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Abstract

Cohort effects are important factors in determining the evolution of human mor-
tality for certain countries. Extensions of dynamic mortality models with cohort
features have been proposed in the literature to account for these factors under the
generalised linear modelling framework. In this paper we approach the problem of
mortality modelling with cohort factors incorporated through a novel formulation
under a state-space methodology. In the process we demonstrate that cohort factors
can be formulated naturally under the state-space framework, despite the fact that
cohort factors are indexed according to year-of-birth rather than year. Bayesian
inference for cohort models in a state-space formulation is then developed based
on an efficient Markov chain Monte Carlo sampler, allowing for the quantification
of parameter uncertainty in cohort models and resulting mortality forecasts that
are used for life expectancy and life table constructions. The effectiveness of our
approach is examined through comprehensive empirical studies involving male and
female populations from various countries. Our results show that cohort patterns
are present for certain countries that we studied and the inclusion of cohort factors
are crucial in capturing these phenomena, thus highlighting the benefits of intro-
ducing cohort models in the state-space framework. Forecasting of cohort models
is also discussed in light of the projection of cohort factors.

Keywords: mortality modelling, cohort features, state-space model, Bayesian inference, Markov
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1 Introduction

The declining trend of mortality rates is generally observed in many developed countries.
It is widely acknowledged among actuaries and demographers that dynamic mortality
models are required to account for the uncertainty associated with the projection of
mortality for different generations. From governments who are responsible for pension
policy design to insurers who offer retirement income products, it is important to consider
and incorporate different factors that would impact the projections of mortality rates.
Arguably one of the most discussed and important factors is the so-called cohort effect,
that is, the effect of year-of-birth on mortality rates.

It is perhaps not surprising that people born in different years or generations would
undergo different mortality experiences. Willets (2004) finds evidence for the existence
of cohort trends in the population of England and Wales. Murphy (2009) discusses the
“golden generations” of the British population who were born in early 1930s and have
experienced exceptionally rapid improvements in mortality rates. Willets (2004), Mur-
phy (2009) and Murphy (2010) provide detailed discussions on cohort effects including
their identification from mortality data and competing explanations. The aforementioned
studies are not model-based however, but rely on empirical data analysis and qualitative
analysis such as descriptive and graphical representations to conclude the significance of
cohort effects on population mortality.

For actuarial applications such as longevity risk management (Cairns et al. (2008) and
Barrieu et al. (2012)), one is often interested in building dynamic mortality models with
stochastic cohort features. Renshaw and Haberman (2006) extend the well-known Lee-
Carter mortality model (Lee and Carter (1992)) by introducing an age-modulated cohort
effect. In a similar way, the Cairns-Blake-Dowd mortality model introduced in Cairns
et al. (2006) is extended to incorporate cohort factors in Cairns et al. (2009). In contrast
to studying cohort effects via qualitative arguments, mortality models offer a quantitative
and statistical approach to identify and analyse cohort patterns exhibited in mortality
data. Note that when using cohort models, the cohort patterns observed can be affected
by the choice of identifiability constraints.

There are two main approaches for estimating mortality models. The first approach re-
lies on least squares estimation based on singular value decomposition (SVD), pioneered by
Lee and Carter (1992) in the mortality context, see also Renshaw and Haberman (2003),
Yang et al. (2010) and Shang et al. (2011). The second approach employs regression-
based methods to calibrate mortality models (Brouhns et al. (2002)). For some recent
studies based on this approach, see O’Hare and Li (2012), van Berkum et al. (2016) and
Enchev et al. (2016). The recent paper Currie (2016) provides a comprehensive summary
on mortality modelling based on the generalised linear modelling framework. In particu-
lar, the paper points out that there are convergence and robustness problems, caused by
identifiability issues, that need to be resolved for models with cohort features.

In this paper, we approach the problems of estimating and forecasting mortality with
cohort features via state-space methodology, which is a natural extension of the framework
recently described in Fung et al. (2017) to the cohort model formulation. The main
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contribution of this paper is to demonstrate how mortality models with cohort effects can
be formulated, estimated and forecasted under a Bayesian state-space framework. Other
works using the state-space approach for mortality modelling include Pedroza (2006),
De Jong and Tickle (2006), Kogure et al. (2009) and Liu and Li (2016b). In our view,
the state-space approach has three major advantages.

First, the ability of modelling, estimating and forecasting mortality under a unified
framework can avoid the potential pitfalls of the 2-step estimation procedure typically
found in the literature. As discussed in details in Fung et al. (2017), a common practice
of estimating mortality models consists of two steps:

Step 1 Obtain estimates of parameters including period (cohort) effects; the period (co-
hort) effects are treated as parameters without the assumptions of their dynamics.

Step 2 Assume a time series model, for example ARIMA models, for the period (cohort)
effects; parameters of the time series model are then estimated by fitting the model
to period (cohort) effects obtained from Step 1.

In a recent study in Leng and Peng (2016), the authors point out that the least-squares
method for the 2-step estimation approach utilised in Lee and Carter (1992) will in gen-
eral lead to inconsistent estimators unless restrictions are imposed on the possible range
of time series models for the underlying dynamics. One may argue that it is more sat-
isfactory to perform estimation and forecasting under a single universal framework, and
one such example is the state-space methodology which is well-established in the statistics
community.

Second, the ability to provide confidence or credible intervals for the estimated pa-
rameters, and hence the quantification of parameter risk in mortality projections, is a
significant issue in valuing liabilities in life insurance portfolio and pension schemes. The
impact of parameter uncertainty on forecasting mortality rates is documented in Czado
et al. (2005), Koissi et al. (2006) and Kleinow and Richards (2016). A Bayesian approach
to mortality modelling via credit risk plus methodology is considered in Shevchenko et al.
(2015) and Hirz et al. (2017a,b). The rather short time series data used for calibration
purpose typically assumed in the literature1 further enforce the need to account for pa-
rameter uncertainty where confidence intervals are required. The state-space approach
offers a particularly rich and flexible framework for Bayesian and frequentist estimation,
where a range of techniques such as filtering, sequential Monte Carlo and Markov chain
Monte Carlo (MCMC) methods can be employed (Fung et al. (2017)).

Third, the state-space approach allows for a wide range of mortality models to be
considered while estimation and forecasting can still be performed efficiently. Fung et al.
(2017) show that a majority of the popular mortality models can be cast in state-space
formulation; in addition, stochastic volatility features can be introduced to dynamic mor-
tality models where numerical filtering techniques are employed for model estimation.

1It is often the case that mortality rates data obtained before 1960 or even 1970 are not used when
calibrating mortality models.
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Applications of state-space formulation of mortality models in pricing and risk manage-
ment of longevity-linked products are, for example, studied in Fung et al. (2015), Kogure
and Kurachi (2010), Liu and Li (2016a) and Liu and Li (2016b).

Despite the advantages of the state-space method, the approach is still under explored
in our view. A key element that is as yet missing from this literature, that we aim
to address in this paper, is the consideration of cohort effects in a state-space modelling
setting. Given the fact that cohort effects are known to be present in certain countries, the
possibility of exploiting cohort features under a state-space framework will undoubtedly
enhance an actuary’s ability to analyse mortality data. The importance of incorporating
cohort effects in state-space setting is also emphasized in Liu and Li (2016b), where the
authors “acknowledge that cohort effects are significant in certain populations, and that
it is not trivial to incorporate cohort effects in a state-space representation in which the
vector of hidden states evolve over time rather than year of birth” (p.66). Therefore, in
this paper we focus on addressing this missing piece of model formulation.

The paper is organised as follows. Section 2 provides an overview of different ap-
proaches to mortality modelling, leading to the introduction of the state-space method-
ology. State-space formulation of cohort models is discussed in details in Section 3. In
Section 4, we develop Bayesian inference for cohort models under the state-space frame-
work based on efficient MCMC sampling. Empirical studies for male and female popu-
lation data from various countries using the state-space cohort models are conducted in
Section 5. Finally, Section 6 concludes.

2 State-space approach to mortality modelling

In this section we provide an overview of different approaches to modelling mortality as
well as their estimation methodologies. Our focus will be on single population mortality
modelling, however the essential elements of the approaches and methods discussed can
be carried over to multi-population settings, see for example Enchev et al. (2016).

2.1 Stochastic mortality models

The definitions here follow Dowd et al. (2010). We use qx,t to denote the true mortality
rate, i.e., the probability of death between time t and t+ 1 for individuals aged x at time
t. The true death rate, denoted by mx,t, is related to the true mortality rate via

qx,t = 1− e−mx,t . (1)

One can use the observed number of deaths Dxt and initial exposures Ei
xt data2 to obtain

the crude mortality rate as q̃x,t = Dxt/E
i
xt, which is a crude estimate of qx,t. Similarly,

the crude death rate m̃x,t is defined as the ratio of the observed number of deaths Dxt to

2The initial exposure Ei
xt is the population size aged x at the beginning of year t.
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the average population size Ext, known as central exposures, ages x last birthday during
year t.3

The work of Lee and Carter (1992) introduced the Lee-Carter (LC) model

ln m̃x,t = αx + βxκt + εx,t, (2)

where the terms αx and βxκt aim to capture the age and period effects respectively.
Since they proposed to use singular value decomposition (SVD) to calibrate the model to
mortality data, the noise term εx,t is included in addition to the age and period effects.
Due to identification issue, it is typical to impose the following constraints

xp∑
x=x1

βx = 1,
tn∑
t=t1

κt = 0, (3)

so that the LC model becomes identifiable. Here p and n represent the number of ages
and years respectively. Note that the crude death rate m̃x,t, which is obtained directly
using mortality data, is used to obtain estimates of the parameters.

