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Motivation and Introduction

• Most countries worldwide have seen continuous drops in mortality rates, which are also
associated with aging populations.

• Policymakers from insurance firms and government departments demand more precise mor-
tality forecasts.

• For planning, several statistical methods have been presented for forecasting age-specific
central mortality rates, life-table death counts, or survival function.
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Motivation and Introduction

• Lee and Carter (1992) uses a principal component (PC) method to derive a single
time-varying index of the level of mortality rates, from which forecasts are obtained
using a random walk with drift.

• The model structure is given by log(mx ,t) = at + bxkt + ϵx ,t
• ax is the age pattern averaged across years.
• bx is the first PC reflecting the relative change at each age.
• kt : is the first set of PC scores by year t.
• ϵx,t is the residual at age x and year t.
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Functional time series (FTS)

• Several approaches have modified and extended the Lee-Carter method.
• For instance, Hyndman and Ullah (2007) proposed a functional data (FDA) approach along

with nonparametric smoothing and high-order principal components for mortality forecasting.

• In the FDA approach, the functional data are generated from a stochastic process
{Xt(u), t ∈ Z, u ∈ I ⊂ I}

• It is assumed that the mortality rate in each year follows an underlying smooth function of age
u.

• When mortality rates are collected over time, we refer to the data as functional time series
(FTS).

• One major drawback of the Lee-Carter method and other contributions is that they mainly
focus on forecasting mortality for a single population.

• Each population can be further categorized based on gender, state, ethnic group, socioe-
conomic position, and other factors.
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Example of high-dimensional time series: USA
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Example of high-dimensional time series: France
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Example of high-dimensional time series: Japan
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Features of high-dimensional functional time series

• We consider modeling and forecasting high-dimensional functional time series (HDFTS),
which can be cross-sectionally correlated and temporally dependent.

• Two-way functional median polish decomposition, which is robust against outliers. Two-
way functional ANOVA.

• The two-way functional ANOVA and median polish decompose HDFTS into deterministic
and time-varying components.

• Dynamic functional principal component analysis, is implemented to produce forecasts for
the time-varying components.

• Forecast curves are obtained by combining the forecasts of the time-varying components
with the deterministic components.
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US mortality

• US mortality database has a complete set of state-level life tables for studying geographic
variation in mortality across the US.

• Data cover 50 states and the District of Columbia for each year between 1959 and 2020
with mortality data up to age 110.

• Ages from 0 to 100 in single years of age (u), last age group including all ages above 100.
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French mortality

• French Human Mortality Database has mortality by departments.
• France has 97 departments, of which two ( Seine and Seine et Oise) do not have any data
from 1968 to 2021.
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Japanese Mortality

• Japanese Mortality Database has mortality by prefecture.

• Ages from 0 to 98 in single years of age, last age group including all ages at and above 99.
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Two-way functional median polish (FMP)

• Let Yg
t,s(u) be log10 mortality for age u, state s, gender g at year t.

• Yg
t,s(u) can be decomposed as

Yg
t,s(u) = µ(u) + αs(u) + βg (u) + X g

t,s(u), u ∈ I

• u is a continuous variable, but observed at (u1, . . . , up) grid points.
• µ(u): functional grand effect
• αs(u): functional row effect; medians{αs(u)} = 0
• βg (u): functional column effect; mediang{βg (u)} = 0
• X g

s (u) = [X g
1,s(u), . . . ,X

g
T ,s(u)]: functional residual; medians{X g

t,s} = mediang{X g
t,s} = 0

• Deterministic components (states and genders) + time-varying components (functional
residuals).
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Long-run covariance estimation

• For a stationary residual process X g
t,s(u), long-run covariance function

C (u, v) =
∞∑

l=−∞
γl(u, v) =

∞∑
l=−∞

cov
[
X g
0,s(u),X

g
l ,s(v)

]
where u, v ∈ I and l denote a time-series lag variable.

• For a finite sample, a natural estimator of C (u, v) is

ĈT (u, v) =
1

T

|l |≤T∑
|l |=0

(T − |l |)γ̂l(u, v) (1)

where

γ̂l(u, v) =

{
1
T

∑T−l
t=1

[
X g
t,s(u)−X g

s (u)
][
X g
t+l ,s(v)−X g

s (v)
]

if l ≥ 0
1
T

∑T
t=1−l

[
X g
t,s(u)−X g

s (v)
][
X g
t+l ,s(v)−X g

s (v)
]

if l < 0
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Kernel estimator of the long-run covariance

• The long-run covariance function can be seen as a sum of autocovariance functions with
decreasing weights.

