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Motivation:

• Investigate default risk propagation within a multilayer system

• Develop a multilayer system featuring the dependence structure between the layers of the financial system
(interdependence) as well as within each layer (intradependence).

– Consider for simplicity a two-layer network of intermediaries in the low-default environment

– Discover strong propagation of default risk across different layers

• The proposed framework has a wide range of applications across financial, insurance, reinsurance, climate
and other sectors of the economy.
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Motivation:

• Examples of multilayer networks

– Financial system: interconnectedness of its institutions, which are linked through networks of different
types of financial contracts.

– Insurance and the rest of the economy: Insurance companies invest in capital markets; banks are also
constituents of the capital market. In addition to their firm-specific risks, they are exposed to market
volatility and correlations.

– Insurance and reinsurance: traditional risk management strategy for insurers, reinsurance deepens the
interconnections among insurance companies and thus aggravates the systemic risk.

– Climate networks: A multilayer network could be constructed from temperature measurements, pre-
cipitation, pressure, wind, humidity, and cloudiness on different sites in the world. Climate extremes,
compound events can be regarded as defaults which lead to default risk propagation within a multi-
layer system.
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Model in brief:

• Consider a simplified system consisting of two layers/sub-systemsX and Y , of sizes dX and dY , re-
spectively – each composed of intermediaries of high-quality and hence low default risk. Such a model
allows intradependence within each layer as well as interdependence between the two layers.

• probability of default (PD) 0 < p < 1,

• Study conditional probability, interpreted as a measure of the propagation, of the layer X to incur a
significant number of defaults,NX(p), given that the layer Y incurs a significant number of defaults,
NY (p)

• Result: conditional probability is asymptotic to cp as p → 0 with c representing the propagation effect
across the two layers.

• Main result – a sharp asymptotic formula that, as p ↓ 0,

P (NX(p) ≥ nX |NY (p) ≥ nY ) = (c+ o(1)) p; (1)
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Introduction:

• Consider general intermediaryZ that summarizes its rating migration and possible default.

• Probability of default (PD) is 0 < p < 1, the intermediary defaults if and only if the latent variableZ is
larger than its Value at Risk (VaR) at level q = 1− p, defined by

V aRq(Z) = inf {z ∈ R : P (Z ≤ z) ≥ q} , 0 < q < 1.

This standard threshold model approach to default originates from Merton’s firm-value model; see Merton
1974 for the origin of this approach and Altman Et al. (2004) for a detailed review of the history of credit
risk models. For the setting in terms of large credit portfolios, refer to Bassamboo et al (2008), Duffie and
Lando (2001) and Tang et al. (2019).

4



Problem formulation:

• Consider a complex system consisting of multiple intermediaries – restrict our study to a system of two
layers/sub-systemsX and Y , each consisting of intermediariesDX = {1, . . . , dX} andDY =

{1, . . . , dY }

• X and Y exhibit intradependence within their respective layers.

• X and Y also exhibit interdependence between the two layers.

• Study the probability that a significant number of defaults incurred in layerY triggers a significant number
of defaults in the layerX .

• The number of defaults corresponding to default probability p

NX(p) =
dX∑
i=1

1(Xi>V aRq(Xi))

NY (p) =
dY∑
j=1

1(Yj>V aRq(Yj)).
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Problem formulation:

• First objective: The intermediariesXi’s within eachX are clearly dependent

• How to capture the dependency between intermediaries within this layers/sub-system?

• Use dX -variate Archimedean copulas with generator hθ1
(x) to model dependency between the compo-

nents ofX (Notation:NX(p)|θ1 where θ1 is the dependence parameter)

• Second objective: capture the dependency betweenNX(p) andNY(p), since defaults are common to
several layers

• Assume thatY has the same generator asX, but is indexed by θ2, hθ2
(x)

• How to effectively capture interdependence?
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Solution provided in this paper:

• Use Archimedean copulas with generators hθ1
(x) and hθ2

(y) to capture the dependency within X,
andY, respectively.

• Assume that a bivariate vector or copula parameters(θ1, θ2) follows jointly a bivariate generalised Pareto
distribution.

