = E{[X (u)−X (u)][X (v)−X (v)]}
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Mercer’s lemma

Covariance function can be approximated by orthonormal eigenfunctions

cov[X (u),X (v)] =

∞∑
k=1

λ̂kϕ̂k(u)ϕ̂k(v)

ϕ̂k(u): kth orthonormal functional principal components
λ̂k: kth eigenvalue
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Karhunen-Loève expansion

1 Any functional realization Xt(u) can be expressed

Xt(u) = X (u) +

∞∑
k=1

β̂t,k︸︷︷︸
⟨Xt(u)−X (u),ϕ̂k(u)⟩

ϕ̂k(u)

= X (u) +
K∑
k=1

β̂t,kϕ̂k(u) + et(u)

K: retained number of principal components
et(u): error term
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Eigenvalue ratio criterion

2 K is selected

K = argmin
1≤k≤kmax

{
λ̂k+1

λ̂k

× 1(
λ̂k

λ̂1

≥ υ) + 1(
λ̂k

λ̂1

< υ)

}
,

υ = 1/ ln[max(λ̂1, n)] is a pre-specified positive number
kmax = #{k|λ̂k ≥

∑n
k=1 λ̂k/n}

1{·}: binary indicator function.
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VAR(p) model

3 Let β̂ = (β̂1, β̂2, . . . , β̂K)

4 VAR(p) model

β̂t =

p∑
ξ=1

Âξ,pβ̂t−ξ + ϵ̂t, t = p+ 1, . . . , n

Âξ,p: (K ×K) coefficient matrix of forward score series
(ϵ̂p+1, . . . , ϵ̂n): residuals after fitting VAR(p) model to K-dimensional
multivariate time series of scores
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Âξ,p: (K ×K) coefficient matrix of forward score series
(ϵ̂p+1, . . . , ϵ̂n): residuals after fitting VAR(p) model to K-dimensional
multivariate time series of scores



Intro Data Forecasting method Sieve bootstrap Updating forecasts Evaluation Results Conclusion

Order selection

1 Order p of VAR model can be chosen from AICc by minimizing

AICc(p) = n ln |Σ̂ϵ̂,p|+
n(nK + pK2)

n−K(p+ 1)− 1
,

over a set of p = {1, 2, . . . , 10}

2 After fitting VAR(p), compute residuals Σ̂ϵ̂,p =
1

n−p

∑n
t=p+1 ϵ̂tϵ̂

⊤
t
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One-step-ahead point forecast

1 Conditional on

observed time series of functions X (u)
estimated mean function X (u)

estimated functional principal components Φ(u) = [ϕ̂1(u), . . . , ϕ̂K(u)]

2 One-step-ahead forecast is

X̂n+1|n(u) = E[Xn+1(u)|X (u),X (u),Φ(u)]

= X (u) +

K∑
k=1

β̂n+1|n,kϕ̂k(u)

where β̂n+1|n,k: one-step-ahead prediction from VAR(p)
3 If K = 1, VAR(p) reduces to AR(p)
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Sieve bootstrap

1 zero-mean random element Xt is generated as

Xt = f(Xt−1,Xt−2, . . . ) + εt

f : H∞ → H
{εt}: zero-mean i.i.d. innovation process with E∥εt∥2 < ∞

2 Based on last ℓ observed functions, Xn,ℓ = (Xn,Xn−1, . . . ,Xn−ℓ+1)
for ℓ < n, a predictor

X̂n+1 = ĝ(Xn,Xn−1, . . . ,Xn−ℓ+1)

where ĝ : Hℓ → H estimated operator
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Prediction error

3 Prediction error En+1 = Xn+1 − X̂n+1 given Xn,ℓ

En+1 = Xn+1 − X̂n+1

= ϑn+1 + [f(Xn,Xn−1, . . . )− g(Xn,Xn−1, . . . ,Xn+1−ℓ]+

[g(Xn,Xn−1, . . . ,Xn+1−ℓ)− ĝ(X̂n, X̂n−1, . . . , X̂n+1−ℓ)]

= EI,n+1 + EM,n+1 + EE,n+1

EI,n+1: error attributable to i.i.d. innovation
EM,n+1: model misspecification error
EE,n+1: error attributable to estimation of unknown operator g & random
elements (Xn, . . . ,Xn+1−ℓ) used for one-step-ahead prediction