• It is common in practice to determine the optimal lag value of l to balance the trade-off
between squared bias and variance.

• Some approaches use the kernel sandwich estimator

̂̂
CT ,b(u, v) =

∞∑
l=−∞

Wq

(
l

b

)
γ̂l(u, v)

• b: bandwidth
• Wq(·):symmetric weight function with bounded support of order q.
• Rice and Shang (2017) propose a plug-in algorithm for obtaining the optimal bandwidth

parameter to minimize the asymptotic mean-squared normed error between the estimated
and actual long-run covariance functions.
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Dynamic functional principal components

• Via the Mercer’s lemma, the estimated long-run covariance function
̂̂
CT ,b(u, v) can be

approximated by ̂̂
CT ,b(u, v) =

∞∑
k=1

θkϕk(u)ϕk(v)

• θ1 > θ2 > . . . > 0: eigenvalues of
̂̂
CT ,b(u, v)

• [ϕ1(u), ϕ2(u), . . .] orthonormal functional principal components.

• Via Karhunen-Loève expansion of the realization of a stochastic process,

X g
t,s(u) = X g

s (u) +
∞∑
k=1

γgk,t,sϕ
g
k,s(u)

where γgk,t,s =
〈
X g
t,s(u) − X g

s (u), ϕ
g
k,s(u)

〉
, denotes the kth set of principal component

scores for time t.

14/35



Selection of the K functional principal components

We select K as the minimum of leading principal components reaching 95% of the total variance
explained, such that

K = argmin
K :K≥1

{
K∑

k=1

θ̂k

/
T∑

k=1

θ̂k1{θ̂k>0} ≥ 0.95

}

where 1{·} represents the binary indicator function.
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Multivariate functional principal component analysis

• By stacking female and male populations,

X t,s(u) = Φs(u)Γt,s

• X t,s(u) = [X F
t,s(u),XM

t,s(u)]
⊤

• Combined functional principal scores

Γt,s =
[
γF1,t,s , . . . , γ

F
K ,t,s , γ

M
1,t,s , . . . , γ

M
K ,t,s

]⊤
Γt,s is a ((2× K )× 1) vector

• Combined principal components

Φs(u) =

(
ϕF
1,1(u) . . . ϕF

K ,1(u) 0 . . . 0

0 . . . 0 ϕM
1,2(u) . . . ϕM

K ,2(u)

)
Φs(u) is a 2× (2× K ) matrix
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h-step-ahead point forecasts

• By conditioning on Φs(u), obtain h-step-ahead point forecasts

X̂T+h|T ,s(u) = E
[
XT+h,s(u)

∣∣X 1,s(u), . . . ,XT ,s(u);Φs(u)
]

= X s(u) +Φs(u)Γ̂T+h|T ,s

where the empirical mean function X s(u) = [X F
s (u),X

M
s (u)]

• Use univariate time series forecasting method to obtain forecast principal component score
Γ̂T+h|T ,s .

• With the forecasted functional residuals, add back the deterministic component.

Ŷg
T+h|T ,s(u) = µ(u) + αs(u) + βg (u) + X̂ g

T+h|T ,s(u)
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Sieve bootstrap

1) Center the observed functional time series by calculating Zg
t,s(u) = X g

t,s(u)−X g
s (u)

2) Apply FPCA to Zg
s (u) = [Zg

1,s(u), . . . ,Z
g
T ,s(u)] to obtain estimated functional principal

components and their scores.

