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Abstract

We present a novel framework for the valuation of investments to mitigate catastrophic

risk of climate impacted hazards. Our model incorporates the impact of uncertainty and

continuous Bayesian information updating on investment decisions. We show that the

model is relevant even when the time required to resolve uncertainty is indefinite. The

model is applied to bushfire risk management in a local area. Our findings suggest that

investment based on the net present value (NPV) rule that ignores the value of the in-

vestment option results in significant losses. Sensitivity analysis results suggest that the

loss is large when the investment cost is high, when the uncertainty resolution is slow, or

when the probability belief in climate change is low.
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1. Introduction

Significant developments in real options theory over the last two decades have made real

options a popular tool for the valuation of irreversible investments. In stochastic envi-

ronments, where project values are uncertain and investment is irreversible, the rational

decision to invest is analogous to the optimal exercise of an American option. Thus, an

investment option can be valued and the option should be relinquished only when the

value of the project is sufficiently high. Real options theory has been used to explain

firms’ investment behaviour that cannot be explained by the discounted cash flow theory

based on net present values (NPV) (Quigg, 1993; Carey and Zilberman, 2002) and has

been applied in various fields of research, see, e.g., Dixit and Pindyck (1994); Schwartz

and Trigeorgis (2004) for an overview.

Despite the appeal of real options theory in guiding investment under uncertainty, few

applications exist in the area of climate change adaptation, especially in the valuation of

projects that may mitigate catastrophic risks. This seems surprising, since investment

projects in this area, e.g. flood dykes or dams, often last for decades and investment is

therefore difficult, if not impossible, to reverse. The demand for accurate valuation of

such adaptation projects is certainly high, given the enormous investment costs. In addi-

tion, uncertainty induced by climate change is immense and the most important impact

of climate change is often thought to be through catastrophes (Van Aalst, 2006). The

importance of ’real options thinking’ in the field of climate change has been recognised

by Gollier and Treich (2003).

The main difficulty in applying existing real options models to climate change adaptation

is that typically in these models, the underlying probability law that describes uncertainty

in investment payoffs is assumed to be known (Dixit and Pindyck, 1994). Therefore, in

most of the standard real options models, only the investment payoff is uncertain and

varies stochastically over time. While this assumption is reasonable in a stationary en-

vironment, it may not be suitable in the context of climate change adaptation where

the climate system is known to be changing1, but the extent of the change is uncertain.

1As shown in Hartmann et al. (2014), observed data on global mean temperature indicates an increase
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Appropriate models need to take into account uncertainty about parameters in stochastic

models, which is usually called ’deep uncertainty’, and how that uncertainty resolves over

time as more observations on climate change impacts become available. In the absence

of a scientifically rigorous model, climate change adaptation studies often revert to dis-

counted cashflow theory and use the NPV rule to make investment decisions (Kirshen

et al., 2008a,b; Michael, 2007; Symes et al., 2009; West et al., 2001; Brouwer and van Ek,

2004; Waters et al., 2003; Zhu et al., 2007; Bouwer et al., 2010; Mathew et al., 2012). In a

recent study, Li et al. (In press) use Bayesian approaches for analyzing catastrophic risks

resulting from earthquakes. They, however, focus on the use of Extreme Value Theory

coupled with a Markov chain Monte Carlo (MCMC) approach to estimate catastrophic

risk, which is not the same as the focus of the current paper.

In this paper, we examine an optimal investment problem at a regional level to reduce the

risk of catastrophes such as bushfires, flooding and storm surges. These are important

catastrophes that result in large costs to the insurance industry. For example, insurance

cost in Australia over the period 1990-2012 for bushfires, flooding and storm surges are

$1.8, $3.06, and $0.86 billion, respectively (Insurance Council of Australia, 2016). In

a hotter and therefore more energetic climate system, these catastrophes are predicted

to occur even more frequently (Solomon, 2007). For Australia, recent studies suggest

that Queensland will observe more floods and storm surges, while in the southeastern

Australia, a higher number of bushfires is predicted to occur (Garnaut, 2011; Murphy

and Timbal, 2008). These trends seem to be already present in the records of Australian

insurance costs (Figure 1). The costs of insuring bushfire, flooding and storm surge losses

appear to have grown exponentially over the last two decades, from a total of $0.47 billion

in the 1990s to $5.2 billion in the 2000s.

of 0.075oC per decade if a linear model is estimated for the period 1901-2012, and 0.107oC per decade if a
piece-wise linear model is used. For Australia, data over the period 1957-1996 indicates that occurrences
of warm temperature extreme events have increased while the number of extremely cool temperature
events has decreased (Collins et al., 2000).

3



Figure 1: Annual insurance cost of bushfires, flooding and storm surges in Australia over
period 1990-2012. Data are sourced from Insurance Council of Australia (2016).

As a result of more frequent and possibly more severe catastrophic losses, the payoffs of

risk reduction projects grow over time. The growth rate of the payoffs is, however, highly

uncertain due to the uncertainty in climate change predictions and in the mechanisms

used to downscale global climate change estimates to regional scales. Using different cli-

mate models and different emission scenarios, one can obtain quite different predictions

for the frequency and severity of climate impacted hazards. A decision maker can form

an initial probability belief on the growth of investment payoff based on the predictions

from climate models and update this belief when more observations on the local climate,

and therefore catastrophic risk, are available. Studies in climate change, see, e.g., Kelly

and Kolstad (1999); Karp and Zhang (2006), however, found that initial beliefs based on

climate models often reflect immense uncertainty and the uncertainty takes a long time

to resolve. In the case of climate change adaptation, this means that we may never know

the true growth rate of investment payoffs. An important question is whether it is still

worthwhile to defer investment rather than investing immediately given a positive NPV,

while this uncertainty is never resolved. Furthermore, in implementing an investment

model at the regional level, it is often found that few observations of catastrophic events

are available and the question of how to overcome data scarcity also needs to be addressed.
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We contribute to the literature by introducing a real options framework for the valuation

of catastrophic risk mitigation projects that allows for continuous Bayesian updating of

information. Our framework is built upon recent work in the field of investment under

incomplete information (Décamps et al., 2005; Klein, 2009) but quite significantly extends

these studies to allow for a more general payoff structure: while Décamps et al. (2005)

and Klein (2009) examine so-called ’front-loaded’ projects, i.e. projects where all payoffs

are obtained immediately upon investment, we investigate the investment decision for a

’back-loaded’ project where payoffs are spread across the entire lifetime of the project

which is assumed to be indefinite. This seems an important extension from the prac-

tical perspective, since in practice most investment projects for catastrophe prevention

or adaptation to climatic change last for a long time and payoffs are typically obtained

while the projects are still in place.

We find that investment behaviour for back-loaded projects can be significantly different

from that for front-loaded projects. In particular, the optimal investment boundary in

the payoff-belief state space is found to be non-increasing rather than non-decreasing as

found by Décamps et al. (2005) and Klein (2009). This means that the more pessimistic

the decision maker is about the growth rate of the payoff flow, the longer she delays in-

vestment. This result is shown to hold in a special case where the logarithm of investment

payoff follows a random walk process without drift and in the conducted empirical study.