In contrast to the SVD approach where the models are fitted to crude death rates,
Brouhns et al. (2002) considers an alternative approach where mortality models are fitted
to the number of deaths instead. Using the number of observed deaths Dxt and central
exposures Ext, the model proposed by Lee and Carter can be reconsidered as

Dxt ∼ Poisson(Extmx,t), where mx,t = eαx+βxκt . (4)

In this approach, the number of deaths plays an important role in calibrating the model
and consequently the additive error structure in (2) is replaced by the Poisson error
structure. Also notice that confusion may arise if one does not distinguish the true and
crude death rate, for example it does not make sense to use m̃x,t in (4).

Besides having a different statistical assumption on the error structure, the Poisson
regression setting, which belongs to the class of models known as generalised linear/non-
linear models, has the advantage that the cohort factor can be incorporated while estima-
tion can still be performed without extra difficulty in contrast to the SVD approach. The
Lee-Carter model in the Poisson setup can be enriched by adding a cohort factor γt−x,
where t− x refers to the year-of-birth, as follows:

Dxt ∼ Poisson(Extmx,t), where mx,t = eαx+βxκt+β
γ
xγt−x . (5)

which was proposed in Renshaw and Haberman (2006). As t and x take values in
{t1, . . . , tn} and {x1, . . . , xp} respectively, the cohort index t − x takes values in {t1 −
xp, . . . , tn− x1}. The dimension of the cohort index is thus n+ p− 1 which is different to
the dimension of the period index n.

3The average population size is often determined approximately as the population size at the middle
of the year.
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The Renshaw-Haberman model (5) is suffering from an identification problem since
the model is invariant to the following transformation

(αx, βx, κt, β
γ
x , γt−x)→

(
αx + c1βx + c2β

γ
x ,

1

c3
βx, c3 (κt − c1) ,

1

c4
βγx , c4 (γt−x − c2)

)
, (6)

where c3 6= 0 and c4 6= 0. One can impose the following parameter constraints

xp∑
x=x1

βx = 1,

xp∑
x=x1

βγx = 1,
tn∑
t=t1

κt = 0,

tn−x1∑
c=t1−xp

γc = 0, (7)

to ensure a unique model structure is identified. Hunt and Villegas (2015) and Currie
(2016) provide further discussions on the identifiability issues for cohort models.

Under the Lee-Carter original approach, one might consider modelling the crude death
rate with cohort effects as follows:

ln m̃x,t = αx + βxκt + βγxγt−x + εx,t. (8)

However the dimension of the cohort index would cause difficulty for the SVD estima-
tion approach. One of the goals of the present paper is to show that model (8) can be
successfully estimated by considering it as a state-space model instead.

Model Dynamics

Lee and Carter (1992) lnmx,t = αx + βxκt

Renshaw and Haberman (2003) lnmx,t = αx +
∑k

i=1 β
(i)
x κ

(i)
t

Renshaw and Haberman (2006) lnmx,t = αx + β
(1)
x κt + β

(2)
x γt−x

Currie (2009) lnmx,t = αx + κt + γt−x

Cairns et al. (2006) logit(qx,t) = κ
(1)
t + κ

(2)
t (x− x̄)

Cairns et al. (2009) logit(qx,t) = κ
(1)
t + κ

(2)
t (x− x̄) + γt−x

Plat (2009) lnmx,t = αx + κ
(1)
t + κ

(2)
t (x̄− x) + κ

(3)
t (x̄− x)+ + γt−x

Table 1: Examples of dynamic mortality models; here true death/mortality rates are being
modelled.

Examples of popular mortality models are provided in Table 1. Renshaw and Haber-
man (2003) consider a multi-period (

∑k
i=1 β

(i)
x κ

(i)
t ) extension of the LC model. Renshaw

and Haberman (2006) introduce a cohort factor (γt−x) to LC model. A simplified version
of the model in Renshaw and Haberman (2006) is studied in Currie (2009). Cairns et al.
(2006) propose the so-called CBD model to model logit(qx,t) := ln (qx,t/(1− qx,t)), where
x̄ is the average age of the sample range, i.e. x̄ = 1

p

∑p
i=1 xi, designed to capture the

mature-age mortality dynamics. Cairns et al. (2009) extend the CBD model by incorpo-
rating a cohort factor. Identification constraints for the models in Table 1 are discussed
in Villegas et al. (2015).
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Remark 2.1 An alternative approach to modelling cohort mortality is to consider the
continuous-time modelling of the mortality intensity (force of mortality) µx+t,t, with x
and t taking continuous values. It is of particular relevance for financial and actuarial
applications as pricing formulas can be derived and expressed via the mortality intensity.
Continuous-time approaches are discussed in Cairns et al. (2008), and they have been
studied extensively in the literature, see for example Biffis (2005), Dahl and Moller (2006),
Luciano and Vigna (2008) and Fung et al. (2014).

2.2 Generalised linear modelling framework

Estimation of stochastic mortality models such as those presented in Table 1 can be
performed based on a flexible approach known as generalised linear modelling (GLM)
framework (Villegas et al. (2015), Currie (2016)).

Given central exposures Ext, it is typical to approximate initial exposures as Ei
xt ≈

Ext + 1
2
Dxt. Under the GLM framework, one is interested in modelling the number of

deaths Dxt as random variables. Common examples include Poisson error structure

Dxt ∼ Poisson(Extmx,t) (9)

and Binomial error structure

Dxt ∼ Binomial(Ei
xt, qx,t). (10)

Note that we have the expected values E [Dxt/Ext] = mx,t and E[Dxt/E
i
xt] = qx,t for the

Poisson and Binomial models respectively. Through the so-called link function g, one can
associate the mean E [Dxt/Ext] or E[Dxt/E

i
xt] with a predictor ρx,t as

g

(
E
[
Dxt

Ēxt

])
= ρx,t (11)

where Ēxt can be initial or central exposures. Typical link functions for the Poisson and
Binomial models are the log function and the logit function respectively.

The models in Table 1, from the viewpoint of GLM framework, provide a specification
for the predictor. In particular, the last four models in Table 1 assume linear predictors
while the first three models describe non-linear predictors since multiplicative terms of
parameters such as βxκt are involved in the predictor. The latter models can be referred
to as generalised non-linear models (Currie (2016)).

We note here that a clear advantage of the GLM framework is that it allows sophisti-
cated error structures such as Poisson and Binomial distributions compared to the SVD
approach. However, despite its flexibility, the framework involves a 2-step procedure for
estimation which is in contrast to the state-space approach presented in the following
sections where a joint estimation of model parameters and latent factors is performed.
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2.3 State-space modelling framework

In this paper we extend previous work, see for example Pedroza (2006), Kogure and
Kurachi (2010) and Fung et al. (2017), on using state-space techniques to model mortality
dynamics with cohort features taken into consideration. We first present a brief review of
mortality modelling via state-space representation.

A state-space model consists of two equations: the observation equation and the state
equation which are given, respectively, by

zt = a(φt,ut), (12a)

φt = b(φt−1,vt), (12b)

where zt represents an observed multi-dimensional time series and the state φt represents
a multi-dimensional hidden Markov process. Here, ut and vt are independent random
noises and the functions a and b can be nonlinear in general. It is clear that each of the
mortality models shown in Table 1, with mx,t replaced by m̃x,t and an inclusion of a noise
term, would specify the observation equation of a state-space model, where the period
and cohort factors represent the hidden states. A time series model for the period effects
will form the state equation, thus completing the description of a state-space system. As
an example, the Lee-Carter model can be reformulated as

yt = α+ βκt + εt, εt
iid∼ N(0, Ipσ

2
ε), (13a)

κt = κt−1 + θ + ωt, ωt
iid∼ N(0, σ2

ω), (13b)

where yx,t = ln m̃x,t, Ip is a p-dimensional identity matrix and N(a, b) denotes the normal
distribution with mean a and covariance b.

Fung et al. (2017) study two generalisations of the state-space Lee-Carter system (13)
to analyse long term mortality time series for the Danish population. The first generalisa-
tion is to incorporate heteroscedasticity into the model, i.e. the homogeneous covariance
structure Ipσ

2
ε in the observation equation in (13) which is replaced by a heterogeneous

covariance matrix Ipσ
2
ε,x. Note that the product Ipσ

2
ε,x is a p by p diagonal matrix where

the diagonal elements are σ2
ε,x1
, . . . , σ2

ε,xp . This feature turns out to be a major improve-
ment to model fit for Danish mortality data. For simplicity, we assume constant variance
in the observation equation for the models considered in the paper. Estimation for models
with heteroscedasticity structure can also be performed as discussed in Fung et al. (2017).