4 Ultimate goal: Prediction band [X̂n+1(u)− Ln(u), X̂n+1(u) + Un(u)]

lim
n→∞

Pr(X̂n+1(u)−Ln(u) ≤ Xn+1(u) ≤ X̂n+1(u)+Un(u),∀u ∈ I|Xn,ℓ) = 1−α
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VAR(p) forward series

1 Sieve bootstrap uses VAR(p) to generate forward score forecasts

β∗
n+1 =

p∑
ξ=1

Âξ,pβ
∗
n+1−ξ + ϵ∗n+1

where β∗
n+1−ξ = β̂n+1−ξ for n+ 1− ξ ≤ n

2 ϵ∗n+1: i.i.d. resampled from centered residuals {ϵ̂t − ϵ, t = p+ 1, . . . , n}
3 Compute

X ∗
n+1(u) = X (u) +

K∑
k=1

β∗
n+1,kϕ̂k(u) + e∗n+1(u)

e∗n+1(u): iid resampled from {et(u)− e(u)}
et(u) = Xt(u)−X (u)−

∑K
k=1 β̂t,kϕ̂k(u)
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VAR(p) backward series

1 Because of stationarity, VAR(p) can go backward in time to generate
bootstrap samples of scores

β̂t =

p∑
ξ=1

B̂ξ,pβ̂t+ξ + ηt

B̂ξ,p: (K ×K) coefficient matrix for backward scores
ηt: VAR error term

2 Bootstrap samples η∗t

η∗t = Bp(L
−1)A−1

p (L)ϵ∗t

Ap(z) = IK −
∑p

ξ=1 Aξ,pz
ξ

Bp(z) = IK −
∑p

ξ=1 Bξ,pz
ξ

IK : (K ×K) diagonal matrix
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VAR(p) bootstrap scores

1 Bootstrap samples for backward series

β∗
t =

p∑
ξ=1

B̂ξ,pβ
∗
t+ξ + η∗

t

2 Bootstrap functional time series

X ∗
t (u) = X (u) +

K∑
k=1

β∗
t,kϕ̂k(u) + e∗t (u)

where e∗t (u): i.i.d. resampled from {et(u)− e(u)}
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Anyone has a favor method

FAR(1)
X̂n+1 = X (u) + γ[Xn(u)−X (u)]

where γ: bounded linear operator, measuring first-order autocorrelation

γ̂ =
Γ̂(1)

Γ̂(0)

Γ̂(0) =
1

n

n∑
t=1

[Xt(u)−X (u)]⊗ [Xt(u)−X (u)]

Γ̂(1) =
1

n

n−1∑
t=1

[Xt(u)−X (u)]⊗ [Xt+1(u)−X (u)]
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Model calibration error

1 Distribution of prediction error E∗
n+1(u) = X ∗

n+1(u)− X̂ ∗
n+1(u): proxy for

distribution of En+1(u) = Xn+1(u)− X̂n+1(u) given
[Xn−ℓ+1(u), . . . ,Xn(u)]

2 X̂n+1(u): one-step-ahead point forecast from the same FAR(1), applied to
original functional time series

3 From E∗
n+1(u), compute sd, σ∗

n+1(u)

4 Normalized statistic

V ∗
n+1(u) =

X ∗
n+1(u)− X̂ ∗

n+1(u)

σ∗
n+1(u)

5 V ∗
n+1(u): proxy for distribution of

Vn+1(u) =
Xn+1(u)− X̂n+1(u)

σn+1(u)
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Prediction band

1 Let M∗ = supu∈I |V ∗
n+1(u)|, denote Q∗

1−α be (1− α) quantile of
distribution of M∗

2 (1− α) uniform prediction band for Xn+1(u) is[
X̂n+1(u)−Q∗

1−ασ
∗
n+1(u), X̂n+1(u) +Q∗

1−ασ
∗
n+1(u)

]
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Dynamic updating

1 When a functional time series is formed as segments of a univariate
time series, most recent curve is observed sequentially

2 Let first m periods of Xn+1(u) be:
Xn+1(ue) = [Xn+1(u2), . . . ,Xn+1(um)]⊤

3 Update forecasts in remainder of day n+ 1, Xn+1(ul), ul ∈ (um, uτ ]
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Figure: Conceptual diagram of dynamic updating.
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Penalized least squares (PLS) method

