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Abstract 

 

The term „a matter of time‟ is often used for infrequent and severe extreme events, such as 

earthquakes or bushfires. Risk assessments of the likely damage associated with extreme 

events should focus on an appropriate time horizon that is consistent with the frequency of 

the event as a short term view may disproportionally deflate the risk involved. As there is 

often a lack of information at the local level on the frequency and/or severity of rare 

catastrophic or climate impacted hazards, this paper employs expert elicitation to derive 

distribution parameters for the frequency and severity of extreme events. Following this, 

the so-called loss distribution approach (LDA) in combination with discounting is used to 

produce present value estimates of cumulated losses. With a focus on the risk of bushfires 

in a local area in Sydney, Australia; this paper reviews how sensitive the cumulative loss 

estimates are to the time horizon used in the decision making process. The decision maker 

or analyst is assumed to be affiliated with a local government and has been assigned to 

conduct a risk assessment or cost benefit analysis. The importance of a suitable time 

horizon, understanding the consequences of risk-adjusted decisions and using an 

appropriate discount rate are also reviewed in the paper.  
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1) Introduction 

 

At the national level bushfires are a relatively common phenomenon with the annual 

probability of a non-zero property loss for Australia during the 20
th

 Century falling between 

48% and 57% (McAneney et al. 2009). In contrast, the Ku-ring-gai region and surrounding 

areas of Sydney, which includes areas that are subject to high bushfire risk, have had six 

major fires since 1976 with approximately 28 houses lost. In accordance, it has been 

estimated that there are usually one or two significant bushfires that impact the region every 

ten years (Ku-ring-gai Council 2012). Unsurprisingly, the regularity of bushfires at the 

national or regional level is not consistent with the frequency of severe events at the local 

level. Disaggregating data from a large region is likely to be inappropriate as the risk of 

bushfire tends to be location specific. And while historical observations on losses from 

bushfires do exist for the local region of Ku-ring-gai, the data is insufficient to build a 

distribution that can be used to forecast property losses over a given period. An alternative 

for estimating parameter values of distributions is to engage local experts to solicit their 

opinions (Schröter et al. 2005; Næss et al. 2006). With a focus on local decision making, 

this paper uses expert opinions to obtain values for distribution parameters that are used to 

provide estimates of property losses related to significant bushfire events.  

In addition to providing these estimates, this paper will review important issues around the 

specification of costs that a local government decision maker needs to understand upon 

using these property loss estimates within a cost benefit analysis. These include: the 

importance of using an appropriate time horizon for the review of infrequent and severe 

extreme events, such as bushfires; assessing the impact of risk aversion on the assessment 

of probabilistic estimates of costs; and the importance of adaptation when considering an 

increase in the frequency of bushfires due to climatic change. 

Extreme events are rare, however, over a long period of time decision makers will have to 

confront the possibility of extreme losses and this infers that performing risk assessment is 

important. In this study we prescribe an approach that uses expert elicitation for 

determining estimates of the frequency and severity of an extreme event. The procedure is 

based on the loss distribution approach (LDA) and results in inter-temporal probabilistic 

estimates of property losses. These estimates can then be used in decision making on issues 

around the management of bushfire risk and deciding whether to employ risk reduction 

techniques, such as, for example, controlled burning. Within this paper we assume that the 

decision maker conducting or evaluating the analysis is affiliated with a local government 

council, possibly as an analyst or elected official. The analysis focuses on developing 

estimates of the property losses from bushfires that can be used in a cost benefit analysis, 

once risk reduction measures have been identified. In this paper we will not perform a cost 

benefit analysis as the focus is on establishing estimates of the cost of bushfire damage. 

Assessing the damage from extreme events over multiple periods of time introduces other 

parameters that are not related to the severity or frequency of events and whose appropriate 

value is a matter of uncertainty. This includes the discount rate and growth rate applied 

within the model. Another crucial component of the analysis is the time horizon that is 

applied. Upon discussing extreme events and discount rates, Ermoliev et al. 2008 raised the 

importance of assessing the appropriateness of the time horizon being reviewed within a 

cost benefit analysis. The authors focus upon the appropriate specification of the discount 

rate and the „stopping time horizon‟ that the use of a discount rate implies. And while the 

stopping time horizon is an important factor within this paper, the discussion will also focus 
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upon the appropriate „starting time horizon‟ for an assessment of an infrequent, but highly 

damaging extreme event. 