The second generalisation is to consider stochastic volatility for the latent process, that
is the period effect κt in the state equation in (13), to capture the observed characteristics
of the long term time series data. Specifically, the following extended LC model with
stochastic volatility feature is proposed:

yt = α+ βκt + εt, εt
iid∼ N(0, σ2

εIp), (14a)

κt = κt−1 + θ + ωt, ωt|ξt ∼ N(0, exp{ξt}), (14b)

ξt = λ1ξt−1 + λ2 + ζt, ζt
iid∼ N(0, σ2

ξ ) (14c)
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where ξt captures the stochastic volatility for the period effect. Bayesian inference for the
model is developed based on particle MCMC method (Andrieu et al. (2010)).

Despite the fact that cohort models are essential in mortality modelling as shown in
Table 1, a formulation of mortality models with cohort factors incorporated is yet to be
studied and analysed in the state-space setting in the literature. In the following we will
present and demonstrate our approach for dealing with cohort models via state-space
methodology.

3 Cohort effects: state-space formulation

This section presents a formulation of cohort models in state-space framework. We first
describe how the cohort factor impacts the evolution of the age-specific death rates. The
insight will give us a way to derive a state-space representation of the cohort effects.
Bayesian inference for cohort models will be developed in Section 4.

3.1 Background

Renshaw and Haberman (2006) introduces a cohort factor γt−x to the Lee-Carter model
together with an age-modulating coefficient βγx as follows:

lnmx,t = αx + βxκt + βγxγt−x. (15)

Here t−x represents year-of-birth and hence γt−x is a factor created to capture the cohort
effect.

Numerical estimation of the cohort model (15), however, is reported in Hunt and
Villegas (2015) to produce mixed convergence results based on the regression setup. Ro-
bustness of the resulting regression-based cohort models is also questioned as the goodness
of model fit is reported to be sensitive to the data being used and the fitting algorithm.
These robustness and convergence problems are also noticed in Currie (2016) where the
paper presents a comprehensive approach for mortality modelling based on generalised
linear and non-linear models, see also Section 2.2 for a brief discussion.

Moreover, it is shown in Leng and Peng (2016) that the 2-step estimation approach
utilised in Lee and Carter (1992) will in general lead to inconsistent estimators unless
restrictions are imposed on the possible range of time series models for the underlying
dynamics. The Bayesian state-space approach, in contrast, is not subject to such restric-
tions as one can perform estimation and forecasting under a single universal framework.
We report our empirical findings for the estimation and forecasting of state-space cohort
models in Section 5.

3.2 State-space formulation

In this paper we focus on the full cohort model

ln m̃x,t = αx + βxκt + βγxγt−x + εx,t, (16)
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where a dynamics for the crude death rate is being modelled and a noise term εx,t is
included.

To aid in explaining how we derive a state-space representation of cohort models, we
consider a matrix of cells where the row and column corresponds to age (x) and year (t)
respectively, see Table 2. Here we assume x = 1, . . . , 3 and t = 1, . . . , 4 for illustration.
The cohort factor γt−x is indexed by the year-of-birth t − x and its value on each cell
is displayed in Table 2. We first notice that the value γt−x is constant on the “cohort
direction”, that is on the cells (x, t), (x+ 1, t+ 1) and so on.

age/year t = 1 t = 2 t = 3 t = 4

x = 1 γ0 γ1 γ2 γ3
x = 2 γ−1 γ0 γ1 γ2
x = 3 γ−2 γ−1 γ0 γ1

Table 2: Values of the cohort factor γt−x on a matrix of cells (x, t).

Now consider the cohort model (16) and let γxt := γt−x. The model can be expressed
in matrix form asln m̃1,t

ln m̃2,t

ln m̃3,t

 =

α1

α2

α3

+

β1β2
β3

κt +

βγ1 0 0
0 βγ2 0
0 0 βγ3

γ1tγ2t
γ3t

+

ε1,tε2,t
ε3,t

 . (17)

As time flows from t = 1 to t = 4, the cohort vector (γ1t , γ
2
t , γ

3
t )
>, which represents the

cohort factor in matrix form, proceeds as γ11(= γ0)
γ21(= γ−1)
γ31(= γ−2)

→
 γ12(= γ1)
γ22(= γ0)
γ32(= γ−1)

→
γ13(= γ2)
γ23(= γ1)
γ33(= γ0)

→
γ14(= γ3)
γ24(= γ2)
γ34(= γ1)

 . (18)

The key observation here from (18) is that the first two elements of the cohort vector at
time t − 1 will appear as the bottom two elements of the cohort vector at time t. The
pattern can also be observed from Table 2. Therefore, the evolution of the cohort vector
must satisfy γ1tγ2t

γ3t

 =

∗ ∗ ∗1 0 0
0 1 0

γ1t−1γ2t−1
γ3t−1

+ . . . , (19)

which is in fact a result of the defining property of “cohort”: γt−x = γ(t−i)−(x−i). Further-
more, it is obvious from (19) that one only needs to model the dynamics of γ1t but not γ2t
and γ3t . We will use this observation to derive a state-space formulation of cohort models
which is presented next.
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Let yx = ln m̃x,t, in matrix notation we have (recall that γxt := γt−x)
yx1,t
yx2,t

...
yxp,t

 =


αx1
αx2

...
αxp

+


βx1 βγx1 0 · · · 0
βx2 0 βγx2 · · · 0
...

...
...

. . .
...

βxp 0 0 · · · βγxp



κt
γx1t
γx2t
...
γ
xp
t

+


εx1,t
εx2,t

...
εxp,t

 . (20)

It is clear that, from (20), we have yxi,t = αxi + βxiκt + βγxiγ
xi
t + εxi,t which corresponds

to (16) for i ∈ {1, . . . , p}. Here (κt, γ
x1
t , . . . , γ

xp
t )> is the p+ 1 dimensional state vector.

From (18)-(19), we can write the state equation in matrix notation as follows:

κt
γx1t
γx2t
...

γ
xp−1

t

γ
xp
t


=



1 0 0 · · · 0 0
0 λ 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0





κt−1
γx1t−1
γx2t−1

...
γ
xp−1

t−1
γ
xp
t−1


+



θ
ζ
0
...
0
0


+



ωκt
ωγt
0
...
0
0


. (21)

Here we assume κt is a random walk with drift process (ARIMA(0, 1, 0))

κt = κt−1 + θ + ωκt , ωκt
iid∼ N(0, σ2

ω), (22)

and the dynamics of γx1t is described by a stationary AR(1) process (ARIMA(1,0,0))

γx1t = λγx1t−1 + ζ + ωγt , ωγt
iid∼ N(0, σ2

γ), (23)

where |λ| < 1. It should be note that one may consider non-stationary processes such as
the random walk with drift process by fixing λ = 1. For illustration purpose we consider
stationary processes for the cohort factor in this paper. We will provide further discussion
on the modelling of cohort factor in Section 5.3.2. One may consider other dynamics for
γx1t by specifying the second row of the p + 1 by p + 1 matrix in (21). For example, one
can consider generally the state equation as

κt
γx1t
γx2t
...

γ
xp−1

t

γ
xp
t


=



1 0 0 · · · 0 0
0 λ1 λ2 · · · λp−1 λp
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0





κt−1
γx1t−1
γx2t−1

...
γ
xp−1

t−1
γ
xp
t−1


+



θ
ζ
0
...
0
0


+



ωκt
ωγt
0
...
0
0


, (24)

where γx1t = λ1γ
x1
t−1 +λ2γ

x2
t−1 + · · ·+λp−1γ

xp−1

t−1 +λpγ
xp
t−1 +ζ+ωγt which is an ARIMA(p,0,0)

process since γxit−1 = γx1t−i, i = 2, . . . , p. Note that in general the state-space modelling
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approach can handle seasonal ARIMA models as well as non-linear models, see for in-
stance Harvey (1989), Gourieroux and Monfort (1997) and Petris et al. (2009) for their
representations in state-space form.

We can express the matrix form of (20)-(21) succinctly as

yt = α+Bϕt + εt, εt
iid∼ N(0, σ2

εIp), (25a)

ϕt = Λϕt−1 + Θ + ωt, ωt
iid∼ N(0,Υ), (25b)

where

B =


βx1 βγx1 0 · · · 0
βx2 0 βγx2 · · · 0
...

...
...

. . .
...

βxp 0 0 · · · βγxp

 , Λ =



1 0 0 · · · 0 0
0 λ 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0


, Θ =



θ
ζ
0
...
0
0


, (26)

and ϕt = (κt, γ
x1
t , . . . , γ

xp
t )>, Ip the p-dimensional identity matrix and Υ is a p+1 by p+1

diagonal matrix with diagonal (σ2
κ, σ

2
γ, 0, . . . , 0). For simplicity we assume homoscedas-

ticity in the observation equation; heteroscedasticity can be considered as developed in
Fung et al. (2017). Note that the set of constraints (30) are required for the identification
of the cohort model (25).