• Describe conditional probability of default P (NX(p) ≥ nX |NY(p) ≥ nY ) (when p is small)

• Important theoretical result:

lim
p→0

1

p
P (NX(p) ≥ nX |NY(p) ≥ nY ) = c (2)

• Coefficient c measures the propagation effect across the two layers
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Outline:

• Introduction and motivationX

• Main results for the distribution of the number of lossesNX(p), moments calculation using copulas for
one credit portfolio

• Introduce Archimedean and survival copulas to determine the distribution for the number of defaults (mo-
ments, asymptotic behaviour)

• Introduce multivariate generalised Pareto distribution that is required for modelling the dependency be-
tween two credit portfolios

• Bivariate case using Archimedean Copulas and Generalised Pareto Distribution: derivation of
P (NX(p) ≥ nX |NY(p) ≥ nY ) and its limiting behaviour

• Conclusion
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Main results for the number of defaultsNX(p):

• Tail probability:

P (Xi > V aRq(Xi)) = P (Fi(Xi) ≥ 1− p) = P
(
Fi(Xi) ≤ p

)
,

• The number of defaultsN(p)

N(p) =
d∑

i=1

1(Xi>V aRq(Xi)) =
d∑

i=1

1(Fi(Xi)≤p)
, 0 < p < 1.

• Assume that (X1, ..., Xd) posses a copula C with survival copula Ĉ . Probability for the number of
defaults

P (N(p) = n) =
(d
n

) d−n∑
k=0

(−1)k
(d− n

k

)
Ĉ(v1 = · · · = vn+k = p)

where Ĉ(·) is a survival copula.
Recall: F (x1, ...xd) = C(F1(x1), .., Fd(xd)) whereC(·) is copula; thenF (x1, ...xd) = Ĉ(F (x1), .., F (xd)) = Ĉ(v1, ..., vd).
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Main results for the number of lossesNX(p): Moments calculation

E(N(p)) = E(
d∑

i=1

1(F i(Xi)≤p)) =
d∑

i=1

P
(
F i(Xi) ≤ p

)
=

d∑
i=1

Ĉ(vi = p) = dp

E(N(p)2) = E

( d∑
i=1

1(F i(Xi)≤p)

)2


= dp+ d(d− 1)Ĉ(p, p), (3)

where we used the symmetry of Ĉ

V aR(N(p)) = dp+ d(d− 1)Ĉ(p, p)− (dp)2

10



Outline:

• Introduction and motivationX

• Main results for the distribution of the number of lossesNX(p), moments calculation using copulas for
one credit portfolioX

• Introduce Archimedean and survival copulas to determine the distribution for the number of defaults (mo-
ments, asymptotic behaviour)

• Introduce multivariate generalised Pareto distribution that is required for modelling the dependency be-
tween two credit portfolios

• Bivariate Case using Archimedean Copulas and Generalised Pareto Distribution: derivation ofP (NX(p) ≥
nX |NY(p) ≥ nY )

• Conclusion

11



Archimedean and survival copulas:

• h(x) is a generator of an Archimedean survival copula that ismultiply monotonic function of order d, i.e.
condition

(−1)kh(k)(x) ≥ 0 (4)

holds for k = 0, ..., d, and x ∈ R+

• h(x) satisfies

h(0) = 1, (5)

lim
x→∞h(x) = 0. (6)

• Assuming that h−1(x) is well defined, the Archimedean survival copula can be defined as

Ĉ(v1, ..., vd) = h(h−1(v1) + h−1(v2) + · · ·+ h−1(vd)). (7)
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Archimedean and survival copulas:

• This copula is completely symmetric and it holds

Ĉ(v) = v,

Ĉ(v, v) = h(2h−1(v)),
...

Ĉ( v, ..., v︸ ︷︷ ︸
d elements

) = h(dh−1(v)).

• Probability for the number of defaults

P (N(p) = n) =
(d
n

) d−n∑
k=0

(−1)k
(d− n

k

)
h((n+ k)h−1(p)).

• Expectation

E(N(p)) = dp
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Archimedean and survival copulas:

• Variance

V ar(N(p)) = dp+ d(d− 1)Ĉ(p, p)− (dp)2

= dp(1− p)− dp2(d− 1) + d(d− 1)h(2h−1(p)),

where we used Ĉ(p, p) = h(h−1(p) + h−1(p)) = h(2h−1(p)).

• Proposition:
Suppose that h(x, θ) ∈ C(R+ × Θ), and h(x, θ) is strictly decreasing function on x for all
θ ∈ Θ , where Θ be a closure of Θ, and h−1(x, θ) is continuous function on θ. Consider the
following condition:

(?) There exist a point θ0 ∈ Θ (point of independence) such that limθ→θ0
h(x) = a−x fora > 1

and any given x > 0.