We also analyse the expected time to learn about the growth rate of payoffs from the

investment and the expected time to investment that are of great interest in climate

change adaptation (Chao and Hobbs, 1997; Kelly and Kolstad, 1999). In contrast to the

usual perception, see, e.g. Grenadier and Malenko (2010), we show that in a modelling

framework with an unknown growth rate, uncertainty may remain unresolved forever and

one may never know the true growth rate. This is evidenced in our empirical example

and may well occur for other climate change adaptation problems. We show that the

expected time to investment may also be infinite, but it is still important to use the real

options framework to capture the positive value generated by volatile investment payoffs.

A nice feature of the developed model is that when the logarithm of the investment pay-
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off follows a random walk process without drift, we can calculate the exact value of the

investment option using a closed form formula. When this is not the case, the model

can be solved using standard numerical techniques such as, e.g. binomial lattice or finite

difference methods. We illustrate the application of the model for the case of bushfire

risk management at the local level. We use a Poisson panel data model to estimate the

loss frequency and apply quantile regression to estimate the distribution for the sever-

ity of losses. Both of these econometric models utilize broad databases to overcome the

rare-event data shortage problem. Quantile regression also takes account of heavy tails

inherent in catastrophic losses and allows to investigate factors driving extreme losses

separately from those that affect average losses. This flexibility proves valuable in par-

ticular for exploring the complex relationship between climate change, adaptation and

catastrophic loss events.

The remainder of the paper is organized as follows. Section 2 outlines and analyzes the

developed modeling framework. Section 3 provides an application of the framework in

a case study, using catastrophic risks from bushfires as an empirical example. The final

Section 4 concludes.

2. Modeling framework

2.1. Frequency and Severity of Climate Impacted Hazards

In the following, we model the cumulative loss St over a period (0, t] as a compound

Poisson process

St =
Nt∑
n=1

Xn, (2.1)

where Nt is the number of catastrophic events that occur during period (0, t] and Xn is

the loss caused by the nth event. It is assumed that Xn, n = 1, 2, · · · , are independent

and identically distributed random variables, which are also independent of Nt. The

loss severity has an expected value β and the number of catastrophic events, Nt, follows

a conditional Poisson process that has a stochastic intensity Λt. The process {Λt} is

assumed to follow a geometric Brownian motion

dΛt/Λt = µdt+ σdBt,
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where {Bt} is a standard Brownian motion defined on a given complete probability space

(Ω,F , P ). The drift µ is a random variable on (Ω,F , P ) taking a value in the state space

{µH , µL} 2. The volatility of the Poisson intensity process σ is assumed to be a positive

constant for simplicity. The positivity of Λt follows since the intensity process {Λt} is

governed by a geometric Brownian motion3.

The decision maker has an initial belief p0 that the growth rate is µH and updates her

belief as information about the Poisson intensity emerges, using the Bayes’ rule, so that

the information updating is rational. The σ-field generated by the process {Λt} up to

and including time t augmented by all P -null subsets of F is denoted by Ft and the

posterior probability of event µ = µH at time t is denoted by Pt, i.e. Pt = P [µ = µH |Ft],

with the initial condition P0 = p0. Upon applying Bayes’ rule, the posterior probability

Pt can be expressed as

Pt =

[
1 +

1− p0

p0

(
exp

(
(ln Λt − ln Λ0 −

µH + µL − σ2

2
t)

))−ω/σ]−1

, (2.2)

where ω = µH−µL
σ

is interpreted as the signal to noise ratio. It can be checked that

Pt ∈ (0, 1). Equation (2.2) implies that Pt is revised upwards (downwards) whenever

ln Λt is higher (lower) than its expected value, ln Λ0 + µH+µL−σ2

2
t, that is obtained when µ

takes the average level, µ = µH+µL
2

. The extent of revision is proportional to the difference

between ln Λt and its expected value, the level of uncertainty µH − µL, and is inversely

proportional to the noise level measured by σ.

We can describe the dynamics of the posterior belief Pt by using another Brownian motion

2In general, one may consider the situation where µ can take any real values. In particular, if µ has
a prior distribution as a normal distribution, we may end up with a conjugate-prior situation and the
posterior estimate of µ can be derived by solving a heat equation, as in, for example, Karatzas and Zhao
(2001) and Zhang et al. (2012). However, to illustrate the key idea of the present modeling framework
and to simplify our discussion, we consider the simpler situation where µ takes a value in {µH , µL}

3Note that in a more general setting, one may also consider the situation where the drift of the Poisson
intensity process is modulated by a hidden Markov chain. However, under such a setting, filtering theory
for hidden Markov models would be required to discuss the problem. This may perhaps represent a
potential topic for future research.
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{B̄t} that is adapted to the filtration {Ft} 4,

B̄t ≡ σ−1

(
ln Λt − ln Λ0 −

∫ t

0

E(µ|Fs)ds+
1

2
σ2t

)
. (2.3)

As discussed in Liptser and Shiryaev (2001), Chapter 7, Section 7.4, the (observed)

dynamics of Λt can then be expressed in terms of B̄t as

dΛt/Λt = [µL + Pt(µH − µL)]dt+ σdB̄t, (2.4)

and by applying Itô’s Lemma to (2.2), the dynamics of posterior beliefs can be obtained,

dPt = Pt(1− Pt)
(µH − µL)

σ
dB̄t. (2.5)

A posterior belief satisfying (2.5) has a zero expected rate of change and at any point

in time, the current belief is the best forecast of future belief. Indeed {Pt} is an (F, P )-

(local)-martingale. Due to the fact that Pt ∈ (0, 1), it is an (F, P )-martingale. The

variation in the posterior belief is proportional to the signal to noise ratio. When the

noise (σ) is large, posterior beliefs change slowly since new observations convey little

information about the growth rate µ. When the difference between high and low growth

rates, µH−µL, is large and the noise is small, new observations may reveal the true value

of µ and the posterior belief experiences a large change.

Remark I : The Bayesian modelling framework considered here may be related to continuous-

time Bayesian modeling frameworks used in, for example, Karatzas and Zhao (2001) and

Zhang et al. (2012), to discuss optimization problems in mathematical finance and insur-

ance.

Remark II : The compound Poisson process is widely used in the collective risk theory

in actuarial mathematics to describe surplus processes of insurance companies, see, for

example, the classic monograph by Bühlmann (1970). The compound Poisson process

has also been used to value catastrophic insurance contracts.

4Note that the Brownian motion {Bt} is not adapted to the filtration {Ft, t ≥ 0}, since µ is unknown
and therefore, knowing the history of Λt up to time t is not sufficient to know the history of B up to
time t.
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2.2. Investments into Climate Change Adaptation

Let us now consider an investment project with investment cost I that is sunk once

committed. The project reduces the frequency of catastrophic events by a proportion k

from the investment time until infinity. Since the expected loss over a period (t1, t2], given

the information observed up to and including time t1, is βE[
∫ t2
t1

Λsds|Ft1 ], the investment

payoff over this period is kβE[
∫ t2
t1

Λsds|Ft1 ]. At the discount rate r, the expected NPV

of investing in the project at time τ conditional on the information available up to and

including time t = 0 is given by

E

[
kβ

∫ ∞
τ

e−rsΛsds− e−rτI|F0

]
. (2.6)

The decision maker determines an optimal time to enter into the investment project that

maximizes the expected NPV. Admission investment times are non-anticipative (i.e.,

depend only on the current information, but not future information), which is the case if

τ is a stopping time. Thus, if the current time is zero, the optimal investment problem

can be formulated as:

max
τ

E

[
kβ

∫ ∞
τ

e−rsΛsds− e−rτI|F0

]
(2.7)

subject to (2.4) and (2.5), and τ is an {Ft}-stopping time taking a value in [0,∞).