Remark 3.1 The observation and state equations (20)-(21) imply that the cohort model
that we have formulated here belongs to the linear-Gaussian class of state-space models. As
a result one can perform efficient maximum-likelihood or Bayesian estimation on fitting
the model to data, see Fung et al. (2017). In this paper we focus on Bayesian inference so
that mortality forecasts can take into account parameter uncertainty. It should also be note
that in Fung et al. (2017) the formulation of cohort models in state-space framework is
only mentioned briefly while their estimation and forecasting were not provided due to the
focus and length of the paper. The current paper aims to fill this gap by providing details
on how one may derive the formulation of cohort models under the state-space framework
and to examine the resulting models comprehensively using a range of mortality data.

3.3 A simplified cohort model

The cohort model (15) assumes that the impact of the cohort factor on age-specific death
rates is modulated by the coefficient βγx . Iteration-based estimation of the cohort model
is reported in Cairns et al. (2009) and Hunt and Villegas (2015) to be suffering from
convergence problems. As a result, Haberman and Renshaw (2011) consider to simplify
the model structure to

lnmx,t = αx + βxκt + γt−x. (27)
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That is, the modulating coefficient βγx for the cohort factor is set to be one for all age
x. It is suggested that the simplified model (27) exhibits better estimation convergence
behaviour when fitting the model to mortality data.

Remark 3.2 When fitting cohort models to data based on the Poisson or binomial re-
gression setup via iteration-based estimation, it is typical to assume the starting values of
the iteration scheme are coming from the estimates of other similar models, for example
the LC model or APC model (Hunt and Villegas (2015), Currie (2016), Villegas et al.
(2015)). Even doing so the convergence is not guaranteed. We will report in Section 5 that
our approach based on Bayesian state-space framework do not require such an assumption
and is able to successfully perform Bayesian estimation for various countries when cohort
patterns are present in the data.

In the following, we will also consider the model

yt = α+Bsϕt + εt, εt
iid∼ N(0, σ2

εIp), (28a)

ϕt = Λϕt−1 + Θ + ωt, ωt
iid∼ N(0,Υ), (28b)

where

Bs =


βx1 1 0 · · · 0
βx2 0 1 · · · 0
...

...
...

. . .
...

βxp 0 0 · · · 1

 . (29)

It will be referred to as the simplified cohort model. In addition, the following set of
parameter constraints

xp∑
x=x1

βx = 1,
tn∑
t=t1

κt = 0,

tn−x1∑
c=t1−xp

γc = 0, (30)

is imposed to ensure the identifiability of the simplified cohort model.
Since our approach is able to estimate both the simplified and full cohort models,

(27) and (15) respectively, for a range of mortality dataset, we include the simplified
cohort model in our empirical analysis examining the performance of the simplified and
full cohort models as a comparative study.

4 Bayesian inference for cohort models

In this section we begin by detailing the Bayesian estimation of the full cohort model
in state-space formulation (25). Nested models including the simplified cohort model
(28) and the LC model (13) will be discussed in Section 4.2. We first note that the
cohort models and the LC model belong to the class of linear and Gaussian state-space
models. As a result one can apply an efficient MCMC estimation algorithm based on Gibbs
sampling with conjugate priors combined with forward-backward filtering as described in
Fung et al. (2017), this forms a special case of the so-called collapsed Gibbs sampler
framework of van Dyk and Park (2008).
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4.1 Bayesian inference for the full cohort model

For the full cohort model (25), the target density is given by

π (ϕ0:n,ψ|y1:n) ∝ π(y1:n|ϕ0:n,ψ)π(ϕ0:n|ψ)π(ψ) (31)

=
n∏
k=1

π(yk|ϕ0:k,ψ)π(ϕk|ϕk−1,ψ)π(ϕ0)π(ψ) (32)

where ϕ0:n := (κ0:n, γ
x1
0:n, . . . , γ

xp
0:n) is the p + 1 dimensional latent state vector for t ∈

{0, . . . , n}4 and ψ := (β,βγ,α, θ, ζ, λ, σ2
ε , σ

2
κ, σ

2
γ) is the 3p+6 dimensional static parameter

vector. In order to simplify the notation, we write t = 1, . . . , n instead of t = t1, . . . , tn. We
perform block sampling for the latent state via the so-called forward-filtering-backward-
sampling (FFBS) algorithm (Carter and Kohn (1994)) and the posterior samples of the
static parameters are obtained via conjugate priors. The sampling procedure is described
in Algorithm 1, where M is the number of MCMC iterations performed. Note also that
the notation ψ

(i)
−ν := (ψ

(i)
g1 , . . . , ψ

(i)
gν−1 , ψ

(i−1)
gν+1 , . . . , ψ

(i−1)
g3p+6) is used in Algorithm 1 where the

subscript g1 refers to the first parameter and so on.5 Moreover, the initial values ψ(0)

of the Markov chain can be set to any reasonable values and after discarding the initial
iterations as burn-in period, the assumption of the initial values used will not impact the
estimation results if the chain mixes well.

Remark 4.1 Note that some elements of the state vector evolve deterministically as spec-
ified in (21). Consequently the joint model decomposes as follows into product measures,
which is the joint measures of the random observation and the latent state process, given
explicitly by

π (dy1:n, dκ0:n, dγ0:n;ψ) =
n∏
t=1

π (dyt|κt, γt;ψ) π (dκt, dγt|κt−1, γt−1;ψ)

=
n∏
t=1

π (dyt|κt, γt;ψ) π
(
dκt, dγ

x1
t |κt−1, γx1t−1;ψ

)
δγx1t−1

(dγx2t ) . . . δ
γ
xp−1
t−1

(
dγ

xp
t

)
,

(33)

where δw is the Dirac mass probability measure centered on point w. Then the MCMC
sampling steps involved in Algorithm 1 can be carried out and justified using the Dirac
mass probability measure for elements of the state vector that evolve deterministically. For
examples of similar models in which Dirac measure is present in the likelihood specification
and filtering equations, see e.g. Andrieu et al. (2010), Del Moral et al. (2013), Doucet
et al. (2015) and Peters et al. (2017).

4That is, ϕ0:n := (κ0, . . . , κn, γ
x1
0 , . . . , γx1

n , γ
xp

0 , . . . , γ
xp
n ). Throughout the paper, we use the notation

that X1:K := (X1, . . . , XK).
5It is typical to observe irregularity for the estimated pattern of β. Smoothing procedures are proposed

in Delwarde et al. (2007) for the SVD and Poisson regression approaches. For simplicity we do not consider
this issue in the current paper.
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In Algorithm 1, after obtaining κ̃
(i)
1:n from line 3, one can impose the constraint

∑
t κ

(i)
t =

0 by setting κ
(i)
t = κ̃

(i)
t − (1/n)

∑n
j=1 κ̃

(i)
j where t = 1, . . . , n. Similarly, once γ̃

(i)
c is

obtained from ϕ
(i)
0:n in line 3, setting γ

(i)
c = γ̃

(i)
c − (1/(n + p − 1))

∑n−x1
`=1−xp γ̃

(i)
` , where

c = 1 − xp, . . . , n − x1, will ensure the constraint
∑

c γ
(i)
c = 0 is satisfied. To impose the

constraint
∑

x β
(i)
x = 1, we set β

(i)
x = β̃

(i)
x /
∑xp

j=x1
β̃
(i)
j , where x = x1, . . . , xp, once β̃(i) is

obtained from line 5-7. Constraint for (βγ)(i) can be imposed similarly.

Algorithm 1 MCMC sampling for π(ϕ0:n,ψ|y1:n)

1: Initialise: ψ = ψ(0).
2: for i = 1, . . . ,M do
3: Sample ϕ

(i)
0:n from π(ϕ0:n|ψ(i−1),y1:n) via FFBS (Section 4.1.1).

4: Impose the constraint
∑

t κ
(i)
t = 0 and

∑
c γ

(i)
c = 0.

5: for h = 1, . . . , p do
6: Sample β

(i)
xh from its posterior π(βxh|ϕ

(i)
0:n,ψ

(i)
−βxh

,y1:n)

7: end for
8: Impose the constraint

∑
x β

(i)
x = 1.

9: for h = 1, . . . , p do
10: Sample (βγxh)(i) from its posterior π(βγxh|ϕ

(i)
0:n,ψ

(i)

−βγxh
,y1:n)

11: end for
12: Impose the constraint

∑
x(β

γ
x)(i) = 1.