The analysis of the time dependency of risk assessments of extreme events is conducted, 

using a case study of bushfires in the Ku-ring-gai local government area in Sydney, 

Australia. Figure 1 presents the location of Ku-ring-gai in comparison to the surrounding 

Sydney area. Amongst other considerations, the Ku-ring-gai area has been chosen as the 

basis for the analysis as it has a high risk of bushfire due to the prevalence of 18,000 

hectares of bushland and 89 kilometres of urban/bushland interface (Taplin et al. 2010). In 

addition, the area has 13,000 homes (equivalent to 36% of the total) with a high risk rating 

for property damage (Chen 2005). Consistent with Ku-ring-gai Council 2012, the expert 

who participated in the study specified that under current conditions, a severe bushfire is 

expected to happen approximately once every ten years, with only one in five of these fires 

damaging houses.  

With bushfires expected to occur once every ten years, the appropriate starting time horizon 

is expected to be greater than ten years, and the effectiveness of extending a long term view 

past forty years is constrained by the stopping time horizon that is influenced by the 

discount rate applied. As a prelude to the results of the paper, we can note that upon 

applying a discount rate of 4%, moving from a ten year to a twenty year time horizon leads 

to a notably different present value estimate for property losses due to bushfires in Ku-ring-

gai (i.e. an estimate that is inflated by 74%). In contrast, moving from fifty years to one 

hundred years results in a relatively moderate increase in the estimate for property losses 

due to bushfires in Ku-ring-gai (i.e. an estimate that is inflated by 24%). The disparity 

between these two examples highlights the importance of decision makers having an 

understanding of the concepts of a „starting time horizon‟ and a „stopping time horizon‟ 

when evaluating the appropriate time horizon for assessing an intertemporal stream of 

benefits or costs. We contend that a suitable time horizon for project assessment will be 

between the „starting time horizon‟ and the „stopping time horizon‟. The actual number of 

years will be dependent upon the frequency of events, the project lifetime and the discount 

rate. 

With a focus on the issue of time and bushfire risk, the remainder of the article is set up as 

follows. Section 2 reviews the framework used to specify the accumulated losses from 

bushfires for the Ku-ring-gai area. Section 3 presents the results of the empirical analysis. 

We start with a base case scenario and illustrate the issue of risk-adjusted analysis as 

reflected in differences between the mean estimate and the higher percentiles of the loss 

distribution. We also review the issue of how different discount rates will impact on the 

present value of accumulated losses and consider multiple scenarios where the time horizon 

is modified to replicate a change in a decision maker‟s outlook. With scenarios spanning 

from five years to one hundred years, the relevance of near sightedness is discussed with 

notable changes in the estimates occurring with a shift from a ten year to twenty year 

outlook. Finally, we review scenarios that assess how the impact of climate change 

increases the estimates of property losses. Section 4 concludes the paper with a discussion 

of the major insights gained from this study. 
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Figure 1: Location of Ku-ring-gai within Sydney (ABS 2011) 

2) Modelling bushfire risk over time 

 

In this section, we illustrate how a local decision maker or analyst can create an aggregate 

loss distribution for extreme events using the loss distribution approach (LDA), which has 

gained popularity in the financial sector for modelling insurance claims or losses arising 

from operational and credit risks within the banking industry (Klugman, et al. 1998; Basel 

Committee on Banking Supervision 2001). The LDA is a statistical approach that generates 

an aggregate loss distribution built upon underlying frequency and severity distributions. 

While the discussion in this paper will outline the core details of our model of bushfire risk, 

Keighley et al. 2014 provide a more detailed explanation that includes the derivation of key 

parameter values for a range of severity distributions. In the following, we focus on the 
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most common approach for modelling the severity of extreme losses, the Lognormal 

distribution. We illustrate how to specify the loss distribution approach using the frequency 

and severity of events, describe the simulation of aggregate losses and extend the 

framework for use across multiple time periods.   

2.1 The loss distribution approach (LDA) 

 

Our model of bushfire risk uses the loss distribution approach (LDA) to generate an 

aggregate loss distribution for extreme events. In this framework, the cumulative loss G is 

defined as                               

1

N

i

i

G X



                                                

(1) 

                                                                                                      

 

where N is the number of events over a considered time period (usually one year) that is 

typically modelled as a random variable from a discrete distribution
2
. In addition, 

, 1,...,iX i N  denotes the severities of the events modelled as independent random 

variables from a continuous distribution. Note that in the LDA, the frequency distribution 

and severity distribution are assumed to be independent and as a result the distributions can 

be modelled separately. This becomes important in the empirical analysis, where we adjust 

the frequency and severity of bushfires in multiple ways to build a range of scenarios. 