In general, the performance functional may be formulated as:

max
τ∈Γt,∞

E

[
kβ

∫ ∞
τ

e−r(s−t)Λsds− e−r(τ−t)I|Ft

]
, (2.8)

where Ft represents the information available up to and including time t and Γt,∞ is the

space of all F-stopping times taking a value in the interval [t,∞).

This problem has two state variables, Pt and Λt that are correlated. It may not be easy

to directly calculate the NPV of a project invested at a given state. Determining the

value of the option is even more difficult. In the following, we apply a change of measures

method to simplify the problem.
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2.3. A Measure Change Approach

The investment problem may now be simplified by changing the measure P to P̃ under

which Λt has a known and constant growth rate of µH . This measure change approach

has been used in filtering and is called a reference probability approach, see, for example,

Elliott et al. (1995). The measure change is achieved by using the Radon-Nikodym

derivative Z∞ such that
dP̃

dP

∣∣∣∣
F∞

:= Z∞, (2.9)

where Zt = exp
(
−
∫ t

0
θsdB̄s − 1

2

∫ t
0
θ2
sds
)

, and θt = −(1 − Pt)ω. Since Pt ∈ (0, 1), |θt|

is bounded. Consequently, {Zt} is an (F, P )-martingale. Indeed, it is an uniformly

integrable martingale, and so limt→∞ Zt = Z∞, P -a.s. Under P̃ , B̃t = B̄t +
∫ t

0
θsds is a

standard Brownian motion by Girsanov’s theorem, (see, for example, Karatzas and Shreve

(1988), Chapter 3, Section 3.5, and Elliott and Kopp (2005), Chapter 7, Section 7.2). To

simplify the problem, we replace the state variable Pt by the likelihood ratio φt = 1−Pt
Pt

that evolves over time according to the stochastic differential equation dφt = −ωφtdB̃t.

By a version of the Bayes’ rule, the investment problem then becomes

F (φ0,Λ0) = max
τ

Ẽ

[
1

Z∞

(
kβ

∫ ∞
τ

e−rsΛsds− e−rτI
)
|(φ0,Λ0)

]
(2.10)

subject to the dynamic state constraints

dΛt/Λt = µHdt+ σdB̃t, (2.11)

dφt/φt = −ωdB̃t. (2.12)

Note that in (2.10), ηt ≡ Z−1
t has an initial starting point η0 = 1 and evolves over time

according to the stochastic differential equation dηt/ηt = θtdB̃t = dφt/(1+φt). Therefore,

ηt = 1+φt
1+φ0

and φt is related to Λt according to a time dependent relation (which is obtained

by solving the differential equations (2.11) and (2.12)),

φt
φ0

=

(
Λt

Λ0

)−ω/σ
exp

[
ωt

2σ
(µH + µL − σ2)

]
. (2.13)
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At the current state (φ0,Λ0), the actuarial value of the option to invest is

F (φ0,Λ0) =
1

1 + φ0

max
τ

Ẽ

[
(1 + φ∞)

(
kβ

∫ ∞
τ

e−rsΛsds− e−rτI
)
|(φ0,Λ0)

]
, (2.14)

and when the state changes to (φt,Λt), by the Markov property, the actuarial value of

the option becomes

F (φt,Λt) =
1

1 + φt
max
τ

Ẽ

[
(1 + φ∞)

(
kβ

∫ ∞
τ

e−r(s−t)Λsds− e−r(τ−t)I
)
|(φt,Λt)

]
.

(2.15)

To find the value of the investment option, we solve the auxiliary optimal stopping prob-

lem:

G(φt,Λt) = max
τ∈Γt,∞

Ẽ

[
(1 + φ∞)

(
kβ

∫ ∞
τ

e−r(s−t)Λsds− e−r(τ−t)I
)
|(φt,Λt)

]
, (2.16)

where the intrinsic value obtained by stopping at time t, V (φt,Λt), is given by (see

Appendix A for more details):

V (φt,Λt) = kβΛt/(r − µH)− (1 + φt)I + φtkβΛt/(r − µL). (2.17)

Given state (φt,Λt), the decision to be made at time t is whether to stop and get value

V (φt,Λt) or to wait. Waiting to the next instant t+ ∆t gives a value of

e−r∆tẼ [G(φt+∆t,Λt+∆t)|(φt,Λt)] .

The value G(φt,Λt) is the larger of the value obtained by immediate stopping and the

value obtained by waiting,

G(φt,Λt) = max{V (φt,Λt), e
−r∆tẼ [G(φt+∆t,Λt+∆t)|(φt,Λt)]}. (2.18)

Suppose that the value function G is “sufficiently” smooth in the continuation region,

(i.e., deferring investment region). More specifically, G ∈ C2, where C2 is the space of

twice continuously differentiable functions. Using Itô’s lemma and standard arguments

in optimal stopping theory, see, for example, Shiryaev (1978), Chapter 3, and Oksendal
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(2003), Chapter 10, Section 10.4, (2.18) can be expressed as:

max (V (φt,Λt)−G(φt,Λt),

1

2
σ2Λ2

tGΛΛ +
1

2
ω2φ2

tGφφ − ωσφtΛtGφΛ + µHΛtGΛ − rG
)

= 0, (2.19)

where Gφ = ∂
∂φt
G(φt,Λt), GΛ = ∂

∂Λt
G(φt,Λt), Gφφ = ∂2

∂φ2t
G(φt,Λt), GΛΛ = ∂2

∂Λ2
t
G(φt,Λt)

and GφΛ = ∂2

∂φt∂Λt
G(φt,Λt).

In the continuation region (i.e., deferring investment), the value of the option can be

found by solving the second-order partial differential equation:

1

2
σ2Λ2

tGΛΛ +
1

2
ω2φ2

tGφφ − ωσφtΛtGφΛ + µHΛtGΛ − rG = 0. (2.20)

In addition, at the optimal investment threshold (φ∗,Λ∗), the following high-contact and

smooth-pasting conditions need to be satisfied 5:

G(φ∗,Λ∗) = V (φ∗,Λ∗) (2.21)

Gφ(φ∗,Λ∗) = Vφ(φ∗,Λ∗) (2.22)

GΛ(φ∗,Λ∗) = VΛ(φ∗,Λ∗). (2.23)

In general cases, the partial differential equation (2.20) may not have a closed form

solution. The option value can be found by applying finite difference methods to (2.20)

or a lattice method to (2.18). Note that for a lattice method, starting from an initial

state (φ0,Λ0), the value of φt can be determined based on Λt, and the lattice has one state

variable. This is much simpler than solving (2.20) with two state variables. We therefore

use a binomial lattice method to calculate the option value and the optimal investment

threshold. A binomial lattice is constructed by first fixing a time horizon T and then

dividing the time horizon into N small sub-intervals, each of which has a time length of

∆t = T/N . At an arbitrary time step t of the binomial lattice, given the value Λt of the

5In the context of pricing finite-maturity American-style contingent claims, some theoretical justifica-
tions for the high-contact and smooth-pasting conditions are available in the literature, see, for example,
Elliott and Kopp (2005), Chapter 8, for the case of a geometric Brownian motion, and a recent paper
by Siu (2016) for the case of a self-exciting threshold diffusion process.