Then the condition (?) is necessary and sufficient for

lim
θ→θ0

V ar(Nθ(p))→ dp(1− p) (8)

for any given p ∈ (0,1).
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Archimedean and survival copulas
Copula h(x) θ0, θ∞ V ar(N(p)) limθ→θ∞ V ar(N(p))

Clayton (1 + θx)−
1
θ 0, dp(1− p)− d(d− 1)p2 dp(1− p)− d(d− 1)p2

x ∈ [0,∞), θ ∈ [0,∞) ∞ +d(d− 1)
(

1 + 2(p−θ − 1)
)−1

θ +d(d− 1)p

Gumbel exp(−x
1
θ ) 1, dp(1− p)− d(d− 1)p2 dp(1− p)− dp2(d− 1)

x ∈ [0,∞), θ ∈ [1,∞) ∞ +d(d− 1)p2
1
θ +d(d− 1)p

Joe 1− (1− exp(−x))
1
θ 1, dp(1− p)− dp2(d− 1) dp(1− p)− dp2(d− 1)

x ∈ [0,∞), θ ∈ [1,∞) ∞ +d(d− 1)
(

1−
(

2(1− p)θ − (1− p)2θ
)1
θ

)
+d(d− 1)p

Frank 1− (1− exp(−x))
1
θ 0 dp(1− p)− dp2(d− 1) dp(1− p)− dp2(d− 1)

x ∈ [0,∞), θ ∈ [0,∞) ∞ +d(d− 1)
(
−1
θ

ln
(

1 + (exp(−θp)−1)2

exp(−θ)−1

))
+d(d− 1)(1− p)

AMH 1−θ
exp(x)−θ 0 dp(1− p)− dp2(d− 1) dp(1− p)− dp2(d− 1)

x ∈ [0,∞), θ ∈ [0,1) 1 +d(d− 1) 1−θ(
1−θ
p

+θ
)2

−θ
−d(d− 1) p

p−2

Note. Copula specifications: the generator function h(x), the point of independence θ0 and the point of maximal dependence θ∞,
variance for the number of defaultsV ar(N(p)) and variance for the number of defaults when the maximal dependence is achieved
limθ→θ∞ V ar(N(p)). The variance for the number of defaults at the point of independence limθ→θ0

V ar(N(p)) =
dp(1− p) for all copulas.
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Variance for Archimedean copulas: Clayton
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Variance for Archimedean copulas: Gumbel
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Multivariate generalised Pareto distribution

• Hendriks and Landsman (2017) introduce a class of multivariate generalised Pareto (GP) distributions (spe-
cial cases: multivariate Pareto and multivariate Weibull distributions). There is a relationship between
Archimedean survival copulas and GP distribution:

• Given a multivariate vector X = (X1, ..., Xd) with marginal distributions for Xi ≥ 0 for i =
1, ..., d characterised via the survival functions

P (Xi > xi) = h(λixi) = pi, (9)

λi > 0, any copula generator h(·) corresponds to a GP distribution as follows:

FX(x1, ..., xd) = P (X1 > x1, ..., Xn > xn)

= Ĉ (P (X1 > x1), ..., P (Xd > xd))

= Ĉ(p1, ..., pd)

= h(h−1(p1) + ...+ h−1(pd))

= h(h−1(h(λ1x1)) + ...+ h−1(h(λdxd)))

= h(λ1x1 + ...+ λdxd).

= h

 d∑
i=1

λixi

 , xi ≥ 0. (10)

19



Multivariate generalised Pareto distribution

• If a cdf ofX is characterised by FX = 1− FX, the joint pdf ofX is

fX(x1, ..., xd) = (−1)dλ1 · · · λdh(d)

 d∑
i=1

λixi

 with xi ≥ 0. (11)

• Marginal survival functions ofXi:

P (Xi > xi) = P (X1 > 0, ..., Xi−1 > 0, Xi > xi, Xi+1 > 0, ...Xd > 0). (12)

• Generator of multivariate Pareto (special case of GP):

H(x) =
1

(1 + x)α
for x ≥ 0, α > 0. (13)

• Associated variance:

V ar(N(p)) = dp(1− p) + d(d− 1)p

(
1

(2− p1/α)α
− p

)
. (14)
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Multivariate generalised Pareto distribution

• For the multivariate Pareto distribution α captures heaviness of tail: When α → ∞ the tail becomes
lighter

• The asymptote

lim
α→∞V ar(N(p)) = dp(1− p). (15)

• Correlation between two bivariate Pareto random variables (Xi, Xj), i 6= j

Corr(Xi, Xj) =
1

α
,

• Corr(Xi, Xj) ↓ 0 when α ↑ ∞ (independence betweenXi andXj )

