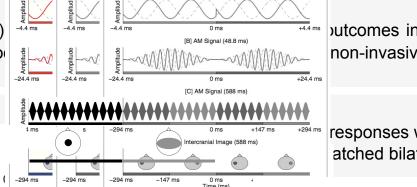
Improving language outcomes with bilateral cochlear implants

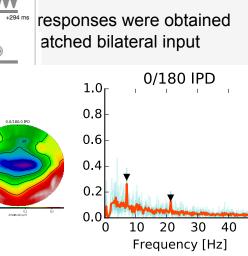
Lindsey Van Yper, Juan Pablo Faúndez, Jaime Undurraga, David McAlpine



Background

Compared to unilateral cochlear implantation (CI) having bilateral auditory input or true binaural proneural binaural processing with bilateral CI².

Methods


- Eleven adults with normal hearing
- Simulation of bilateral CI-stimulation
 - Filtered clicks trains (78 pps)
 - Interaural phase difference (IPD)
 changing from 0° to 180°at 7.1 Hz
- EEG measures
 - o Multichannel recordings (Biosemi)
 - o Referenced to Cz
 - Denoised using spatial filtering³
 - Significant response = significant
 Hotelling's T2 test⁴ at ≥5% of channels

[B] AM Signal (48.8 ms)

Fig 1: Stimuli in time domain

outcomes in deaf children. It remains unclear whether this is due to non-invasive technique that may be used to gain further insight into

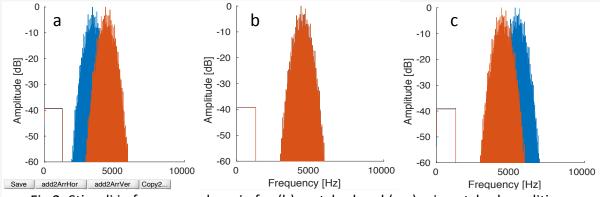

Significant False TRUE

Fig 3: Topography and evoked responses evoked by matched condition

Fig 4: Responses were smaller for -1 than 0 kHz offset (t(8.2)=-2.71, p=0.03), +1 vs. 0 kHz were borderline non-significant (t(7.8)=2.04, p=0.08).

- EEG responses can be obtained to simulation of bilateral CI
- · Mismatched auditory inputs reduced the magnitude of the responses
- The technique may be used to (1) assess whether children with better matched CIs have better outcomes and (2) match interaural electrode pairs

Amplitude

Fig 2: Stimuli in frequency domain for (b) matched and (a-c) mismatched conditions

References:

- [1] Sarant et al., 2014, Ear Hear
- [2] Haywood et al., 2015, Trends Hear
- [3] de Cheveigné and Simon, 2008, J Neurosci Methods
- [4] Picton et al., 2003, Int J of Audiol

Acknowledgements:

This research has been funded by the Australian Government through the Australian Research Council (project number FL160100108)