12



Poisson intensity, the value Λt+∆t of the Poisson intensity at the next time step t+ ∆t is

either Λtu with probability p or Λtd with probability 1− p, where u = 1/d. It is easy to

see that the conditional mean and variance of Λt+∆t given Λt are pΛtu+ (1− p)Λtd, and

Λ2
t [pu

2 + (1− p)d2 − [pu+ (1− p)d]2], respectively. As shown by Cox et al. (1979), these

conditional mean and variance are the same as those implied by the stochastic differential

equation (2.11), which are Λte
µH∆t and Λ2

tσ
2∆t, when p, u, and d are set as follows:

u = eσ
√

∆t, d = e−σ
√

∆t, p =
eµH∆t − d
u− d

. (2.24)

For a given initial condition (φ0,Λ0), the value G(φ0,Λ0) is computed by backward in-

duction using Equation (2.18) starting with the terminal condition G(φT+1,ΛT+1) = 0.

The computational efficiency of the lattice method can be improved by applying the

Richardson extrapolation as suggested by Boyle et al. (1989). The value of the option

is calculated for 20, 40, 60, and 80 time steps per year and the obtained points are then

fitted with a cubic polynomial. The value given by the polynomial curve at a high number

of time steps then provide an accurate estimate of the option value. In empirical work,

we use an investment time horizon of 100 years, since it seems that further increasing the

investment time horizon may not have a material effect on the solution.

2.4. Special Case

As shown in (2.13), when µH+µL = σ2, the two state variables of the investment problem

map one to one in a time homogeneous relation. The problem has effectively one state

variable Λt and the optimal stopping time is the first time when Λt exceeds the optimal

threshold Λ∗. It is clear from (2.2) that in this special case, ln Λt follows an arithmetic

Brownian motion.

2.4.1. The Investment Threshold

The partial differential equation (2.20) reduces to:

1

2
σ2Λ2

tGΛΛ + µHΛtGΛ − rG = 0. (2.25)

The value obtained by waiting is, therefore, G(Λt) = AΛαH
t , where A is a parameter to

be determined and αH = 1
2
− µH/σ

2 +
√

(µH/σ2 − 1
2
)2 + 2r/σ2. As a result, the high
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contact and smooth pasting conditions at the optimal investment threshold Λ∗ become:

AΛ∗αH =
kβΛ∗

(r − µH)
− I[1 + φ0

(
Λ∗

Λ0

)−ω/σ
] + φ0

(
Λ∗

Λ0

)−ω/σ
kβΛ∗

(r − µL)
. (2.26)

AαHΛ∗αH−1 =
kβ

(r − µH)
+ Iφ0

ω

σ

1

Λ∗

(
Λ∗

Λ0

)−ω/σ
+ φ0

(
Λ∗

Λ0

)−ω/σ
kβ

(r − µL)
(2.27)

− φ0
ω

σ

(
Λ∗

Λ0

)−ω/σ
kβ

(r − µL)

Conditions (2.26) and (2.27) can be used to solve for the optimal investment threshold

Λ∗ as well as the coefficient A in the value G(Λt). The optimal investment rule is to

invest in period t, t ≥ 0, if Λt exceeds the threshold Λ∗ satisfying the following nonlinear

equation:

P ∗(αH − 1) kβΛ∗

r−µH
+ (1− P ∗)(αL − 1) kβΛ∗

r−µL
P ∗αH + (1− P ∗)αL

= I, (2.28)

where αi = 1
2
− µi/σ2 +

√
(µi/σ2 − 1

2
)2 + 2r/σ2 is the solution of the quadratic equation

1

2
σ2αi(αi − 1) + µiαi − r = 0, i ∈ {H,L}, (2.29)

and P ∗ = 1/(1 + φ∗), φ∗ = φ0

(
Λ∗

Λ0

)−ω/σ
.

At the investment threshold, the ratio of belief weighted average of (α−1)V to the belief

weighted average of α is equal to the investment cost6, i.e. E∗[(α−1)V ]
E∗(α)

= I, where E∗

is the expectation under distribution (P ∗, (1 − P ∗)) of the growth rate (µH , µL). The

consequence of having a back-loaded project instead of a front-loaded one is that the

value of the project now depends on belief and the uncertain growth rate (see Equation

(2.17)). This has an important implication: the investment threshold is decreasing in

belief, rather than increasing in belief as for front-loaded projects, see Appendix B for

more details. This means that the more pessimistic the decision maker is about the

growth rate of the payoff flow, the longer she delays investment. This is in contrast

with the investment behavior for front-loaded projects as documented by Décamps et al.

6When the growth rate is known, the optimal investment threshold satisfies (α−1)V
α = I, see, e.g.

Dixit and Pindyck (1994).
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(2005) and Klein (2009). Nevertheless this seems to be intuitively appealing.

2.4.2. Option Value

The value of the option in period t is given by

F (Pt,Λt) = Pt

(
Λt

Λ∗

)αH ( kβΛ∗

r − µH
− I
)

+ (1− Pt)
(

Λt

Λ∗

)αL ( kβΛ∗

r − µL
− I
)
. (2.30)

The option value is a belief-weighted average of the corresponding values obtained in

certainty cases. When p0 = 0 or p0 = 1, (2.28) and (2.30) provides the investment

threshold and the option value for the case when the growth rate is known with certainty

to be µL or µH , which are consistent with the standard real options model outlined in

Chapter 6 of Dixit and Pindyck (1994).

2.4.3. Impacts of Uncertainty

In this model, uncertainty about the growth of the Poisson intensity Λt is represented by

the spread µH − µL. Similar to Klein (2009), we found that uncertainty can increase or

decrease the option value and the investment threshold of backloaded projects. This is

illustrated for the special case where µH + µL = σ2. With µH + µL being kept constant,

an increase in the uncertainty means that the high growth rate µH is increased by the

same amount as the decrease in the low growth rate µL. An increase in uncertainty is,

therefore, corresponding to a mean preserving spread of the growth rate.

As shown in Figure 2, the impact of uncertainty on the investment threshold is non-linear

and non-monotonic. It depends on the initial condition and the level of uncertainty. On

the one hand, an increase in uncertainty results in a larger divergence between the option

value with the high growth rate and the option value with the low growth rate. The

benefit of waiting for more information is therefore increased and the investment thresh-

old is raised to a higher level. On the other hand, an increase in uncertainty leads to a

higher signal to noise ratio that speeds up uncertainty resolution, and reduces the waiting

time. The direction of change for the investment threshold is dictated by the effect that

dominates.

Similarly, the impact of uncertainty on the option value can be positive or negative,
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depending on the actual changes in the option values with high and low growth rates

and the change in the signal to noise ratio. It is interesting to note that the option value

decreases at a slow rate when uncertainty is low, while increases at a high rate when

uncertainty is sufficiently high (Figure 2). This is because an increase in uncertainty

raises the high growth rate and reduces the low growth rate by the same amount. This

increases the option value at the high growth rate with no limit, while it decreases the

option value at a low growth rate towards zero. When the option value at the low growth

rate is close to zero, it cannot be reduced beyond zero, and further increases in uncertainty

will be translated into increases in the option value at the high growth rate. The value

of the investment option, therefore, increases sharply.

Figure 2: Impacts of uncertainty on the investment threshold and the option value for
different initial values of Poisson intensity Λ0.