• When α ↓ 0, we obtain maximal dependence, and it holds:

lim
α→0

V ar(N(p)) =∞.
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Variance of Pareto distribution
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Bivariate Case using Archimedean Copulas and Generalised Pareto Distribution

• X = (X1, ..., XdX) is dX–dimensional;X|θ1 ∼ Archimedean copula with generator hθ1

• Y = (Y1, ..., YdY ) is dY –dimensional;Y|θ2 ∼ Archimedean copula with generator hθ2

• Assume thatX|θ1 andY|θ2 are conditionally independent

• Aim: using properties of the generator hθ(x) (regularly varying or rapidly varying), derive

– P (NX(p) = n1|NY(p) = n2)

– P (NX(p) ≥ nX |NY(p) ≥ nY )
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Conditional probability of default

P (NX(p) ≥ nX |NY(p) ≥ nY )

=
dX∑

n1=nX

dY∑
n2=nY

P ((NX(p) = n1) ∩ (NY(p) = n2))︸ ︷︷ ︸
A

÷
dY∑

n2=nY

P (NY (p) = n2)︸ ︷︷ ︸
B

• AssumeNX(p)|θ1 andNY(p)|θ2 are independent;

P ((NX(p) = n1) ∩ (NY(p) = n2))

=
∫ ∫

Θ1×Θ2

P (NX(p) = n1|θ1)× P (NY(p) = n2|θ2)× π(θ1, θ2)dθ1dθ2

where the bivariate GP density π(θ1, θ2)

π(θ1, θ2) = λ1λ2H
(2) (λ1θ1 + λ2θ2) . (15)

due to

(θ1, θ2) ∼ H(λ1θ1 + λ2θ2), (15)
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Conditional probability of default

P ((NX(p) = n1) ∩ (NY(p) = n2))

=
∫

Θ1

∫
Θ2

(dX
n1

) dX−n1∑
k=0

(−1)k
(dX − n1

k

)
hθ1

((n1 + k)h−1
θ1

(p))

×
(dY
n2

) dY−n2∑
j=0

(−1)j
(dY − n2

j

)
hθ2

((n2 + j)h−1
θ2

(p))π(θ1, θ2)dθ1dθ2. (16)

And the numeratorA is given by

A =
dX∑

n1=nX

dY∑
n2=nY

λ1λ2

(dX
n1

)(dY
n2

) dX−n1∑
k=0

dY−n2∑
j=0

(−1)k+j
(dX − n1

k

)(dY − n2

j

)
∫ ∞

0

∫ ∞
0

hθ1
((n1 + k)h−1

θ1
(p))hθ2

((n2 + j)h−1
θ2

(p))H(2) (λ1θ1 + λ2θ2) dθ1dθ2
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Conditional probability of default

Evaluating the denominator:

P (NY(p) = n2)

=
∫

Θ2

P (NY(p) = n2|θ2)× π(θ2)dθ2

= −
∫ ∞

0

(dY
n2

) dY−n2∑
j=0

(−1)j
(dY − n2

j

)
hθ2

((n2 + j)h−1
θ2

(p))λ2H
(1)(λ2θ2)dθ2

= λ2

(dY
n2

) dY−n2∑
j=0

(−1)j+1
(dY − n2

j

) ∫ ∞
0

hθ2
((n2 + j)h−1

θ2
(p))H(1)(λ2θ2)dθ2,

(17)

• where π(θ2) = −λ2H
(1)(λ2θ2).

Thus,B is given by

B =
dY∑

n2=nY

λ2

(dY
n2

) dY−n2∑
j=0

(−1)j+1
(dY − n2

j

)∫ ∞
0

hθ2
((n2 + j)h−1

θ2
(p))H(1)(λ2θ2)dθ2.
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Conditional probability of default (limiting case: p→ 0 )

Deriving limiting behaviour of P (NX(p) ≥ nX |NY(p) ≥ nY ) for p→ 0 for the

• Case I: regularly varying (to zero) copula generators h(x) for which it holds for some α ∈ R:

lim
x→∞

h(tx)

h(x)
= tα, t > 0.