One advantage of the LDA over just using a point estimate of the expected catastrophic 

losses, is that the approach allows for a computation of the expected loss at any given 

confidence level α. Typically, Monte Carlo simulation is used to generate the aggregate loss 

distribution and compute the expected (or mean) loss or higher percentiles for the event 

over a given time horizon.  

 

As the frequency of events is modelled by a Poisson distribution all that is required is an 

estimate of the parameter λ of the distribution, which is the expected number of events per 

year. For our empirical analysis, we assume that an expert will be able to provide an 

appropriate estimate for the expected number of events.
3
 Usually expert elicitation is 

conducted using multiple experts; however, in cases where the focus is on the local level, it 

may be difficult to engage with more than one suitably qualified person. The expert 

specified that under current conditions, a severe bushfire is expected to happen 

approximately once every ten years such that the parameter of the Poisson distribution is 

estimated as λ =0.1. In the Ku-ring-gai case study it has been possible to validate the 

expert‟s estimate for the frequency of bushfire using historical data. Nevertheless, we 

recommend that an analysis of the sensitivity of results to the central parameters should be 

conducted.  

 

2.2 Estimating severity using quantiles 

 

In addition to requesting that the expert provide an estimate of the frequency of an extreme 

event, the approach we utilise involves the elicitation of an estimate for the values of two 

                                                 
2 Within this paper the annual frequency of the extreme event N is modelled using a Poisson probability 

distribution. Alternatives include, for example, the Binomial, Negative Binomial or Geometric distributions. 
3 While we focus on determining frequency and severity distributions from a single expert, refer to 

Shevchenko and Wüthrich 2006, Mathew et al. 2011 or Mathew et al. 2012 for applications of combining 

expert estimates with the empirically observed frequency of events using Bayesian analysis. 
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quantiles for the severity of the losses i.e. P(X < x1) = p1 and P(X < x2) = p2. These 

estimates are then used to calculate the parameters of the probability distribution. We 

suggest to use the median of the distribution, p1=0.5, and a more extreme outcome for the 

distribution, the 95
th

 percentile p2=0.95, during the expert elicitation. As we are using a 

heavy tailed distribution for the severity of events, i.e. the lognormal distribution
4
, it should 

be noted that the value for the 95
th

 percentile will be as important as the value for the 

median as both of these values will be used to derive the parameters of the severity 

distribution. 

Figure 2 presents a probability density function (PDF) for the Lognormal distribution, 

where the parameters        and        were calculated based on the expert 

specifying (i) the median to be equal to 30, i.e. P(X < 30) = 0.5, and, (ii) the 95
th

 percentile 

of the distribution to be equal to 200, i.e. P(X < 200) = 0.95. The black area between 0 and 

30 to the left of the specified median illustrates that there is a 50% probability for the loss 

to be less than or equal to 30. On the other hand, the black area to the right of 200 is equal 

to 0.05, indicating that there is only a 5% probability of observing losses that are greater 

than 200. Figure 2 also illustrates that the mean of the distribution, E(X)=58.37, is clearly 

greater than the median which is indicative of the heavy-tailed nature of the Lognormal 

distribution. 

 

 
Figure 2: Probability density function (PDF) for a Lognormal distribution, with 

parameters        and       . The distribution exactly matches the conditions (i) P(X 

< 30) = 0.5, and, (ii) P(X < 200) = 0.95. 

 

2.3 Simulation of Aggregate Losses 

 

Having defined the specification of the frequency and severity distributions, this section 

outlines how these functions are combined into estimates for the aggregate losses, see, e.g., 

Klugman et al. 1998, for further details. With the utilisation of Monte Carlo simulation one 

can generate a compound loss distribution using a simple simulation algorithm with the 

following steps: 

                                                 
4 For applications of other types of heavy tailed distributions refer to Keighley et al. 2014. 
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1. Take a random draw from the frequency distribution with the values defined as N events 

per year. 

2. Take N random draws from the severity distribution with the values defined as simulated 

losses X1, X2, …, XN. 

3. Sum the N simulated losses to obtain the simulated annual loss G. 

4. Return to Step 1, and repeat the process k times. As a result the process produces 

G1, G2, …, Gk annual losses and this enables the derivation of a distribution of the aggregate 

losses. As noted in section 2.1, the value of k should be sufficiently high so as to build a 

robust distribution for analysis. 