2.4.4. Learning Time

When low and high growth rates have been determined, the expected time required to

learn about the true growth rate with a level of confidence, e.g. 95% confidence, provides

an indication of the speed of learning. We are X% confident that the true growth rate is

µH when Pt reaches X%, or when Λt reaches

ΛH = Λ0

(
X(1− p0)

(100−X)p0

)σ/ω
.
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The high threshold ΛH at which the high growth rate is revealed depends on the initial

value of the Poisson intensity Λ0 and the initial belief p0. When the initial belief is

equal to X%, then ΛH is equal to Λ0 and the true drift µH is learnt at the initial time.

When p0 < X%, then X(1 − p0)/(100 − X)p0 > 1 and ΛH is equal to Λ0 scaled up by

a factor (X(1− p0)/(100−X)p0)σ/ω. The lower the signal to noise ratio, the higher the

threshold ΛH relative to Λ0, and the longer it takes to learn whether the true growth rate

is µH . The expected time for Λt to reach ΛH from its current level Λ0, when µH satisfies

µH − 1
2
σ2 > 0 (see Appendix C), is:

EτΛH = (µH −
1

2
σ2)−1 ln

ΛH

Λ0

. (2.31)

On the other hand, we are X% confident that the growth rate is µL when 1− Pt reaches

X%, or Λt reaches ΛL = Λ0

(
(100−X)(1−p0)

Xp0

)σ/ω
. When 1 − p0 = X%, then ΛL = Λ0 and

the true growth rate is learnt at the initial time. In contrast, when 1 − p0 < X%, then

(100−X)(1−p0)/Xp0 < 1 and the threshold ΛL is Λ0 scaled down by
(

(100−X)(1−p0)
Xp0

)σ/ω
.

When the true growth rate is µL satisfying µL − 1
2
σ2 < 0, the expected time EτΛL for

Λt to reach ΛL can be obtained by using (2.31) with µL and ΛL replacing µH and ΛH ,

respectively. When µL− 1
2
σ2 ≥ 0, there is a positive probability that ln Λt wanders off to

infinity and never goes down to ln ΛL. The expected time EτΛL is infinite and we expect

not to know the true growth rate when it is µL, although we may know it is not µL when

Pt reaches X%.

Figure 3 provides an illustration of the expected time required to learn when µH = 0.015,

µL = 0, σ = 0.08, Λ0 = 0.027. When p0 = 0.5 and X = 95, then ΛH = 0.095 and

ΛL = 0.008. Although the current state Λ0 is closer to ΛL than ΛH , the expected time

for Λt to reach ΛL when µ = µL (392 years) is much longer than the expected time for it

to reach ΛH when µ = µH (106 years). This is because the expected time is driven by the

process {ln Λt}, rather than {Λt}. Under the low growth rate, {ln Λt} has a much lower

drift (µL− 0.5σ2 = −0.0032) and it takes a longer time to learn about the true rate than

under the high growth rate (µH − 0.5σ2 = 0.0118).
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Figure 3: Expected time taken to learn about the true drift with 95% confidence when
µH = 0.015, µL = 0, σ = 0.08 and Λ0 = 0.027

2.4.5. Expected Investment Delay

The expected time to investment can be calculated as

EτΛ∗ = p0E[τΛ∗ |µ = µH ] + (1− p0)E[τΛ∗|µ = µL]. (2.32)

Note that when µH − 1
2
σ2 < 0, E[τΛ∗|µ = µH ] is infinite and as a result, the expected

time to investment EτΛ∗ is infinite. An important question is whether the real options

framework is still relevant. This question can be answered by looking at the case p0 = 1,

i.e. the growth rate is known with certainty to be µH , and the investment problem is

reduced to the standard real options problem considered in the literature. If the volatility

is positive, there may be a positive probability that the value of the project rises above

the current level in the future and deferring investment to a later time may provide a

higher value. As it is well-known from the real options literature, see, e.g. Dixit and

Pindyck (1994), (and also apparent from (2.28)), when σ > 0, the investment threshold

in terms of project value is αH
αH−1

I, which is higher than I. This holds regardless of the

expected time to investment. The investment threshold given by our real options model

is, therefore, optimal even when the expected investment delay or the expected time

taken for uncertainty to resolve is infinite.
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3. Empirical Application

In the following, we illustrate the application of the proposed model by examining a case

study of bushfire risk management in Ku-ring-gai, a local area of Sydney, NSW, Aus-

tralia. The area has residential properties in close proximity to bushland and ranks third

in bushfire vulnerability among the 61 local government areas in the Greater Sydney

Region.

A number of options has been identified by Ku-ring-gai Council to reduce the risk from

bushfires. These include, among others, building new fire trails, constructing new fire

stations and rezoning land, see Ku-ring-gai Council (2010). Fire trails allow for controlled

hazard reduction burning, break wild fire transition and potentially allow more time for

fire brigades to respond to bushfires. Constructing more fire stations reduces the response

time and helps to reduce the risk of fires expanding beyond suppression. In the following,

we will focus on evaluating an adaptation project of constructing an additional fire trail

in the region.

3.1. Bushfire Risk Estimation

Bushfires are rare events, especially at the local level, making the task of measuring fire

risk particularly challenging. To establish a reliable relationship between observable cli-

mate variables and fire risk, we extend the statistical model to the national level, allowing

us to use all bushfire events that have occurred in four states of Australia (ACT, NSW,

VIC, TAS) since 1970. We use the database provided by Blanchi et al. (2010), where the

location of events as well as additional information on the number of damaged houses

and the associated weather conditions are reported. We combine these data with daily

climate variables provided by the Bureau of Meteorology (Lucas, 2010) to form a daily

data set for the estimation of bushfire frequency.

To relate the frequency of bushfires to the explanatory variables, we use a panel data

Poisson generalized linear model:

P (Y r
t = yr) =

(Λr
t )
yre−Λrt

yr!
, r = ACT, NSW, VIC, TAS, (3.1)
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where Y r
t is the number of bushfire events occurring in region r in period t and Λr

t is the

intensity parameter that controls the probability of a catastrophic event in region r in

period t.

In the following, we assume that the square root7 of the parameter Λr
t of the Poisson

distribution depends linearly on q covariates for region r:


√

ΛACT
t

...√
ΛTAS
t

 =


1 XACT

1,t XACT
2,t ... XACT

q,t

... ... ... ... ...

1 XTAS
1,t XTAS

2,t ... XTAS
q,t





γ0

γX1

γX2

...

γXq .


. (3.2)

To account for the persistent impact that weather has on bushfire risk, we construct

weighted variables for rainfall, maximum temperature and for the number of fires that

occurred in the last m days, where m = 7, 15, 22, 30. To allocate more weight to more

recent observations of the variables, we use a weighting scheme, where the weight de-

creases linearly from m/
∑m

i=1 i for the current day to 1/
∑m

i=1 i for the day that is m− 1

days before the current day. The weighted rainfall and weighted maximum temperature

utilize observations of the current day, while the weighted number of fires is constructed

from the lags of the number of fires and does not include the number of fires observed

on the current day. In addition, we include national GDP as a proxy for risk mitigation

activities, state dummies to reflect the impact of region-specific factors that are not in-

cluded in the model and a fire season dummy to represent the different impacts of seasons.