• Case II: rapidly varying (to zero) copula generators if

lim
x→∞

h(tx)

h(x)
=

{
0 for t > 1,
∞ for 0 < t < 1.
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Conditional probability of default (limiting case: p→ 0) for the Case 1 (regularly varying)

Theorem 1:
Suppose that the generator hθ(x) is regularly varying at infinity with index α = α(θ) for each θ > 0.
Then

lim
p→0

1

p
P (NX(p) ≥ nX |NY(p) ≥ nY ) = c1, (18)

where the constant c1 is given by

c1 = λ1

dX∑
n1=nX

dY∑
n2=nY

(dX
n1

)(dY
n2

) dX−n1∑
k=0

dY−n2∑
j=0

(−1)k+j
(dX − n1

k

)(dY − n2

j

)
∫ ∞

0

∫ ∞
0

(n1 + k)α(θ1) (n2 + j)α(θ2)H(2) (λ1θ1 + λ2θ2) dθ1dθ2

÷
dY∑

n2=nY

(dY
n2

) dY−n2∑
j=0

(−1)j+1
(dY − n2

j

) ∫ ∞
0

(n2 + j)α(θ2)H(1)(λ2θ2)dθ2.
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Empirical Results: Clayton-Pareto (Case 1: regularly varying)
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Tail probability P (NX(p) ≥ nX |NY(p) ≥ nY ) for the Clayton-Pareto case as a function of probability of default p. The results are obtained for the
case when hθ1 and hθ2 are generators of Clayton copula (intradependence) and a generalized bivariate Pareto distribution is used to model interdependence.
Parameters are specified as dX = dY = 15, nX = nY = 2, and different values of α = 2,4,5,10 controlling strength of interdependence.
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Empirical Results: Clayton-Pareto (Case 1: regularly varying)
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Approximations for different values of α: Tail probability P (NX(p) ≥ nX |NY(p) ≥ nY ) for the Clayton-Pareto case as a function of probability of
default p. The results are obtained for the case when hθ1 and hθ2 are generators of Clayton copula (intradependence) and a generalized bivariate Pareto
distribution is used to model interdependence. Parameters are specified as dX = dY = 15, nX = nY = 2, and different values of α = 2,4,5,10.
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Conditional probability of default (limiting case: p→ 0) for the Case 2 (rapidly varying)

Theorem 2:
For the Gumbel copula with the generator hθ(x) = exp

{
−x1/(θ+1)

}
, θ > 0, we have

lim
p→0

1

p
P (NX(p) ≥ nX |NY(p) ≥ nY ) = c2, (19)

where the constant c2 is given by

c2 = λ1

dX∑
n1=nX

dY∑
n2=nY

(dX
n1

)(dY
n2

)
dX−n1∑
k=0

dY−n2∑
j=0

(−1)k+j
(dX − n1

k

)(dY − n2

j

)
c(n1 + k, n2 + j)

÷
dY∑

n2=nY

(dY
n2

) dY−n2∑
j=0

(−1)j
(dY − n2

j

) Γ(α+ 1)

λα+1
2 (log(n2 + j))α
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Empirical Results: Gumbel-Pareto (Case 2: rapidly varying)
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Tail probability P (NX(p) ≥ nX |NY(p) ≥ nY ) for the Gumbel-Pareto case as a function of probability of default p. The results are obtained for the
case when hθ1 and hθ2 are generators of Gumbel copula (intradependence) and a generalized bivariate Pareto distribution is used to model interdependence.
Parameters are specified as dX = dY = 15, nX = nY = 2, and different values of α = 1,1.5,2,5 controlling strength of interdependence. In
panels 1-4 actual conditional probabilities are shown using solid line and approximations are shown using dotted lines.
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Empirical Results: Gumbel-Pareto (Case 2: rapidly varying)
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Approximations for different values of α: Tail probability P (NX(p) ≥ nX |NY(p) ≥ nY ) for the Gumbel-Pareto case as a function of probability of
default p. The results are obtained for the case when hθ1 and hθ2 are generators of Clayton copula (intradependence) and a generalized bivariate Pareto
distribution is used to model interdependence. Parameters are specified as dX = dY = 15, nX = nY = 2, and different values ofα = 1,1.5,2,5.
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Conclusion:

• Analyze the role of financial institutions as potential sources of instability or default

• Investigate default risk propagation within a multilayer system

• The proposed framework has a wide range of applications across financial, insurance, reinsurance, climate
and other sectors of the economy.

• Develop a multilayer system featuring the dependence structure between the layers of the financial system
(interdependence) as well as within each layer (intradependence).

– Archimedean copulas used to capture the dependency between the number of losses NX(p) and
NY(p), through the parameters θ1 and θ2

– Generalised bivariate Pareto distribution is used to model the dependency between (θ1, θ2)

– This work is a first attempt to tackle propagation effect across the two layers, accomplished in terms
of the numbers of defaults.
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Conclusion:

• Important limiting result for the conditional probability (for regularly varying and some rapidly varying):

– Important for assessing default events in practice:

lim
p→0

1

p
P (NX(p) ≥ nX |NY(p) ≥ nY ) = c
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