  

The accuracy of the estimation depends on the adequacy of the parameter estimates but also 

on the number of simulations in the Monte Carlo approach (k); refer to Fishman 1996 for an 

explanation. As a result, it is prudent to run a high number of simulations and we use 

100,000 simulations during the computation of each separate scenario. 

 

2.4 Considering long time horizons - discounting and the impact of climate change  

 

To extend the analysis of the total loss across a number of years discounting needs to be 

employed to convert the future losses into present value estimates. The discounted present 

value of the cumulative loss (DPVL) over a considered time horizon T can then be 

calculated using simulated annual aggregate losses Gt (for t=1,…T) as well as an applied 

growth rate g, and discount rate d, using the following formula: 
 


 




T

t
t

t

t

d

gG
DPVL

1 )1(

)1(

                                                               

(2) 

The level of the discount rate d is important and will impact upon the results of this paper 

as it converts future values into present values. A higher rate reduces the influence of future 

values and this effect means that the discount rate has been referred to as a „killing rate‟ 

(Haurie 2003: 122), refer to section 3.2 and 3.3 for further details. The growth rate g 

represents economic growth and can capture the rising costs for the replacement of property 

and/or infrastructure. It may also represent an increased exposure to risk or an increase in 

economic damage over the time horizon considered. For example, the increase in damage 

may be due to new properties being built in areas exposed to risk. In addition, the approach 

can be adapted to produce forecasts that take into account the change in frequency (through 

adjusting the parameter λ) and severity (through adjustment of the distribution for the losses 

Xi) of the extreme event due to climatic change.  

 

3) Empirical Results 

 

In the following section, we provide estimates of the total losses from bushfires in the Ku-

ring-gai area for a range of time horizons. These estimates are based on the derived 

probability distributions for the number of houses destroyed for a range of scenarios that 

focus upon changes in the discount rate and the time horizon applied, as well as the 

incorporation of changes that are consistent with the impact of climate change. To calculate 

the total losses the following data has been used. The mean cost of reconstruction per house 

is 422,000 AUD. The current risk prone property value is approximated by the property 
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construction cost, which is obtained by subtracting the average land value per property 

from the average property sale price. The regional land value is estimated by the NSW 

Valuer General (DOL 2009) and the regional average property sales price is obtained from 

Hatzvi and Otto 2008.  

 

As mentioned in the introduction, the frequency of bushfires for the Ku-ring-gai area was 

specified by an expert to be λ=0.1. This corresponds to one fire every ten years. Due to the 

efforts of fire brigades and other existing resources, the expert clarified that the number of 

severe bushfires that would actually lead to property damage would be one out of five 

events, i.e. only 20% of the bushfires are associated with property loss. The expert also 

specified that total losses would not exceed 1000 properties even under a maximum loss 

scenario. This means that we needed to adjust the process prescribed in Section 2 so that 

the frequency of events (i.e. the Poisson distribution) interacts with an additional Bernoulli 

variable that accounts for the actual occurrence of lost houses per event. In addition, we 

have imposed a restriction so that the upper bound of losses is equal to 1000 properties. As 

mentioned in the discussion of Figure 2, the expert also specified that the median of the 

severity distribution be set to 30 houses, i.e. P(X < 30) = 0.5, and the 95
th

 percentile to 200 

houses, i.e. P(X < 200) = 0.95. 

In the following, we will examine loss scenarios and their relevance for the decision-

making process. In particular we will compare mean and worst-case estimates of 

catastrophic losses and illustrate the sensitivity of the estimates to the applied discount rate, 

time horizon and to the impacts of climate change. 

 

3.1 Mean losses versus Worst-Case Scenarios 

 

Table 1 reviews a range of scenarios that have been developed to highlight the sensitivity of 

the results to key factors. We ground our analysis by comparing the simulated losses to a 

base-case scenario with a time horizon of 40 years and an applied discount rate of 4% that 

is also highlighted in Table 1. Considering mean estimates and higher percentiles of the 

loss distribution will be important as it provides the decision-maker with an idea about 

losses under a worst-case scenario. Typically risk management strategies in the financial 

and insurance industry are not based on the mean or expected loss, but rather on the 

unexpected loss, i.e. the 95
th

 or 99
th

 percentile of the loss distribution that is often referred 

to as the Value-at-Risk, see e.g. Jorion 2006. Clearly, decisions that also consider worst-

case scenarios will be more consistent with the idea of risk aversion of a decision-maker. 