13: for h = 2p+ 1, . . . , 3p+ 6 do
14: Sample ψ

(i)
h from π(ψh|ϕ(i)

0:n,ψ
(i)
−h,y1:n)

15: end for
16: end for

4.1.1 Forward-backward filtering for latent state dynamics

The FFBS procedure requires to carry out multivariate Kalman filtering forward in time
and then sample backwardly using the obtained filtering distributions. For the full cohort
model (20)-(21), the conditional distributions involved in the multivariate Kalman filtering
recursions are given by

ϕt−1|y1:t−1 ∼ N(mt−1, Ct−1), (34a)

ϕt|y1:t−1 ∼ N(at, Rt), (34b)

yt|y1:t−1 ∼ N(ft, Qt), (34c)

ϕt|y1:t ∼ N(mt, Ct), (34d)

where

at = Λmt−1 + Θ, Rt = ΛCt−1Λ
> + Υ, (35a)

ft = α+Bat, Qt = BRtB
> + σ2

εIp, (35b)
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mt = at +RtB
>Q−1t (yt − ft), Ct = Rt −RtB

>Q−1t BRt. (35c)

for t = 1, . . . , n. Since

π(ϕ0:n|ψ,y1:n) =
n∏
t=0

π(ϕt|ϕt+1:n,ψ,y1:n) =
n∏
t=0

π(ϕt|ϕt+1,ψ,y1:t), (36)

we see that for a block sampling of the latent state, one can first draw ϕn from N(mn, Cn)
and then, for t = n−1, . . . , 1, 0 (that is backward in time), draws a sample of ϕt|ϕt+1,ψ,y1:t

recursively given a sample of ϕt+1. It turns out that ϕt|ϕt+1,ψ,y1:t ∼ N(ht, Ht) where

ht = mt + CtΛ
>R−1t+1(ϕt+1 − at+1), (37a)

Ht = Ct − CtΛ>R−1t+1ΛCt, (37b)

based on Kalman smoothing (Carter and Kohn (1994)).

4.1.2 Posteriors for static parameters

To sample the posterior distribution of the static parameters in Algorithm 1, we assume
the following independent conjugate priors:

αx ∼ N(µ̃α, σ̃
2
α), βx ∼ N(µ̃β, σ̃

2
β), βγx ∼ N(µ̃βγ , σ̃

2
βγ ), (38a)

θ ∼ N(µ̃θ, σ̃
2
θ), ζ ∼ N(µ̃ζ , σ̃

2
ζ ), λ ∼ N[−1,1](µ̃λ, σ̃

2
λ), (38b)

σ2
ε ∼ IG(ãε, b̃ε), σ2

κ ∼ IG(ãκ, b̃κ), σ2
γ ∼ IG(ãγ, b̃γ), (38c)

where N[−1,1] denotes a truncated Gaussian with support [−1, 1] and IG(ã, b̃) denotes an

inverse-gamma distribution with mean b̃/(ã − 1) and variance b̃2/((ã − 1)2(ã − 2)) for
ã > 2. The posteriors of the static parameters are then obtained as follows:6

αx|y,ϕ,ψ−αx ∼ N

(
σ̃2
α

∑n
t=1(yx,t − βxκt − βγxγxt ) + µ̃ασ

2
ε

σ̃2
αn+ σ2

ε

,
σ̃2
ασ

2
ε

σ̃2
αn+ σ2

ε

)
, (39)

βx|y,ϕ,ψ−βx ∼ N

(
σ̃2
β

∑n
t=1(yx,t − (αx + βγxγ

x
t ))κt + µ̃βσ

2
ε

σ̃2
β

∑n
t=1 κ

2
t + σ2

ε

,
σ̃2
βσ

2
ε

σ̃2
β

∑n
t=1 κ

2
t + σ2

ε

)
, (40)

βγx |y,ϕ,ψ−βγx ∼ N

(
σ̃2
βγ
∑n

t=1(yx,t − (αx + βxκt))γ
x
t + µ̃βγσ

2
ε

σ̃2
βγ

∑n
t=1(γ

x
t )2 + σ2

ε

,
σ̃2
βγσ

2
ε

σ̃2
βγ

∑n
t=1(γ

x
t )2 + σ2

ε

)
,

(41)

θ|y,ϕ,ψ−θ ∼ N

(
σ̃2
θ

∑n
t=1(κt − κt−1) + µ̃θσ

2
ω

σ̃2
θn+ σ2

ω

,
σ̃2
θσ

2
ω

σ̃2
θn+ σ2

ω

)
, (42)

ζ|y,ϕ,ψ−θ ∼ N

(
σ̃2
ζ

∑n
t=1(γ

x1
t − λγx1t−1) + µ̃ζσ

2
γ

σ̃2
ζn+ σ2

γ

,
σ̃2
ζσ

2
γ

σ̃2
ζn+ σ2

γ

)
, (43)

6For simplicity, we denote y = y1:n, ϕ = ϕ0:n and ψ−h = (ψ1, . . . , ψh−1, ψh+1, . . . , ψ3p+6).
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λ|y,ϕ,ψ−λ ∼ N[−1,1]

(
σ̃2
λ

∑n
t=1((γ

x1
t − ζ)γx1t−1) + µ̃λσ

2
γ

σ̃2
λ

∑n
t=1(γ

x1
t−1)

2 + σ2
γ

,
σ̃2
λσ

2
γ

σ̃2
λ

∑n
t=1(γ

x1
t−1)

2 + σ2
γ

)
, (44)

σ2
ε |y,ϕ,ψ−σ2

ε
∼ IG

(
ãε +

np

2
, b̃ε +

1

2

xp∑
x=x1

n∑
t=1

(yx,t − (αx + βxκt + βγxγ
x
t ))2

)
, (45)

σ2
κ|y,ϕ,ψ−σ2

κ
∼ IG

(
ãκ +

n

2
, b̃κ +

1

2

n∑
t=1

(κt − (κt−1 + θ))2
)
, (46)

σ2
γ|y,ϕ,ψ−σ2

γ
∼ IG

(
ãγ +

n

2
, b̃γ +

1

2

n∑
t=1

(
γx1t − λγx1t−1

)2)
. (47)

We note here that if one is interested in modelling the cohort factor as a random walk
with drift process which is non-stationary, one may fix λ = 1 and hence there is no need
to estimate the parameter λ.

4.2 Bayesian inference for nested models

The MCMC estimation for the full cohort model presented in Algorithm 1 can be applied
to the nested models including the simplified cohort model and the LC model with only
small adjustments.

The static parameter vector for the simplified cohort model is given by

ψ := (β,α, θ, ζ, λ, σ2
ε , σ

2
κ, σ

2
γ), (48)

where the sampling of the age-modulating coefficients βγx for the cohort factor is not
required. Consequently line 9-12 in Algorithm 1 can be removed in this case. Moreover,
for the simplified cohort model, we set βγx = 1 in the posterior distributions of αx, βx and
σ2
ε in (39), (40) and (45) respectively.

The LC model can be viewed as a further nested model of the simplified cohort model
with the cohort factor γt−x = 0. As a result the state equation is one-dimensional with
ϕ0:n := κ0:n and the static parameter vector consists of

ψ := (β,α, θ, σ2
ε , σ

2
κ). (49)

Recall the constraints (3) for the LC model. As a result the constraint
∑

c γ
(i)
c = 0 in line

4 and the sampling of βγx in line 9-12 in Algorithm 1 are not required. We also set γxt = 0
in the posterior distributions for β, α and σ2

ε in (39), (40) and (45) respectively. Further
details for a Bayesian estimation of the LC model can be found in Fung et al. (2017).

5 Empirical Studies

We analyse several sets of mortality data from different countries based on the cohort
models formulated in the state-space framework. We consider both the full cohort model
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and the simplified cohort model. In addition, we compare the cohort models against
the LC model for model fitting as well as their forecasting properties. The countries
that we consider includes England and Wales (UK), United States (US) and Italy (ITA).
We perform our analysis on both male and female mortality data to investigate whether
cohort effect within a country is shared for both genders. The data is obtained from the
Human Mortality Database7. The year range is from year 1970 to 2010, and we restrict
our attention to the age range 65-95. Consequently the range for the year-of-birth is
1875-1945.

5.1 Model estimation

We run the Markov chain sampler described in Section 4 for 30,000 iterations and the
burn-in period is set to be 15,000 iterations to ensure that the chain has arrived to
the stationary state; thus we are left with 15,000 posterior samples. For all Gaussian
priors N(µ̃, σ̃2), including the truncated Gaussian N[−1,1](µ̃, σ̃

2), we assume µ̃ = 0 and

σ̃2 = 10; while for the inverse-gamma priors IG(ã, b̃) we set ã = 2.01 and b̃ = 0.01. The
hyperparameters are chosen and tested to ensure the priors are sufficiently vague. To start
the Kalman filter, we assumem0 = 0 and C0 is a diagonal covariance matrix with diagonal
elements all equal to 10 (see (34a)). We refer x = {x1, . . . , xp} to age = {65, . . . , 95} and
t = {t1, . . . , tn} to year = {1970, . . . , 2010} (i.e. p = 31 and T = 41).

As noted previously, no particular special initialization is required with this methodol-
ogy, it seems relatively robust to the choice of starting points. To start the chain for the full
cohort model, initial values of the static parameters are set as follows: α

(0)
x = (1/n)

∑
t yx,t,

β
(0)
x = (βγx)(0) = 1/p, θ(0) = ζ(0) = −0.1, (σ2

ε)
(0) = (σ2

ω)(0) = (σ2
γ)

(0) = 0.01 and λ(0) = 0.5
where x ∈ {x1, . . . , xp}. The same set of values is also used for the simplified cohort model
except that sampling of βγx is not required.