3) Fit a VAR(p), process to the “forward” series of the estimated scores

γgm,s =

p∑
j=1

Aj ,pγ
g
m−j ,s + ϵgm,s , m = p + 1, . . . ,T

where ϵgm,s being residuals, Aj ,p: forward VAR(p) coefficient.
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Sieve bootstrap

4) Generate

γg ,∗T+h,s =

p∑
j=1

Aj ,pγ
g ,∗
T+h−j ,s + ϵg ,∗T+h,s

where we set γg ,∗T+h−j = γT+h−j if T + h− j ≤ T and ϵg ,∗T+h,s is iid resampled from the set

of centered residuals (ϵgm,s − ϵgs ), ϵ
g
s = (T − p)−1

∑T
m=p+1 ϵ

g
t,s

5) Compute

X g ,∗
T+h,s(u) = X g

s (u) +
K∑

k=1

γg ,∗k,T+h,sϕ
g
k,s(u) + Ug ,∗

T+h,s(u)

where Ug ,∗
T+h,s(u) is iid resampled from the set {Ug

t,s(u)−U
g
s (u), t = 1, 2, . . . ,T}, Ug

s (u) =

T−1
∑T

t=1 U
g
t,s(u) and Ug

t,s(u) = X g
t,s(u)−

∑K
k=1 γ

g
k,t,sϕ

g
k,s(u)
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Sieve bootstrap

6) Fit a VAR(p) process to the “backward” series of the estimated scores;

γgν,s =

p∑
j=1

Bj ,pγ
g
ν+j ,s + ξgν,s , ν = 1, 2, . . . ,T − p

where Bj ,p denotes the backward VAR(p) coefficient.

7) Generate a pseudo-time series of the scores {γg ,∗1,s , . . . , γ
g ,∗
T ,s} by setting γg ,∗t,s = γgt,s for

t = T ,T − 1, . . . ,T − w + 1

8) By using for t = T − w ,T − w − 1, . . . , 1, the backward VAR representation γg ,∗ν,s =∑p
j=1 Bj ,pγ

g ,∗
ν+j ,s + ξg ,∗ν,s

9) Generate a pseudo-functional time series {X g ,∗
1,s , . . . ,X

g ,∗
T ,s}
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Sieve bootstrap

10) For each bootstrapped X g ,∗
t,s (u), we apply a functional time-series forecasting method to

obtain its h-step-ahead forecast, denoted by X̂ g ,∗
T+h|T ,s(u)

11) Model calibration error, ωg ,∗
T+h,s(u) = X g ,∗

T+h,s(u)− X̂ g ,∗
T+h|T ,s(u), is the difference between

the VAR extrapolated forecasts and the model-based forecasts.

12) Search for an optimal tuning parameter δ, where the symmetric prediction interval

(−δ × sd[ωg ,1
T+h,s , . . . , ω

g ,B
T+h,s ], δ × sd[ωg ,1

T+h,s , . . . , ω
g ,B
T+h,s ]) achieves the smallest coverage

probability difference between the empirical and nominal coverage probabilities based on
the in-sample data.
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Sieve bootstrap

13) Using the same functional time-series forecasting method, we apply it to the original
functional time series to obtain the h-step-ahead forecast, denoted by X̂ g

T+h|T ,s(u).

14) We add the deterministic component. The prediction interval of mortality curves is

Ŷg ,ℓ
T+h|T ,s(u) = µ(u) + αs(u) + βg (u) + X̂ g ,ℓ

T+h|T ,s(u)

where ℓ symbolizes either the lower or upper bound.
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Point forecast evaluation

• Rolling window scheme: with a training set of size T , produce (T+h)−step-ahead forecast.

• Iterates over h = 1, . . . ,H = 10, the training set rolls one-step-ahead each time until
T + H.

• We use the root mean squared prediction error (RMSPE) and the mean absolute prediction
error (MAPE) to evaluate the point forecast accuracy.
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Point forecast errors

• For each of the states and gender as

RMSPEg
s (h) =

√√√√ 1

Hp

H∑
ζ=h

p∑
i=1

[
Yg
T+ζ,s(ui )− Ŷg

T+ζ,s(ui )

Yg
T+ζ,s(ui )

]2

× 100

MAPEg
s (h) =

1

Hp

H∑
ζ=h

p∑
i=1

∣∣∣∣∣Y
g
T+ζ,s(ui )− Ŷg

T+ζ,s(ui )

Yg
T+ζ,s(ui )

∣∣∣∣∣× 100

• Yg
T+ζ,s(ui ) represents the holdout sample for state s and gender g .

• Ŷg
T+ζ,s(ui ) represents the corresponding point forecasts.