We select the included variables based on the generalized Akaike information crite-

rion (GAIC) introduced by Rigby and Stasinopoulos (2005). The GAIC is defined as

−2× loglik + kp, where p is the total number of effective degrees of freedom used in the

model and k represents the penalty applied to each degree of freedom. When k = 2,

7Note that alternatively to a square root link function, a log link or an identity link function could
have been used. However, for the log link function, the Poisson intensity is an exponential function of
covariates and small variations in the covariates may cause excessive variation in the Poisson intensity.
For the identity link, the Poisson intensity may be negative for non-average values of covariates.

20



GAIC reduces to the standard AIC, and when k is increased to lnn, where n is the

number of observations, GAIC becomes the Bayesian information criterion (BIC). Using

the AIC often results in including also insignificant covariates, while using the BIC may

exclude significant explanatory variables. To obtain an appropriate set of covariates for

a given model, we increase the level of penalty k from 2 until all insignificant covariates

are excluded or until lnn is reached.

Table 1 provides the estimation results for the Poisson regression model. It is found that

maximum temperature and wind speed on the current day are significant at the 5% level

and the weighted number of bushfires in the last 30 days is significant at the 10% level.

The model has a reasonable pseudo R2 of 27%8.

Table 1: Poisson Regression Results

Explanatory Variable Parameter
Intercept -0.0701 ∗∗∗

tmaxrt 0.0028 ∗∗∗

windrt 0.001 ∗∗∗

Y30rt 0.0021 ∗∗

Pseudo R2 0.2734
Note: Significance at the 1%, 5% and 10% level is

denoted by ∗∗∗, ∗∗ and ∗, respectively.

The risk of bushfire occurrence in the study region is estimated by downscaling the risk

that has been estimated for NSW. In the Ku-ring-gai area, there was only one bushfire

event over the last 40 years, and the Poisson intensity for the fire risk in Ku-ring-gai is

obtained by scaling down the NSW fire risk by a factor of 10 so that the total risk in

Ku-ring-gai over 40 years is equal to 1. Note that the annual risk for the local area is

obtained by aggregating daily risks. The estimated volatility of the annual risk is 43%

and the current value of the Poisson intensity for the region is 0.027.

The growth rate of the Poisson intensity is estimated based on a climate change skeptic

view that suggests µL = 0, i.e. no climate change, and a climate change study that

8We use McFadden’s R2 = 1 − `1/`0, where `1 is the loglikelihood of the model with the included
covariates and `0 is the loglikelihood of the model without any covariates (McFadden, 1973).
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suggest a value µH > 0. We adopt the results of Hasson et al. (2009) who uses 10 general

circulation models together with a low (B1) and a high (A2) GHG emission scenario to

study the changes in the frequency of extreme fire weather events in southeastern Aus-

tralia. The value of µH is set to equal to the average growth rate of 1.59% found by

Hasson et al. (2009).

To estimate the number of houses damaged in a fire event in the area, we use quantile re-

gression proposed by Koenker and Bassett (1978) to relate the number of damaged houses

to risk exposure (the number of houses in a region) and other factors. The regression

model for a quantile level τ ∈ (0, 1) can be formally written as

Qτ (Y |X) = δ
(τ)
0 + δ

(τ)
1 X1 + ...+ δ

(τ)
K XK , (3.3)

where Qτ (Y |X) is the τ -quantile of the conditional (on covariates’ levels) distribution of

the response variable Y . The response variable is the natural logarithm of the number

of damaged houses. Quantile regression is more flexible than the usual OLS regression

since it does not assume a distributional form for the response variable and covariates are

allowed to affect not only the mean, but also higher order moments of the distribution.

This framework is especially suitable for the current context of catastrophic risks, since

losses are often found to be heavy tailed, rather than following a normal distribution

(Lave and Apt, 2006).

Regression results are shown in Table 2. We found that the total number of houses

and GDP have significant impacts on low quantile losses, while maximum temperature,

GDP and wind speed have significant impacts on high quantile losses. The pseudo R2s

for different levels of τ suggest that the estimated quantile regression models have a

reasonably high explanatory power.9

9Note that in conducting regression for multiple levels of quantiles, we obtain a discrete distribution
of loss severity. Pseudo R2 is calculated based on the goodness of fit of the model with and without
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Table 2: Quantile regression results for lost houses

Explanatory Variable
Quantile level Intercept lnhouse gdp tmax15rt windrt Pseudo R2

τ = 0.1 -5.46 0.55 -6.72 0.09 -0.06 0.16
τ = 0.2 -5.54 0.6 * -6.56 0.05 -0.03 0.19
τ = 0.3 -7.98 0.74 ** -8.28 ** 0.05 0.01 0.19
τ = 0.4 -7.95 0.55 -10.6 ** 0.16 0.01 0.18
τ = 0.5 -3.02 0.2 -10.79 ** 0.16 0.01 0.18
τ = 0.6 -4.24 0.21 -9.75 ** 0.18 0.02 0.19
τ = 0.7 -7.36 -0.21 -8.31 0.4 * 0.09 ** 0.21
τ = 0.8 -4.11 -0.34 -10.69 * 0.41 ** 0.07 * 0.29
τ = 0.9 -4.48 -0.33 -6.59 0.46 *** 0.02 0.41
Note: Significance at the 1%, 5% and 10% level is denoted by ∗∗∗, ∗∗ and ∗, respectively.

The expected number of damaged houses for Ku-ring-gai in a fire event is estimated as

59 houses. This number of damaged houses and the re-construction cost of $422,000 per

house are used to calculate the expected loss β 10.

3.2. The Discount Rate

The choice of an appropriate discount rate for long lasting projects is a highly contro-

versial topic in the literature. Some studies, e.g. Stern (2007) and Garnaut (2008),

recommend the use of low social discount rates, largely based on intergenerational eq-

uity arguments, while others such as Newell and Pizer (2003), Nordhaus (2007), Quiggin

(2008) and Tol and Yohe (2009) suggest that the discount rate should be derived based

covariates:

R = 1− V
(τ)
1

V
(τ)
0

,

V
(τ)
1 =

∑
Yi≥Xiδ̂(τ)

τ |Yi −Xiδ̂
(τ)|+

∑
Yi<Xiδ̂

(τ)

(1− τ)|Yi −Xiδ̂
(τ)|

V
(τ)
0 =

∑
Yi≥Q̂(τ)(Y )

τ |Yi − Q̂(τ)(Y )|+
∑

Yi<Q̂
(τ)

(Y )(1− τ)|Yi − Q̂(τ)(Y )|

10Note that the actual cost of damage can be more than the reconstruction cost when house contents
are taken into account. However, without detailed insurance claim data, we cannot estimate the cost
of house contents as well as its growth rate. Increases in daily maximum temperature is predicted to
increase the number of damaged houses but the expected loss can still be increasing or decreasing since
GDP growth reduces the number of damaged houses while at the same time it will most likely increase
the value of damaged house contents. In this paper, we focus on the stochastic component of bushfire
frequency and assume that the expected loss is constant.
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on market interest rates.

Similar to Truong and Trück (2016), we adopt the approach proposed by Newell and

Pizer (2003) to determine the appropriate discount rate for investment valuation. This

approach estimates the discount rate using data on the prices of long term government

bonds. Since the prices of government bonds vary stochastically over time, risk free in-

terest rates are also stochastic. Newell and Pizer (2003) and Groom et al. (2007) show

that when interest rates are stochastic and persistent, the certainty equivalent discount

rate is decreasing over time, which is consistent with hyperbolic discounting behaviour

observed by Frederick et al. (2002).