5.1.1 Full cohort model

For the full cohort model, the posterior mean and 95% credible intervals for the parameters
κ, γ, α, β and βγ for the UK, US and Italy male populations are shown in Figure 1.

Given the linear trend observed, the assumption that the period effect follows a random
walk with drift process seems to be reasonable for the UK and Italy male populations,
but is less appropriate for the US male population where structural changes seem to be
present for the considered age range (see also Li et al. (2011) and van Berkum et al.
(2016)). The estimated cohort factor shows a clear kink around the year-of-birth at 1920
for the UK and Italy data. For the England & Wales population, Cairns et al. (2016)
finds evidence to suggest that the anomalies observed for the 1919 & 1920 cohorts are
due to unusual pattern of births and the methodology employed to estimate mid-year
population, which is related to the First World War. A mild kink also appears around the
generation born in 1900 for the US population. The implication for these sudden changes
of the cohort factor on model fit will be discussed in more details in Section 5.2 where

7www.mortality.org
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a comparison of the cohort models with the LC model through residuals is presented.
The heightened volatility surrounding the first several years of the cohort factor can be
attributed to having limited data that are used to infer the cohort factor for the very first
birth years, thus creating greater uncertainty.

Figure 2 displays the corresponding results for female populations. We also observe
similar patterns where the kinks in the cohort factors for the female populations appear
at almost exactly the same generations as in the male populations. It suggests that, at
least for the countries that we presented here, cohort effect is not gender-specific but is a
common phenomenon for people who belong to a particular generation. Such a finding in
this case can perhaps be attributed to shared mortality experience in both genders arising
from a significant global effect for Europe, corresponding to the First and Second World
War.

Posterior statistics for the other parameters are displayed in Table 3.

UK US Italy

Males

θ -0.18 [-0.40, 0.02] -0.20 [-0.35, -0.04] -0.37 [-0.63, -0.10]

ζ -0.57 [-0.79, -0.36] -0.21 [-0.29, -0.14] -0.55 [-0.98, -0.12]

λ 0.993 [0.977, 0.999] 0.990 [0.975, 0.999] 0.98 [0.94, 0.99]

σ2
ε 0.00028 [0.00026, 0.00030] 0.00020 [0.00019, 0.00022] 0.00032 [0.00030, 0.00035]

σ2
ω 0.46 [0.29, 0.72] 0.23 [0.14, 0.36] 0.71 [0.44, 1.10]

σ2
γ 0.46 [0.28, 0.72] 0.019 [0.008, 0.03] 1.93 [1.22, 3.00]

Females

θ -0.19 [-0.41, 0.02] -0.51 [-0.70, -0.33] -0.42 [-0.73, -0.11]

ζ -0.37 [-0.56, -0.19] 0.38 [0.17, 0.61] -0.51 [-0.88, -0.14]

λ 0.990 [0.966, 0.999] 0.89 [0.81, 0.96] 0.98 [0.94, 0.99]

σ2
ε 0.00023 [0.00021, 0.00025] 0.00022 [0.00020, 0.00024] 0.00029 [0.00027, 0.00032]

σ2
ω 0.52 [0.33, 0.81] 0.34 [0.22, 0.54] 0.98 [0.61, 1.54]

σ2
γ 0.35 [0.22, 0.56] 0.07 [0.04, 0.13] 1.41 [0.90, 2.19]

Table 3: Estimated posterior mean of the static parameters for the full cohort model on male
and female population data. [., .] next to the estimates represents 95% posterior credible interval.

5.1.2 Simplified cohort model

Figure 3 shows the posterior mean and 95% posterior credible intervals for the estimated
parameters κ, γ, α, β where UK, US and Italy males mortality data are used to fit the
simplified cohort model where it is assumed that βγx = 1 for all age x.

The estimated figures from the simplified cohort model share very similar patterns to
those obtained from the full cohort model for the UK and Italy data. Interestingly, the
same may not be said for the US data, as the estimated κ and γ are quite different to the
corresponding ones obtained from the full cohort model. As the only difference between
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the simplified and the full cohort model is that βγx is allowed to be flexible in the full cohort
model, the rather substantial difference for the estimated κ and γ between the simplified
and full cohort models might indicate that perhaps the cohort effect is so weak in the data
that the model could not distinguish the period effect and cohort effect. We will further
examine the possibility of the lack of cohort effect in US mortality data in Section 5.2.
Note also that the estimated values of γ for the simplified model are significantly smaller
than the full model. The reason for this is that the constraint

∑
x β

γ
x = 1 for the full model

dictates that βγx will take value in the order of 1/p which is substantially smaller than 1,
where p = 31 is the number of ages considered in the data; while βγx = 1 is assumed for
the simplified model. One may consider fixing βγx = 1/p in the simplified model so that
the estimated values of γ will be in the same order of magnitude for both the simplified
and full model. However this should not affect the fitting and forecasting of the resulting
model.

The corresponding estimation results for female populations are shown in Figure 4. We
again observe that the estimates show similarity between the male and female populations
for all the three countries, thus suggesting that mortality experiences for both genders
share major characteristics.

Posterior estimates for other static parameters for the simplified cohort model on male
and female mortality data are reported in Table 4.

UK US Italy

Males

θ -0.22 [-0.44, 0.007] -0.50 [-0.67, -0.33] -0.30 [-0.56, -0.03]

ζ -0.022 [-0.034, -0.011] -0.003 [-0.013, -0.007] -0.019 [-0.034, -0.004]

λ 0.991 [0.970, 0.999] 0.973 [0.909, 0.999] 0.982 [0.944, 0.999]

σ2
ε 0.00035 [0.00032, 0.00038] 0.00025 [0.00023, 0.00027] 0.00033 [0.00031, 0.00036]

σ2
ω 0.46 [0.29, 0.73] 0.23 [0.14, 0.37] 0.68 [0.43, 1.06]

σ2
γ 0.0012 [0.0008, 0.0019] 0.0007 [0.0004, 0.0010] 0.0023 [0.0015, 0.0036]

Females

θ -0.40 [-0.64, -0.14] -0.61 [-0.81, -0.41] -0.39 [-0.70, -0.08]

ζ -0.013 [-0.024, -0.002] 0.018 [0.0005, 0.043] -0.019 [-0.033, -0.005]

λ 0.98 [0.95, 0.99] 0.89 [0.74, 0.99] 0.97 [0.93, 0.99]

σ2
ε 0.00025 [0.00023, 0.00028] 0.00025 [0.00023, 0.00027] 0.00032 [0.00029, 0.00035]

σ2
ω 0.60 [0.38, 0.94] 0.38 [0.24, 0.60] 0.95 [0.60, 1.50]

σ2
γ 0.0012 [0.0008, 0.0019] 0.0006 [0.0004, 0.0010] 0.002 [0.001, 0.003]

Table 4: Estimated posterior mean of the static parameters for the simplified cohort model on
male and female population data. [., .] represents 95% posterior credible interval.

5.1.3 Robustness of the Bayesian state-space approach

To compare the robustness of the estimation performance of the Bayesian state-space
approach with the GLM approach (Section 2.2), we have tested the estimation of cohort
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models via the GLM approach using the R package called StMoMo (Version 0.4.0), see
Villegas et al. (2015), Hunt and Villegas (2015).

We consider males mortality data from seven countries including US, UK, France,
Australia, Denmark, Netherland and Italy. When fitting the cohort models in StMoMo
(using the rh() function with log link), we employ the estimated parameters from the LC
model as the initial values of the estimation scheme for the cohort models as suggested in
Villegas et al. (2015). The age-range and year-range are 65-95 and 1970-2010 respectively.

For the simplified cohort model, the estimation scheme under the GLM approach fails
to converge for data from US, France and Netherland. In contrast, the Bayesian state-
space approach is able to estimate the model for all mortality data from the countries
considered with sensible results produced.

For the full cohort model, the GLM approach is successful in estimating the model for
data from France and Italy while unsuccessful for data from US, UK, Australia, Denmark
and Netherland. On the other hand, the Bayesian state-space approach is able to estimate
the model for all mortality data from the countries considered again with sensible results
produced.

It should be note that the population data we have considered are not exhaustive but
the results suggest that the Bayesian state-space approach is more robust compared to
the GLM approach for the estimation of cohort models confirming the robustness issues
found in Hunt and Villegas (2015).8

5.2 Model fitting: comparison with LC model

We examine the fitting of the cohort models via residual heatmap as well as model ranking
via deviance information criterion (DIC). We emphasize the importance of a comparison
for the cohort models with the LC model since if cohort patterns are present in mortality
data, the ordinary LC model should not be able to capture this phenomenon but cohort
models are designed to accomplish this.