1 Let X c
n+1(ue) = Xn+1(ue)−X (ue)

2 Shrink regression coefficient estimates towards β̂TS
n+1

3 PLS regression coefficient estimates minimize a penalized residual sum of
squares

argmin
βn+1

{
[X c

n+1(ue)−Feβn+1]
⊤[X c

n+1(ue)−Feβn+1]+

λ(βn+1 − β̂TS
n+1|n)

⊤(βn+1 − β̂TS
n+1|n)

}

λ ∈ (0,∞): shrinkage parameter
Fe: (m×K) matrix, whose (i, k)th entry is ϕ̂k(ui) for 2 ≤ i ≤ m
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2 Shrink regression coefficient estimates towards β̂TS
n+1

3 PLS regression coefficient estimates minimize a penalized residual sum of
squares

argmin
βn+1

{
[X c

n+1(ue)−Feβn+1]
⊤[X c

n+1(ue)−Feβn+1]+

λ(βn+1 − β̂TS
n+1|n)

⊤(βn+1 − β̂TS
n+1|n)

}
λ ∈ (0,∞): shrinkage parameter

Fe: (m×K) matrix, whose (i, k)th entry is ϕ̂k(ui) for 2 ≤ i ≤ m
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PLS regression coefficient

1 By taking first derivative with respect to βn+1

β̂PLS
n+1 = (F⊤

e Fe + λIK)−1
[
F⊤

e X c
n+1(ue) + λβ̂TS

n+1|n

]

2 When shrinkage parameter

β̂PLS
n+1 =


β̂OLS
n+1 if λ → 0;

β̂TS
n+1|n if λ → ∞;

(β̂OLS
n+1, β̂

TS
n+1|n) if 0 < λ < ∞.

3 With optimal λ, PLS forecasts of Xn+1(ul)

X̂PLS
n+1(ul) = X (ul) +

K∑
k=1

β̂PLS
n+1,kϕ̂k(ul)
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Selection of λ

Split data into a training set, a validation set, a testing set

Training Validation Testing

1 : 150 151 : 200 201 : 250
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Updating interval forecasts

1 Bootstrap B samples of TS forecast regression coefficient,

β̂∗,TS
n+1|n = (β̂∗,TS

n+1|n,1, . . . , β̂
∗,TS
n+1|n,K)⊤

2 For each b = 1, . . . , B = 400

X̂ ∗,PLS
n+1 = X (ul) +

K∑
k=1

β̂∗,PLS
n+1,kϕ̂k(ul) + e∗n+1(ul)

where e∗n+1(ul): bootstrapped residuals for updating period
3 (1− α) PIs for updated forecasts are: α/2 & (1− α/2) quantiles of{

X̂ 1,PLS
n+1 (ul), . . . , X̂B,PLS

n+1 (ul)
}
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Function-on-function linear regression

1 Regression

X l
n+1(u) = X l

(u) +

∫
[X e

n+1(v)−X e
(v)]β(u, v)dv + ξln+1(u)

v ∈ [u2, um] & u ∈ (um, uτ ]: function support ranges for observed &
updating periods
X e

(v) & X l
(u): mean functions

X e
n+1(v) & X l

n+1(u): functional predictor & response
β(u, v): bivariate regression coefficient function
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FPCA

X e
t (v) = X e

(v) +

∞∑
r=1

θ̂t,rϕ̂
e
r(v)

= X e
(v) +

R∑
r=1

θ̂t,rϕ̂
e
r(v) + κe

t (v)

X l
t (u) = X l

(u) +

∞∑
s=1

ϑ̂t,sϕ̂
l
s(u)

= X l
(u) +

S∑
s=1

ϑ̂t,sϕ̂
l
s(u) + δlt(u)
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Ordinary least squares (OLS)

1 To estimate β(u, v), let θ̂ = [θ̂1, θ̂2, . . . , θ̂R], ϑ̂ = [ϑ̂1, ϑ̂2, . . . , ϑ̂S ]

2 Via OLS, linear relationship between θ̂ and ϑ̂

ϑ̂ = θ̂ × ρ

ρ̂ = (θ̂⊤θ̂)−1θ̂⊤ϑ̂

3 One-step-ahead forecast of X l
n+1(u)

X̂ l
n+1(u) = X l

(u) +
S∑

s=1

ϑ̂n+1,sϕ̂
l
s(u)

≈ X l
(u) + θ̂n+1 × ρ̂× ϕ̂l(u)
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Updating interval forecasts