As we are dealing with extreme events, moving to the right-hand tail of the distribution 

results in significantly increased losses. The extent to which this occurs can be seen in a 

comparison of the mean and median for the base case scenario, 8.6 Million AUD and 1.43 

Million AUD, respectively. The mean estimate accounts for the tails of the distribution and 

it is important to keep in mind that the applied Lognormal distribution is highly skewed to 

the right and will exhibit a heavy tail. As a result of the skewed shape of the distribution, 

the mean is also influenced by extreme values of the distribution and is significantly greater 

than the median. The level of risk aversion that is applied within the decision making 

process is an important factor that will impact on the evaluation of the same set of results. 

In accordance, it should be noted that a move away from evaluating the average loss 

estimate to the worst-case loss estimate is consistent with increases in the estimates of 

350% for the 95
th

 percentile and over 900% for the 99
th

 percentile.     
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Table 1 – Simulated discounted present values (NPV) of the cumulative losses from 

bushfires for the Ku-ring-gai area in Millions of Australian Dollars ($M). Different 

scenarios for the applied time horizon (5, 10, 20, 40, 50 and 100 years) and for the 

discount rate (4%, 1.35%) are being considered. The base case scenario (40 year time 

horizon, 4% discount rate) is highlighted in bold.     

Time 

Horizon 

(years) 

Discount 

Rate 
Mean 

Percentiles 

25 50 75 95 99 

5 
4% 1.69 0 0 0 8.70 39.14 

1.35% 1.81 0 0 0 9.03 41.92 

10 
4% 3.12 0 0 0 18.28 56.28 

1.35% 3.69 0 0 0 21.32 65.94 

20 
4% 5.42 0 0 3.68 28.74 72.16 

1.35% 7.19 0 0 5.04 38.24 96.48 

40 
4% 8.60 0 1.43 9.42 38.83 87.42 

1.35% 13.77 0 2.54 15.88 61.79 136.62 

50 
4% 9.58 0 2.71 11.13 40.83 89.54 

1.35% 16.87 0 5.38 20.84 70.65 146.87 

100 
4% 11.85 1.26 5.36 14.35 44.81 93.64 

1.35% 31.22 5.38 18.26 41.34 107.11 197.20 

 

 

Upon discussing the percentile estimates, it should be noted that the 25
th

 percentile estimate 

for the NPV of property damage in Millions of Australian Dollars ($M) is zero across all 

but one of the scenarios due to the low frequency of severe bushfire events (λ=0.1) and only 

one out of five of these events generating a loss of property. Given these specifications, we 

would expect to observe a severe bushfire in the Ku-ring-gai area on average approximately 

every ten years, however, 80% of these events would not damage any houses. Therefore, 

upon considering a 40 year time horizon, for a relatively high percentage of the simulation 

runs (i.e. more than 25%), there will be no losses during these 40 years, and this explains 

the 25
th

 percentile of the cumulative loss distribution being equal to zero.  

 

 

3.2 Discount rate 

 

Discounting is important for analysing options that involve long-term time horizons. 

Dasgupta 2008 highlights the importance of discounting using an example based on a 

comparison of the impact of a 4.3% and a 1.4% discount rate for a 100 year time horizon. 

In this example, using the higher discount rate leads to a present-value estimate that is 17 

times lower than that when the lower rate is applied. The choice of an appropriate discount 

rate is important as the results of an economic analysis will be sensitive to the value chosen. 

While the debate on the appropriate level of a discount rate remains beyond the likely local 

government focus on climate adaptation, an extended time horizon does mean that the 

sensitivity of different discount rates needs to be understood. The discount rate is an 

important factor and when there is not a clear agreement on the choice of the discount rate 
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to be used in the analysis, sensitivity tests that include a variation of the discount rate will 

assist in the understanding of its effect on the final result and the level of risk exposure.  

 

The derivation of the appropriate social discount rate depends upon the so-called elasticity 

of the marginal felicity
5
, the time discount rate, and the growth rate of consumption 

applied. The rates used in the example provided by Dasgupta 2008 are based on the 

discount rates used by Stern 2006, i.e. 1.4%, and Nordhaus 2008, i.e. 4%. We follow a 

similar approach and consider a base-case discount rate of 4% and a significantly lower 

social discount rate of 1.35%
6
. The difference between the base case and the low discount 

rate scenario, i.e. the low rate from Garnaut 2008, is due to the elasticity of marginal 

felicity and growth rate of consumption assumed.  