Truong and Trück (2016) estimate the stochastic interest rate model proposed by Cox

et al. (1985) using long term Australian government bond data. They found that for

Australian interest rates the estimated model yields a quite low persistent coefficient,

and the estimated certainty equivalent discount rate converges quickly to a long run level

of 4.5%. For simplicity, in this study, we assume that the discount rate is constant at

4.5%.

3.3. Other Parameters

Other parameters relating to the investment project, including investment cost, risk miti-

gation effectiveness and project life, are estimated by expert elicitation. Expert elicitation

is an effective way to overcome data scarcity problems and has been used in many pre-

vious climate adaptation studies, see e.g. Baker and Solak (2011); Mathew et al. (2012).

The expert specifies that the conducted project is expected to reduce the frequency of

house damaging bushfire events by 20%. The estimated costs for a finite lifetime project

in Table 3 can be used to calculate the investment cost of an infinite lifetime project by

firstly converting the investment cost IM of a project that lasts M years into an annuity

flow, A:

A = IM
1− β

1− βM+1
, β = 1/(1 + r),

24



Table 3: Information on estimated and assumed parameter values, including the initial
value of the Poisson intensity Λ0, values for the high Poisson intensity growth rate µH ,
the low Poisson intensity growth rate µH , the volatility of the Poisson intensity process
σ, the expected loss conditional on a bushfire event β, the risk mitigation of the project
with respect to the frequency of house damaging bushfire events k, the assumed lifetime
of the investment project M , the investment cost per project IM , the annual maintenance
cost for the project C, and the applied discount rate r.

Parameters Value
Current Poisson intensity (Λ0) 0.027
High Poisson intensity growth (µH) 1.59%
Low Poisson intensity growth (µL) 0%
Volatility (σ) 43%
Expected loss conditional on a fire event (β) $24,898,000
Risk mitigation by project (k) 20%
Lifetime of the project (M ) 50 years
Investment cost per project (IM) $1.5 million
Project maintenance cost (C) $50,000
Discount rate (r) 4.5%

and use the annuity A is to calculate the investment cost of an infinite life project:

I = A(1 + r)/r. (3.4)

Thus, at a 4.5% discount rate, the present value of building a bushfire trail every 50 years,

each costing $1.5 million to build is $1.68 million.

3.4. Empirical Results

3.4.1. Baseline Case

Figure 4 provides the plot of the option value F (Λ0) for the baseline set of parameters

where the initial belief is P0 = 0.5. For this case, at the current level of Poisson intensity

Λ0 = 0.027, the option value is $1,472,731 and the optimal investment threshold for the

initial period is Λ∗ = 0.0914. Given the large volatility, the expected time to learn about

the growth rate with 95% confidence when it is µL is 370 years, while the expected time

to learn when the true growth rate is µH and the expected time to investment are both

infinitely large. Recall, however, that the infinite expected time to learn and to invest do

not affect the validity of the real options model as discussed above.

The investment threshold obtained from the model is substantially higher than the thresh-
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old given by the NPV rule (Λ0 = 0.02). If the NPV rule was used, the project would

be invested immediately, and a NPV of $1,015,149 would be obtained. An amount of

$457,582, i.e. 31.07% of the option value would be lost. For other levels of belief, optimal

investment decisions can be made based on the investment boundary in Figure 5. For

example, if Λ0 = 0.089 and P0 = 0.4, the optimal decision is to wait, while if Λ0 = 0.094

and P0 = 0.8, the project should be invested. When Λ0 is lower than 0.089 (higher than

0.095), waiting (investing) is optimal regardless of belief.

Figure 4: Investment option values, project values and investment threshold in baseline
case with P0 = 0.5

3.4.2. Impact of Initial Belief

To enable a comparison with the impact of other factors, we examine the impact of an

increase in the initial belief P0 by 10% from 0.5. For this higher belief, the investment

threshold is slightly lower at Λ∗ = 0.0906 and the option value at Λ0 = 0.027 is increased

by 0.5% to $1,480,152. The NPV of the project at Λ0 = 0.027 is increased by 8.04% to

$1,096,773 and the loss due to using the NPV rule is reduced by 16.22% to $383,379.

3.4.3. Impact of Uncertainty

The impact of uncertainty is examined by comparing the baseline scenario with the

case where uncertainty is increased by 10%, i.e. µL is decreased to -0.0795% and µH is
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Figure 5: Investment boundary defined in two states (P0,Λ0)

increased to 1.6695%. When the uncertainty increases by 10%, the NPV of the project

at the initial state (P0 = 0.5,Λ0 = 0.027) increases by 3.84%. This is because the

NPV of the project is V (φ0,Λ0)/(1 + φ0), and as can be seen from (2.17), V (φ0,Λ0) is

a convex function of a random variable µ that takes values {µH , µL}. Therefore, when

the uncertainty in µ increases, the NPV of the project increases. In contrast, the option

value at the initial state decreases by 2.47% to $1,436,386 and the optimal investment

threshold decreases slightly to 0.0911. The loss due to using the NPV rule is reduced by

16.46% to $382,287.

3.4.4. Impact of Volatility

When µ is known and constant, it is well known from the real options literature that the

value of the option increases with the volatility σ. For the case of incomplete information

where the true value of µ is unknown, volatility affects the value of the option through two

different channels, that will either lead to an overall positive or negative impact on the

option value. On the one hand, a higher volatility will increase the value of the option in

certainty cases i.e. µ = µH or µ = µL. On the other hand, a higher volatility will reduce

the signal to noise ratio ω and reduce the value of the option. The net impact will depend

on the empirical set of parameters. For the current application, when volatility increases

by 10%, under the assumption of risk neutrality, the NPV of the project at the initial state
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(P0 = 0.5,Λ0 = 0.027) remains unchanged. The optimal investment threshold increases

significantly to 0.1017 while the option value at the initial state increases by 6.63% to

$1,570,317. As a result, the loss incurred when using the NPV rule in comparison to

optimal timing of the investment increases by 21.33% to $555,169.

3.4.5. Impact of Climate Change Scenarios

Some climate change studies, e.g. Weitzman (2009); Keller et al. (2004), suggest that the

extent of change in the future climate may be larger than predicted by statistical models.

We examine a more serious climate change scenario in which the high level of the growth

rate, µH , is increased by 10%. With the increase in µH , the NPV of the project at the

initial state (P0 = 0.5,Λ0 = 0.027) increases by 13.15% to $1,148,667. The option value

at the initial state is increased by 0.85% to $1,485,319 and the investment threshold is

reduced slightly to 0.0905. Under these assumptions, the loss incurred by using the NPV

rule is then reduced by 26.43% to $336,652.

3.4.6. Impact of Investment Costs

When the investment cost increases by 10%, the NPV of the project at the initial state

(P0 = 0.5,Λ0 = 0.027) is decreased by 27.47% to $736,263. The option value at the

initial state is reduced by 3.24% and the investment threshold increases to 0.1006. The

loss due to using the NPV rule in comparison to the optimal timing of the investment is

then increased by 50.53% to $688,788. Therefore, changes in the initial investment cost

may have a substantial impact on the value obtained from investing and the time when

the project should be invested.