1 One-step-ahead interval forecast of X l
n+1(u) is

X̂ l,∗
n+1(u) = X l

(u) +

∫
[X e

n+1(v)−X e
(v)]β̂∗(u, v)dv + el,∗n+1(u)

β̂∗(u, v): bootstrap regression coefficient estimates
el,∗n+1(u): bootstrap residuals for updating period

2 Via sieve bootstrap, obtain bootstrap curves, and then estimate β̂∗(u, v)

3 (1− α) PI for updated forecasts are α/2 & (1− α/2) quantiles of
{X̂ l,1

n+1(u), . . . , X̂
l,B
n+1(u)}
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Expanding-window scheme

1 Initial training samples are curves from Days 1 to 200, compute
one-day-ahead forecast

2 Increase training samples from Days 1 to 201, compute
one-day-ahead forecast

3 Iterate this procedure until training samples cover entire 250 days
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Mean squared forecast error

1 MSFE measures closeness of forecasts compared with actual values of
variable being forecast

MSFE(ui) =
1

ntest

ntest∑
ι=1

[
Xι(ui)− X̂ι(ui)

]2
MSFE =

1

τ − 1

τ∑
i=2

MSFE(ui)

Xι: holdout samples for ith intraday period on ι day
ntest = 50: number of curves in forecasting period
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Empirical coverage probability (ECP)

ECPpointwise = 1− 1

ntest × (τ − 1)

ntest∑
ι=1

τ∑
i=2

[
1{Xι(ui) < X̂ lb

ι (ui)}+ 1{Xι(ui) > X̂ ub
ι (ui)}

]
ECPuniform = 1− 1

ntest

ntest∑
ι=1

[
1{Xι(u) < X̂ lb

ι (u)}+ 1{Xι(u) > X̂ ub
ι (u)}

]
.

Uniform prediction bands are wider than pointwise PIs
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Interval score5

Sα

[
X̂ lb

ι (ui), X̂ ub
ι (ui),Xι(ui)

]
=
[
X̂ ub

ι (ui)− X̂ lb
ι (ui)

]
+

2

α

[
X̂ lb

ι (ui)−Xι(ui)
]
1
{
Xι(ui) < X̂ lb

ι (ui)
}

+
2

α

[
Xι(ui)− X̂ ub

ι (ui)
]
1
{
Xι(ui) > X̂ ub

ι (ui)
}
.

5T. Gneiting and A. E. Raftery (2007) Strictly proper scoring rules, prediction, and
estimation, Journal of the American Statistical Association, 102(477), 359-378
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Mean interval score

Averaged over different days in forecasting period, mean interval score

Sα(ui) =
1

ntest

ntest∑
ι=1

Sα

[
X̂ lb
ι (ui), X̂ ub

ι (ui),Xι(ui)
]

Sα =
1

τ − 1

τ∑
i=2

Sα(ui).
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An illustration
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Figure: From January 4 to December 22, 2021, forecast CIDR for December 23
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Forecast for December 23
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Point forecast accuracy

Averaging over 50 days in forecasting period & 73 different intraday updating
periods

ECPpointwise,1−α ECPuniform,1−α Sα

Method MSFE α = 0.2 α = 0.05 α = 0.2 α = 0.05 α = 0.2 α = 0.05

TS 0.1474 0.89 0.98 0.88 0.96 1.43 2.08
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Updating point forecasts

PLS method has best point forecast accuracy
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Predicting signs

CIDRs are hard to predict, but signs of future values are easier
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Updating prediction intervals

As we observe new data from beginning to 14:00, apply PLS with optimal
λ to update point & interval forecast
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Estimated optimal λ
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Mean interval score
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Updating forecast accuracy

ECPpointwise,1−α Sα

Method MSFE α = 0.2 α = 0.05 α = 0.2 α = 0.05

TS 0.1838 0.8817 0.9688 1.6429 2.4277
PLS 0.0672 0.7275 0.8851 0.9564 1.6440
FLR 0.0735 0.5001 0.7266 1.4661 3.2729
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Future research

1 Consider other sampling frequencies

2 Outliers can affect estimation of covariance, one can use robust FPCA
3 With validation samples, PLS parameters can be adaptively chosen

without recomputing
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Thank you

Paper: https://onlinelibrary.wiley.com/doi/full/10.1002/for.3000
RG: https://www.researchgate.net/profile/Han-Lin-Shang

https://onlinelibrary.wiley.com/doi/full/10.1002/for.3000
https://www.researchgate.net/profile/Han-Lin-Shang
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