5.2.1 Residual heatmap

Residuals under a state-space model are defined as the difference between the observed
data yt and the mean of the in-sample one-step-ahead model forecast given by (see (34c))

E [yt|ψ,y1:t−1] = ft, (50)

where t = 1, . . . , n. Explicitly, we have

et := yt − ft (51)

where et is the vector of residuals at time t. Using the posterior mean as point estimator
for the static parameters, we obtain the mean of the in-sample one-step-ahead forecast ft
via Kalman filtering for the cohort models and the LC model.

8Results for the countries including France, Australia, Denmark and Netherland are available upon
request.
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Figure 5 shows residual heatmaps produced from the LC model, the simplified cohort
model and the full cohort model for the UK, US and Italy male populations. The dis-
tinctive diagonal bands observed for the fitting of the LC model for the UK and Italy
population, which correspond to the generations born around 1920, clearly suggest that
cohort effects are strongly present in these countries and the LC model fails to account for
these patterns. In contrast, the cohort models considered are capable of capturing these
effects which is supported by the observation that the diagonal bands are removed from
the residual plots. These results are consistent with the estimated cohort factors shown
in Figure 1 and 2 where an apparent irregularity appears around the cohort born in 1920.

Residual heatmap from the LC model for the US male population, on the other hand,
shows only small traces of diagonal bands around the cohorts 1900 and 1920 which are
barely noticeable. The corresponding plots from the cohort models show that these bands
are diminished even further. The very faint occurrence of the diagonal bands for the US
males data is compatible with the remarks suggested in Section 5.1 that there is no clear
evidence that the US male population exhibits certain cohort patterns.

Corresponding residual heatmaps for the female populations are displayed in Fig-
ure 6. The results follow very closely to the discussion for the male populations. It
provides further evidence that major mortality characteristics including cohort effects are
not gender-specific in the considered countries.

The residual plots shown here also suggest that the deciding factor for the presence of
cohort patterns in a specific country depend on whether there are any abrupt irregularities
observed in the estimated cohort factor; such non-smooth irregularities indicate that
strong cohort patterns exist in the data where the LC model is not able to capture. On
the other hand, if the estimated cohort factor is reasonably smooth as for the US data,
cohort factors in mortality models may be not be required.

5.2.2 Deviance information criterion

We perform model ranking using deviance information criterion (DIC) which is designed
specifically for Bayesian models taking into account the trade-off between model fits and
complexity (Spiegelhalter et al. (2002)). There are several versions of DIC and here we will
focus on the so-called conditional DIC where the latent states are treated as parameters
when calculating the conditional likelihood (Celeux et al. (2006), Chan and Grant (2016)).

Specifically, the conditional DIC utilises the conditional log-likelihood which is given
by

ln π(y1:n|ψ,ϕ0:n) = −1

2

xp∑
x=x1

tn∑
t=t1

(
ln 2πσ2

ε +

(
yx,t − (αx + βxκt + βγxγt−x)

σε

)2
)
, (52)

for the full cohort model; conditional log-likelihoods for the simplified cohort model and
the LC model can be obtained similarly. Denote Ψ := (ψ,ϕ0:n), one defines

D(Ψ) = −2 lnπ(y1:n|Ψ) + 2 lnh(y1:n), (53)
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as the deviance of the model. As h(y1:n) is independent to the models considered, it is
typical to assume h(y1:n) = 1. The effective number of parameters pD is defined to be

pD = D̄(Ψ)−D(Ψ̄), (54)

where D̄(Ψ) is the mean of D(Ψ) while Ψ̄ is the posterior mean of Ψ. One then defines
the conditional DIC as

DIC := D̄(Ψ) + pD = 2D̄(Ψ)−D(Ψ̄), (55)

which can be calculated using the MCMC samples obtained as described in Section 4.
Note that models with smaller DIC values are ranked higher then models with larger DIC
values.

LC model Simplified cohort model Full cohort model

Males

UK -5418 -6376 -6666

US -5575 -6836 -7111

ITA -4758 -6433 -6474

Females

UK -5053 -6794 -6910

US -5395 -6824 -6993

ITA -5098 -6485 -6607

Table 5: DIC values for the considered models on male and female population data.

Table 5 reports the estimated conditional DIC values obtained for the considered
models on male and female population data. We observe that the improved fits are more
than compensated for the complexity arising from the inclusion of cohort factors for the
considered countries based on the estimated DIC values. The improvement of model fits
is more significant for the simplified cohort model over the LC model than the full cohort
model over the simplified cohort model. Interestingly, there is a distinct improvement
in using cohort models over the LC model on the US mortality data, despite the lack of
cohort patterns for the US data shown in Figure 5 and 6. It suggests that multi-factor
models are preferred for the US population over a single period factor model such as the
LC model. Whether a multi-period model or a period-cohort model is preferred for the
US data is an interesting question which is, however, beyond the scope of the current
paper.

5.3 Forecasting from cohort models

Forecasting of death rates for the cohort models and LC model is studied here. One of the
advantages of considering Bayesian inference via MCMC sampling for state-space mor-
tality models is that the forecasting distributions of death rates can be derived rigorously
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and the samples of the forecasting distributions can be easily generated from the samples
obtained from the MCMC estimation step.

Explicitly, we can express the forecasting distribution for the cohort models as

π(yn+k|y1:n) =

∫
π(yn+k|ϕn+k,ψ)π(ϕn+k|ϕn+k−1,ψ) . . . π(ϕn,ψ|y1:n) dψdϕn:n+k, (56)

where π(yn+k|y1:n) is the k-step ahead forecasting posterior predictive distribution. It
means that one can simulate the forecasting samples of the dynamic factors to obtain
recursively the forecasting samples of death rates as follow

ϕ
(`)
n+k ∼ N

(
Λ(`)ϕ

(`)
n+k−1 + Θ(`),Υ(`)

)
, (57a)

y
(`)
n+k ∼ N

(
α(`) +B(`)ϕ

(`)
n+k,

(
σ2
ε

)(`)
1p
)
, (57b)

for the full cohort model, where ` = 1, . . . , L and L is the number of MCMC samples
after burn-in. For the simplified cohort model one simply replaces B by Bs. Forecasting
for the LC model can be carried out by setting ϕ = κ in (56) and forecasting samples of
death rates are obtained recursively as follow

κ
(`)
n+k ∼ N

(
κ
(`)
n+k−1 + θ(`),

(
σ2
ω

)(`))
, (58a)

y
(`)
n+k ∼ N

(
α(`) + β(`)κ

(`)
n+k,

(
σ2
ε

)(`)
1p
)
, (58b)

which is a special case of (57).

5.3.1 Projection of death rates

Figure 7 displays the mean and 95% posterior predictive forecast interval of the forecasted
death rates from the full cohort model and LC model based on UK, US and Italy male
mortality data for selected ages 65, 70, 75 and 80.

We observe that forecasts from the full cohort model show substantial difference to
the forecasts from the LC model for the UK and Italy populations, while the difference is
noticeably smaller for the US data. It is consistent with our results found in Section 5.1
and 5.2 that fitting of the cohort models suggest that cohort effect is strong for the UK
and Italy populations but is weak for the US mortality data. As a result, it is expected
that, from the forecasting perspective, cohort models will show greater difference to the
LC model for the UK and Italy data but will be less so for the US data, which is confirmed
by the forecasting results shown here.

Another important observation is that there is a clear change of trend for the forecasted
death rates from the full cohort model. A closer inspection suggests that the change
appears at the generation born in 1945. For example, the change is located in year 2020
for the forecasted death rates for age 75, which corresponds to the cohort with year-
of-birth at 1945; the same conclusion can be drawn from the forecasted death rates for
other ages. Interestingly, the most recent generation considered in our data is exactly the
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year-of-birth at 1945.9 This observation indicates that this change of trend behaviour is
a consequence of the projection of the cohort factor which starts at 1945.10 We provide
further discussion on this issue in details in Section 5.3.2.

The corresponding forecasting distributions based on female mortality data are shown
in Figure 8. The observations remarked above can also be applied in this case. As
discussed in Section 5.1 and 5.2, we find that male and female populations in the studied
countries show similar mortality features including cohort patterns in terms of model
fitting. The result here signals that the same can be said from the forecasting standpoint.

A comparison of forecasting from the full cohort model and the simplified cohort model
is shown in Figure 9 for the male populations and in Figure 10 for the female populations.
It is clear that the full and simplified models generate similar forecasting distribution
for the UK and Italy populations. However, the forecasting intervals produced by the
simplified model are substantially wider than the intervals generated by the full cohort
model for the US male population; the difference is even more pronounced for the female
populations. These results suggest that if cohort patterns are strongly present in the
data, then there is little difference between the full model and the simplified model in
terms of model fitting and forecasting. On the contrary, if the data show only a weak
presence of cohort patterns, the full cohort model can lead to significant different fitting
and forecasting results to the simplified cohort model, which indicates that cohort models
may not be required in this case.

5.3.2 Projection of period and cohort factors

The regular occurrence of trend changing behaviour of the forecasted death rates at year-
of-birth 1945, which was discussed in Section 5.3.1, suggest that this phenomenon may
originate from the projection of cohort factor starting at year-of-birth 1945.