3.4.7. Impact of the Discount Rate

The impact of the applied discount rate on the results is examined by comparing the

baseline scenario with the case where the discount rate is increased by 10%. As a result of

the higher discount rate, the NPV of the project at the initial state (P0 = 0.5,Λ0 = 0.027)

is decreased by 30.14% to $709,192. The investment threshold is decreased to 0.09 and

the option value at the initial state is significantly reduced by 14.10% to $1,265,087. The

loss due to using the NPV rule therefore increases by 21.49% to $555,894.
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Table 4: Sensitivity Analysis for a 10% increase in key parameters: the parameter for
initial belief P0 is changed from P0 = 0.50 to P ∗0 = 0.55; to measure the sensitivity
of the results to uncertainty, µH − µL changes from 0.0159 to 0.0175 corresponding to
µ∗L = −0.0795% and µ∗H = 1.6695%; to examine the impact of volatility, σ is increased
from σ = 0.43 to σ∗ = 0.473; to quantify the impact of a more serious climate change
scenario, µH increases from 1.59% to 1.75%; investment costs are assumed to increase
from Im = $1, 500, 000 to I∗m = $1, 650, 000; the discount rate r changes from r = 0.045
to r∗ = 0.0495.

Parameter ∆NPV ∆(Option ∆(Investment ∆(Loss by
value) threshold) NPV rule)

Initial belief (P0) 8.04% 0.50% -0.87% -16.22%
Uncertainty (µH − µL) 3.84% -2.47% -0.33% -16.46%
Volatility (σ) 0.00% 6.63% 11.27% 21.33%
Climate Change (µH) 13.15% 0.85% -0.98% -26.43%
Investment cost (Im) -27.47% -3.24% 10.07% 50.53%
Discount rate (r) -30.14% -14.10% -1.53% 21.49%

3.4.8. Summary of sensitivity analysis

A summary of the results for the conducted sensitivity analysis is provided in Table 4.

Recall that for each variable we examine the impact of a 10% increase in the parameter

value. For our case study we find that the loss due to using a simple NPV rule instead

of optimally timing the investment increases substantially for a higher value of volatility,

a larger initial investment cost, and an increased discount rate. In addition, the loss is

decreasing in the signal to noise ratio, i.e. the loss is higher when the uncertainty is low

or when the volatility is high. This means that the real options model is more important

in settings where uncertainty resolution is slow. Furthermore, the loss is decreasing in

the initial belief in climate change as well as the predicted level of climate change, which

is consistent with the findings of Truong and Trück (2016).

4. Conclusion

In this paper, we introduce a novel framework for determining the optimal investment

timing of catastrophic risk mitigation projects. The model can incorporate the impact

of uncertainty in the growth rate of the expected frequency of catastrophic events and

continuous Bayesian information updating into investment decisions. In addition, we

provide closed form solutions for the investment problem when the logarithm of invest-
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ment payoff follows a random walk process without drift. The investment threshold is

determined in line with a standard real options model with the uncertain components

evaluated at their belief weighted averages. In this model, uncertainty can accelerate or

decelerate investment and can increase or decrease the option value, depending on the

estimated values of the model parameters. We show that even when the expected time

for the uncertainty to resolve is infinitely long, it is still relevant to use the proposed

model instead of a standard net present value rule for investment decisions.

We illustrate the application of the model, using a case study of bushfire risk management

in a local government area in Sydney, Australia. Catastrophic risk is quantified using a

Poisson panel data model for loss frequency and quantile regression for the loss severity.

We find that ignoring the option to defer the investment would result in a significant

loss in comparison to an optimally timed investment. Sensitivity analysis results suggest

that the loss is large when the investment cost is high, when the uncertainty resolves

slowly over time, when the belief in climate change, or when the predicted extent of cli-

mate change is low. The real options model is therefore most useful for large investment

projects whose benefits depend on future climate and the decision maker has a low belief

about the climate change scenario.

The high sensitivity of the option value and the loss incurred by using the NPV rule

to volatility changes may also provide practical ground for the development of real op-

tions models with volatility uncertainty. This may represent interesting topics for future

research.
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Appendix A. Immediate Stopping Value

The immediate stopping value V (φt,Λt) is obtained by setting the stopping time τ to t

in (2.16),

V (φt,Λt) = Ẽ

[
(1 + φ∞)

(
kβ

∫ ∞
t

e−r(s−t)Λsds− I
)
|(φt,Λt)

]
= Ẽ

(
kβΛt/(r − µH)− (1 + φ∞)I + φ∞kβ

∫ ∞
t

e−r(s−t)Λsds|(φt,Λt)

)
. (A.1)

Since φ∞ can be expressed as a product of φt and a martingale (which follows from

(2.13)),

φ∞ = lim
T→∞

φT = lim
T→∞

φt exp

(
−1

2
ω2(T − t)− ω(B̃T − B̃t)

)
, (A.2)

and the last component in (A.1) can be written as

φtÊ

(
kβ

∫ ∞
t

e−r(s−t)Λsds|(φt,Λt)

)
, (A.3)

where Ê is the expectation under measure P̂ given by

dP̂

dP̃

∣∣∣∣
F∞

:= Ẑ∞,

and Ẑ∞ = limT→∞ exp
(
−1

2
ω2(T − t)− ω(B̃T − B̃t)

)
. Under measure P̂ , the process

{Λs} has a constant growth rate µL. The value obtained by immediate stopping becomes

V (φt,Λt) = kβΛt/(r − µH)− (1 + φt)I + φtkβΛt/(r − µL). (A.4)
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Appendix B. Investment boundary

We show that in the special case (µH+µL = σ2), the investment threshold Λ∗ is decreasing

in belief P ∗. Using (2.28) to find the derivative of Λ∗ with respect to P ∗, it can be verified

that dΛ∗/dP ∗ has the same sign as

D =
αL − 1

r − µL
αH −

αH − 1

r − µH
αL. (B.1)

Since αi satisfies (2.29), it follows that αi−1
r−µi = αi

1
2
σ2αi+r

i ∈ {H,L}, and we have

D =
1
2
σ2αHαL(αH − αL)

(1
2
σ2αH + r)(1

2
σ2αL + r)

. (B.2)

Since µH + µL = σ2, it can be shown that αL = αH + ω/σ and therefore αL > αH > 0.

As a result, D < 0 and dΛ∗/dP ∗ < 0.
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Appendix C. Expected waiting time

For a process dXt = adt+σdBt, where Bt is a Brownian motion, X0 = x > 0, a stopping

time τm = min{t ≥ 0 : Xt = m}, and a scalar u > 0,

Ee−uτm = exp

[
−a+

√
a2 + 2uσ2

σ2
(x−m)

]
. (C.1)

Then, taking the limit limu↓0
∂Ee−uτm

∂u
gives

Eτm =
m− x
a

. (C.2)

This result holds if a > 0 when x < m or if a ≤ 0 when x > m. The reason is if a ≤ 0

when x < m, there is a positive probability that the process Xt wanders off to −∞ and

Eτm is infinite.

Applying the above result to the process λt = ln Λt that has drift a = µH − 1
2
σ2 and the

hitting boundary m = ln ΛH , the expected waiting time becomes

EτΛH = (µH −
1

2
σ2)−1 ln

ΛH

Λ0

. (C.3)

For the proof of (C.1), see e.g. Ryan and Lippman (2003).
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