 

For the 40-year base case scenario, the low discount rate scenario is consistent with a 60% 

increase in the mean and 95
th

 percentile estimates and significantly raises the expected loss 

from 8.60 Million AUD to 13.77 Million AUD. Table 1 also illustrates that the impact of 

using a lower discount rate becomes far more significant when longer time horizons are 

examined. Scenarios considered include a shorter decision making horizon of 5 years, 10 

years and 20 years, in comparison to the 40 years used in the base case. A longer decision 

making horizon of 50 years and 100 years are also included.  

 

For a 10-year time horizon, moving from the base-case to the lower social discount rate 

increases the mean loss estimate by only 18%, for a 20-year time horizon, the estimated 

mean loss is increased by approximately 33% and for a 100-year time horizon the 

difference in the estimated mean loss is greater than 160%. Therefore, a decision-maker has 

to be aware of the fact that the longer the time-horizon considered in the analysis, the more 

significant will be the impact of the chosen discount rate on the results.  

 

 

3.3 Time dimension 

 

In the following we will further examine the importance of the applied time-horizon for the 

decision-making process. Across these scenarios the accumulated losses differ greatly due 

to the frequency of bushfires and the regularity of damage that was specified by the expert. 

The prevalence of zero losses reflects this with a 5 year and 10 year time horizon having 

zero losses for all of the percentiles reported, except for the 95
th

 and 99
th

 estimates. As a 

result, due to the tail of the distribution the mean estimate of losses for the 5 year and 10 

year scenario are non-zero and numerically significant at 1.50 Million AUD and 3.12 

Million AUD, respectively (for a 4% discount rate).  

 

Figure 3 reviews additional time horizon scenario results using the two levels of discount 

rates and a higher incidence of damage (HID) to provide comparative examples. In terms of 

changing the time dimension of the analysis, the largest change (in terms of projected 

cumulative losses) occurs for shorter time horizons, i.e. with a move from, e.g., a five year 

outlook to a ten year outlook or a ten year to a 20 year time horizon. This holds regardless 

of the level of risk considered with both the mean estimate and the 95
th

 percentile estimate 

showing far more significant relative increases for shorter time horizons. Moving from a 

                                                 
5 The elasticity of marginal felicity has been defined in Dasgupta 2008 as “the elasticity of the social weight 

that ought to be awarded to a small increase in an individual‟s consumption level”. (Dasgupta, 2008: 144) 
6 For a more detailed description on the derivation of these rates we refer to Garnaut 2008, IPCC 2014 and 

Keighley et al. 2014.   
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five year to a ten year outlook will inflate the mean loss estimate by 85%, moving from a 

ten year to a 20 year outlook increases the estimate by 74%, while moving from a 40 to a 

50 year outlook only increases the estimate by approximately 11%. Even increasing the 

considered time horizon from a 50 to a 100 year window will only increase the estimated 

mean loss by 24%. These results show that the effect of gaining a longer term view is 

quelled as the number of years increases and that there is greater sensitivity in the more 

immediate time period. Of course, the reduction over time is mainly an effect of 

discounting future losses to report the cumulative loss in present value figures. 

 

The quelled impact of moving to a greater outlook, i.e. moving from five years to ten years 

in comparison to moving from ten years to twenty years, reduces when a lower discount 

rate is applied. The impact of discounting can be seen with a comparison of the 4% and 

1.35% scenarios as the cumulative losses in the base case flattens and plateaus after 30 to 

40 years. This shows that with a discount rate of 4%, the time horizon for decision making 

matters and that moving from a short time horizon to a time horizon of ten to twenty years 

emphasises the risk of an extreme event that is infrequent, but highly damaging. In 

addition, there is a moderate impact of gaining a longer term view once the discount rate 

becomes a factor. As noted previously, this is reflected in the example of moving from five 

years to ten years (i.e. an increase of 84%) in comparison to moving from ten years to 

twenty years (i.e. an increase of 74%) and can be reviewed graphically in Figure 3. With a 

notable discount rate applied, extending a decision makers outlook to forty years in 

comparison to twenty years (i.e. an increase of 59%) or to one hundred years in comparison 

to fifty years (i.e. an increase of 24%) results in smaller increases in losses from extreme 

events. 