To investigate this, we plot the projection of the period and cohort factors from the
full cohort model in Figure 11 for the male populations and Figure 12 for the female
populations in the considered countries.

We first notice that the projected period factor continues the linear trend as expected
for both genders in UK, US and Italy populations. It reassures that the projection of
the period factor behaves properly and therefore we should focus on the projection of the
cohort factor to explain the aforementioned trend-changing behaviour.

Interestingly, we observe from the male populations that there is a slight change of
direction of the projected cohort factor starting from the year 1945 compared to the trend
during the calibration period 1920-1945 in the UK population. We observe essentially no
change of direction for the US population and a significant change of direction for the
Italy population. The same observation also applies to the female mortality data.

9Age range and year range for our data are 65-95 and 1970-2010 respectively; hence the most recent
generation considered is the cohort born in 2010− 65 = 1945.

10Using the R package StMoMo (Villegas et al. (2015)), which perform estimation and forecasting of
mortality models based on the GLM framework, we also observe the change of trend behaviour in the
forecasted death rates from the cohort models.
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These results strongly indicate that whether a change of trend will be observed for the
forecasted death rates depend on the property of the projected cohort factor; namely it
depends on whether there will be a change of direction from the estimated cohort factor
when the projection starts. In the UK and Italy cases, the change of direction of the
projected cohort factor at year 1945 is observed and hence results in the trend-changing
behavior of the forecasted death rates shown in Figure 7 and 8, in contrast to the case
of US data. Note also that these results are consistent with our discussion in previous
sections that cohort patterns are strongly presence in the UK and Italy data while for the
US data cohort patterns are not clear.

To investigate the consequences of using non-stationary process to model the cohort
factor under the Bayesian state-space framework, we also considered the random walk
with drift process to model the cohort factor by fixing λ = 1 in our estimation of the
full cohort model. However, in our setup we found that there is essentially no difference
of assuming λ < 1 (stationary process) and λ = 1 (non-stationary) in terms of DIC, see
Table 6.

The estimated cohort factors shown in Figure 1-4 in fact raise questions about whether
it is reasonable to assume that cohort factor dynamics can be captured by stationary
ARIMA models which are commonly found in the literature. One may argue that cohort
factors apparently exhibit trend changing behaviour. Recently there are growing interests
in applying structural change dynamics for the period factor, see Li et al. (2011), van
Berkum et al. (2016) and Liu and Li (2016b). The results suggest that this new type of
models may be equally suitable for the cohort factor dynamics. However the investigation
of this issue is out-of-scope of the current paper and will be left for future research.

Full cohort model

Males (λ < 1) Males (λ = 1)

UK -6666 -6663

US -7111 -7085

ITA -6474 -6475

Females (λ < 1) Females (λ = 1)

UK -6910 -6907

US -6993 -7077

ITA -6607 -6608

Table 6: DIC values for the full cohort models on male and female population data for
cases with λ < 1 and λ = 1.

6 Conclusion

In this paper we investigate the formulation, estimation and forecasting of cohort models
under the state-space approach. The state-space framework provides a unified environ-
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ment where estimation and forecasting of dynamics mortality models can be carried out
in a statistically rigorous manner. Continuing development of advanced statistical tech-
niques in numerical filtering and model estimations suggest that state-space method can
be an essential tool to handle the modelling of human mortality. The paper contributes
to the literature in this area by showing that cohort models are compatible with the
state-space framework.

We demonstrate in this paper that the problem of cohort factors being indexed accord-
ing to year-of-birth instead of year can be overcome by considering a multi-dimensional
state-space system. The defining property of the cohort factor imposes a restriction on
the observation and state equations of the resulting state-space mortality model. Dynam-
ics of the period and cohort factors are specified in the state equation which allows for a
range of time series models to be considered.

By treating the period and cohort factors as the state dynamics of a state-space model,
Bayesian inference for cohort models can be performed based on filtering and MCMC
method. We develop an efficient MCMC sampler for the resulting model involving a
combination of conjugate Gibbs sampling steps for the static parameters and a forward-
backward Kalman filtering for the latent state dynamics. The overall algorithm can be
applied naturally to the full cohort model as well as its nested models including the
simplified cohort model and the LC model.

We apply the cohort models in state-space formulation to analyse male and female
mortality data of the UK, US and Italy population. The Bayesian approach allows us to
present estimation of the cohort models where parameter uncertainty is properly quanti-
fied and accounted for. Our empirical studies show that UK and Italy populations exhibit
strong cohort patterns while cohort patterns for the US population are weak. We also
find that both genders share common mortality characteristics including cohort effects for
the considered countries. Examination of residual heatmaps produced from the cohort
models and LC model suggest that cohort models are able to capture cohort effects while
the LC model fails to do so. Using DIC for model ranking, we find that the full cohort
model is preferred over the simplified cohort model, which in turn outperform the LC
model for the considered countries. We show that forecasted death rates from cohort
models display trend-changing behaviour at the year where cohort factors are projected,
for countries that show strong presence of cohort patterns.

Our estimation and forecasting studies of state-space cohort models suggest that more
sophisticated models such as structural change models may be required to capture the
dynamics of cohort factors adequately. Moreover, the observed mortality characteristics
shared by both genders indicate that one can generalise the approach proposed in this
paper to multi-population setting where common period and cohort factors can be as-
sumed for male and female populations within a country. Recently there are also growing
interests in applying state-space method to deal with the problem of pricing and hedging
of longevity risk (Liu and Li (2016a) and Liu and Li (2016b)). The approach presented
in this paper can significantly enhance the capability of the state-space methodology to
solving practical problems involving longevity risk since cohort models are shown to be
compatible with the state-space framework. Applications of the state-space cohort models
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studied in this paper to the key issues in longevity risk pricing and management will be
left for future research.
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Figure 1: Full cohort model: estimated κ, γ, α, β and βγ for the (left column) UK, (middle
column) US and (right column) Italy male populations. Mean (solid line) and 95% credible
interval (dash lines) of the posterior distributions are plotted.
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Figure 2: Full cohort model: estimated κ, γ, α, β and βγ for the (left column) UK, (middle
column) US and (right column) Italy female populations. Mean (solid line) and 95% credible
interval (dash lines) of the posterior distributions are plotted.

30



1970 1980 1990 2000 2010

−4
0

2
4

6
κ

year

1880 1900 1920 1940

−0
.6

−0
.2

0.
2

γ

year−of−birth

65 70 75 80 85 90 95

−3
.5

−2
.5

−1
.5

α

age

65 70 75 80 85 90 95

0.
01

0.
03

β

age

1970 1980 1990 2000 2010

−1
0

0
5

10

κ

year

1880 1900 1920 1940

−0
.4

−0
.2

0.
0

0.
2

γ

year−of−birth

65 70 75 80 85 90 95

−3
.5

−2
.5

−1
.5

α

age

65 70 75 80 85 90 95

0.
02

4
0.

03
0

0.
03

6

β

age

1970 1980 1990 2000 2010

−5
0

5
10

κ

year

1880 1900 1920 1940

−0
.6

−0
.2

0.
2

γ

year−of−birth

65 70 75 80 85 90 95

−3
.5

−2
.5

−1
.5

α

age

65 70 75 80 85 90 95

0.
01

0.
03

β

age

Figure 3: Simplified cohort model: estimated κ, γ, α and β for the (left column) UK, (middle
column) US and (right column) Italy male populations. Mean (solid line) and 95% credible
interval (dash lines) of the posterior distributions are plotted.
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Figure 4: Simplified cohort model: estimated κ, γ, α and β for the (left column) UK, (middle
column) US and (right column) Italy females populations. Mean (solid line) and 95% credible
interval (dash lines) of the posterior distributions are plotted.
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Figure 5: Residual heatmap produced from the LC model, the simplified cohort model and the
full cohort model for the UK, US and Italy male populations.
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Figure 6: Residual heatmap produced from the LC model, the simplified cohort model and the
full cohort model for the UK, US and Italy female populations.
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Figure 7: Forecast death rates for the UK, US and Italy male populations from the full cohort
model (black lines) and the LC model (blue lines). Solid circles: observed data; solid lines:
posterior mean; dash lines: 95% forecasting interval.
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Figure 8: Forecast death rates for the UK, US and Italy female populations from the full cohort
model (black lines) and the LC model (blue lines). Solid circles: observed data; solid lines:
posterior mean; dash lines: 95% forecasting interval.
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Figure 9: Forecast death rates for the UK, US and Italy male populations from the full cohort
model (black lines) and the simplified cohort model (red lines). Solid circles: observed data;
solid lines: posterior mean; dash lines: 95% forecasting interval.
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Figure 10: Forecast death rates for the UK, US and Italy female populations from the full
cohort model (black lines) and the simplified cohort model (red lines). Solid circles: observed
data; solid lines: posterior mean; dash lines: 95% forecasting interval.
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Figure 11: Projection of the period factor κ and cohort factor γ from the full cohort model for
the UK, US and Italy male populations.
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Figure 12: Projection of the period factor κ and cohort factor γ from the full cohort model for
the UK, US and Italy female populations.
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