• Average over H different number of forecast horizons

RMSPE
g
s =

1

H

H∑
h=1

RMSPEg
s (h) MAPE

g
s =

1

H

H∑
h=1

MAPEg
s (h)
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US data results

RMSPE
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French data results

FMP−ANOVA FM−ANOVA Independence

0

10

20

30

40

FMP−ANOVA FM−ANOVA Independence

0

10

20

30

40

26/35



Japan data results
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Interval forecast evaluation

• Empirical coverage probability is defined as follows

Empirical coveragegs = 1− 1

Hp

H∑
ζ=h

p∑
i=1

[
1

{
Yg
T+ζ|T ,s(ui ) > Ŷg ,ub

T+ζ|T ,s(ui )
}
+

1

{
Yg
T+ζ|T ,s(ui ) < Ŷg ,lb

T+ζ|T ,s(ui )
}]

• H denotes the number of curves in the forecasting period.
• p denotes the number of discretized points for the age.
• Ŷg ,ub

T+ζ|T ,s and Ŷg ,lb
T+ζ|T ,s denote the upper and lower bounds.

• Pointwise CPD is defined as

CPDg
s =

∣∣∣∣∣Empirical coveragegs − Nominal coverage

∣∣∣∣∣
The lower the CPDg

s value, the better the forecasting method’s performance.
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Interval score

• Scoring rule for the interval forecast at discretized point ui is

Sg
α,ζ,s

[
Ŷg ,lb
T+ζ|T ,s(ui ), Ŷ

g ,ub
T+ζ|T ,s(ui ),Y

g
T+ζ|T ,s(ui )

]
=

[
Ŷg ,ub
T+ζ|T ,s(ui )− Ŷg ,lb

T+ζ|T ,s(ui )
]

+
2

α

[
Ŷg ,lb
T+ζ|T ,s(ui )− Yg

T+ζ|T ,s(ui )
]
1

{
Yg
T+ζ|T ,s(ui ) < Ŷg ,lb

T+ζ|T ,s(ui )
}

+
2

α

[
Yg
T+ζ|T ,s(ui )− Ŷg ,ub

T+ζ|T ,s(ui )
]
1

{
Ŷg ,ub
T+ζ|T ,s(ui ) > Yg

T+ζ|T ,s(ui )
}

where α: denotes a level of significance.
• Mean interval score for the total of T series as

S
g
α,s =

1

Hp

H∑
ζ=h

p∑
i=1

Sg
α,ζ,s

[
Ŷg,lb
T+ζ|T ,s(ui ), Ŷ

g ,ub
T+ζ|T ,s(ui ),Y

g
T+ζ|T ,s(ui )

]
• The optimal interval score is achieved when Yg

T+ζ|T ,s(ui ) lies between Ŷg ,lb
T+ζ|T ,s(ui ) and

Ŷg ,ub
T+ζ|T ,s(ui ), with the distance between the upper bound and the lower bound being

minimal.
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Functional median polish. Empirical coverage probability
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Figure: Consider two nominal coverage probabilities 80% (dark blue) and 95% (dark green). Each plot contains
the US (most left), France (center), and Japan (most right).
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Functional median polish. CPD
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Functional median polish. Interval score
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Conclusion

• FMP and functional ANOVA produce more accurate forecasts than the ones from the
independent FTS forecasting method.

• FMP performs better than functional ANOVA for the US and France, but not for Japan.

• The individual forecast errors for horizons h = 1, . . . ,H, obtained from both methods for
each state, are available in a developed shiny app
https://cristianjv.shinyapps.io/HDFTSForecasting/.

33/35

https://cristianjv.shinyapps.io/HDFTSForecasting/


Paper: Jimenez-Varon, C. F., Y. Sun, and H. L. Shang (2023). Forecasting high-dimensional
functional time series: Application to sub-national age-specific mortality.

Thank you

34/35



References

Hyndman, R. and M. S. Ullah (2007). Robust forecasting of mortality and fertility rates: A
functional data approach. Computational Statistics and Data Analysis 51(10), 4942–4956.

Lee, R. D. and L. R. Carter (1992). Modeling and forecasting U.S. mortality. Journal of the
American Statistical Association: Applications & Case Studies 87(419), 659–671.

Rice, G. and H. L. Shang (2017). A plug-in bandwidth selection procedure for long-run covariance
estimation with stationary functional time series. Journal of Time Series Analysis 38(4), 591–
609.

35/35


	Motivation and Introduction
	Sub-national mortality data
	Methodology
	Forecast accuracy evaluation
	Conclusion
	References