 

Upon reviewing different time horizons, Haurie 2003 define the discount rate as a „killing 

rate‟ and note that a discount rate of 5% corresponds to “a random life duration with (an) 

expected value (of) 1/0.05 = 20 years” (Haurie 2003: 122). This killing rate implies that the 

life expectancy of an infinitely living agent is equal to 1 + 1/r years. Upon discussing the 

strong impact of discounting on cost benefit analysis associated with climate change 

Ermoliev et al. 2008 refer to the same concept as the „stopping time horizon‟. Another 

example used in Ermoliev et al. 2008 is that of society‟s assessment of the risks related to a 

300-year flood and this raises the issue of the appropriateness of market interest rates to 

extremely infrequent events. With a discount rate of 4%, the killing rate implies a life value 

of 25 years. In contrast, a discount rate of 1.35% has a life value of 74 years. These life 

values are suitable for the assessment of bushfire risk in Ku-ring-gai as the expert stated 

that bushfires are likely to occur once every ten years. In accordance, the evaluation of the 

extent of bushfire risk will depend upon the discount rate applied and the time horizon 

focused upon, as well as the frequency and severity of extreme events.  

 

The influence of a „starting time horizon‟ and a „stopping time horizon‟ upon estimates of 

the impact of extreme events means that decision makers need to understand these factors 

when quantifying the potential benefits of risk reduction measures in a cost benefit analysis. 

The assessment of whether to take action or to do nothing in response to the risk of an 

extreme event will depend upon the appropriateness of the time horizon to the frequency of 

the events and the discounting of future costs/benefits of an adaptation measure. It should 

be noted that this paper focuses upon an analysis of the costs of bushfires within a risk 

assessment; however a decision maker will generally need to also assess alternative risk 

reduction measures using cost benefit analysis. The analysis of potential risk abatement 

measures will be left for future research as the approach used in this paper has the potential 
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to be modified to incorporate risk reductions associated with adaptation measures. 

Nevertheless, it should be noted that Ku-ring-gai Council have reviewed risk abatement 

measures, such as establishing new community fire units, provide rebates for fire resilient 

installations in homes and constructing new fire trails (Ku-ring-gai Council 2010). 

 

 

 
Figure 3: Cumulative mean loss estimate and 95

th
 percentile of estimated losses across 

different decision making time horizons (from five years up to 100 years) and different 

discount rates of 4% and 1.35%.     

 

 

3.4 Climate change impacts 

 

Table 2 reviews scenarios that capture changes in the estimates due to the impact of climate 

change. Lucas et al. 2007 propose that climate change can impact the occurrence of fires in 

two ways; the first is an exacerbation of the fire-weather risk for any given day that leads to 

increased frequency or intensity of extreme fire weather days. This is captured within this 

analysis by a change in the frequency of fires over a 40 year time horizon in the „climate 

change with adaptation‟ scenario. Hennessy et al. 2006 note that for southeast Australia the 

frequency of very high and extreme fire danger days is expected to rise 15 to 70% by 2050. 

As a result our scenarios include a moderate increase in frequency (i.e. an increase of 30%) 

and a strong increase in frequency (i.e. an increase of 100%) over the 40 year time horizon 

considered. An increase in the accumulated fire risk over a year may also occur due to a 

longer fire season and a reduction in the number of days suitable for controlled burning. 

This is captured in a second set of scenarios that have a change in the frequency of fires, but 

also assumes that changes in weather cause an immediate reduction in controlled burning 

and this is captured in the median estimate of property losses rising from 30 to 40 houses.  

 

With adaptation (or no change in the amount of controlled burning) the impact of climate 

change results in an increase of the mean estimate by 12% or 38%, in comparison to the 

base case, depending upon the intensity of the change in the frequency of bushfire events. 

With a decrease in the amount of controlled burning, the scenarios show an increase in the 

mean estimate of 24% or 55%, in comparison to the base case, respectively. Increases in the 

extremes of the distribution are more moderate, but in the order of millions of dollars. 

Nevertheless, reviewing the worst case scenarios, as presented in the 95
th

 percentile 

estimates, results in costs that are around four times the size of the mean. The decrease in 
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the amount of controlled burning, modelled as an increase in the median to 40 properties 

lost, increases the average loss by approximately 11-12%. The importance of adaptation is 

reflected in this result and the long-life time of greenhouse gases implies that it is only a 

matter of time until local government decision making will need to manage risks related to 

climate change. 

 

 

Table 2 – Simulated discounted present values (NPV) of the cumulative losses from 

bushfires for the Ku-ring-gai area in Millions of Australian Dollars ($M). The climate 

change impact scenarios assume a linear increase in the frequency of bushfires. The strong 

scenario increases the frequency from λ=0.1 in year 0, to λ=0.1025 in year 1,…., λ=0.2 in 

year 40, i.e. an increase by 100% over the considered time horizon. The moderate scenario 

increases the frequency by 30% over the considered time horizon, i.e. to λ=0.13 in year 40. 

The second set of climate change scenarios assumes that on top of an increase in the 

frequency, bushfires become more severe such that the median estimate for property losses 

increases from 30 to 40. 

 

Scenario 
Increase 

Lambda 

Severity 

Increase 

Disc 

Rate 
Mean 

Percentiles 

25 50 75 95 99 

Base - - 4% 8.60 0 1.43 9.42 38.83 87.42 

Moderate 

Frequency  
30% - 4% 9.62 0 2.34 11.07 42.27 92.59 

Strong 

Frequency 
100% - 4% 11.89 0 4.46 14.67 48.12 99.37 

Moderate 

Frequency 

& Severity 

30% 33% 4% 10.70 0 3.51 13.84 44.58 86.71 

Strong 

Frequency 

& Severity 

100% 33% 4% 13.32 0 6.16 17.88 50.78 94.56 

 

 

4) Conclusion 
 

Local decision makers are faced with extreme events that are often hard to assess using the 

available historical data. As a result, this paper reviews a methodology that utilises the loss 

distribution approach and expert opinion to estimate the frequency and severity of bushfires 

to produce present value cumulated loss estimates for property losses. Such an analysis is 

important for performing risk assessments at a level that is suitable for a local government 

jurisdiction, such as Ku-ring-gai in Sydney, Australia. Upon using this methodology, 

decision makers need to be aware of key factors that influence the cost estimates. These 

include the importance of a suitable time horizon that accounts for the infrequency of 

extreme events and the impact of discounting. As the methodology produces probabilistic 

estimates, the implications of a risk-adjusted analysis and reviewing the worst case scenario 

was also discussed.  

 

For a forty year period, the mean and median estimate of the present value of cumulative 

losses in Ku-ring-gai is 8.6 Million AUD and 1.43 Million AUD, respectively. As we have 

used a heavy tailed distribution for the severity of the events, i.e. a lognormal distribution, 
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the mean estimate is notably larger than the median due to the extreme of the tail. This is 

reflected in the worst case scenario estimate, defined as the 95
th

 percentile, which has a 

present value of cumulative loss of 38.83 Million AUD. The large difference between the 

expected loss and higher percentiles of the loss distribution play an increasing role when 

decisions-making is not based on the most likely outcome only, but takes a more risk-

adjusted angle.  

 

The interaction of discounting and the time horizon used for planning leads to notable 

changes in the estimates from the scenarios. Risk assessment using a short time period, 

such as five or ten years, corresponds with low estimates of the present value of cumulative 

losses due to the infrequency of extreme events. Moving from a five year to a ten year 

outlook provides the largest increase in the loss estimates for all of the time horizons 

reviewed irrespective of the level of risk aversion or the discount rate applied, since the 

effect of discounting is the smallest for such short time horizons. Also, a decision-maker 

has to be aware of the fact that the longer the time-horizon considered in the analysis, the 

more significant will be the impact of the chosen discount rate on the results. For example, 

in the case of a short time horizon, moving from a 4% to a lower social discount rate 

(1.35%) only marginally increases the loss estimates, while for a 100-year time horizon the 

estimated losses are more than doubled when a social discount rate is being applied.  

 

As noted in this paper, this implies that there is a „starting time horizon‟ for the assessment 

of infrequent and severe extreme events that should be considered when choosing a time 

horizon to focus upon. The suitability of the time horizon should be assessed with respect to 

both the short term and the long term. For example, the impact of the discount rate means 

that there is a „stopping time horizon‟ where moving from an adequately long time horizon 

results in relative minor differences in the results of an intertemporal analysis. 

 

An assessment of the potential impact of climate change is also conducted within this paper 

by modifying the frequency and/or the median estimate of the severity of bushfires. The 

moderate scenarios for increased bushfire risk due to climatic change reviewed in our 

analysis are consistent with a 12% or 24% increase in the mean estimate of cumulative 

losses, depending upon whether adaptation has occurred. It is important to note that the 

analysis within this paper is based on a risk assessment of the damage of bushfires and does 

not extend to incorporating the costs or net benefits of adaptation or risk reduction 

measures. Nevertheless, our results show that the assessment of adaptation measures will 

matter when reviewing the consequences of climate change impacts upon the risk of 

property losses from bushfires. 
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