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Abstract

About 99 percent of cryptocurrency trades occur on organised exchanges and many investors
subsequently keep their digital assets in accounts with cryptocurrency markets. This gener-
ates exposure to the risk of exchange closures. We construct a database containing eight key
characteristics on 238 cryptocurrency exchanges and employ machine learning techniques to
predict whether a cryptocurrency market will remain active or whether it will go out of busi-
ness. Both in-sample and out-of-sample measures of forecasting performance are computed
and ranked for four popular machine learning algorithms. While all four models produce
satisfactory classification accuracy, our best model is a random forest classifier. It reaches
accuracy of 90.4 percent on training data and 86.1 percent on test data. From the list of
predictors we find that exchange lifetime, transacted volume and cyber security measures
such as security audit, cold storage and bug bounty programs rank high in terms of feature
importance across multiple algorithms. On the other hand, whether an exchange has pre-
viously experienced a security breach does not rank highly according to its contribution to
classification accuracy.
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1 Introduction

Cryptocurrencies are digital assets which can be transferred and used without an intermediary,
such as a bank, and whose issuance is not under the control of any central authority. They
are created via a process called mining and are managed by decentralised open source code.
Cryptocurrencies transact on peer-to-peer (P2P) networks that enable any two parties to interact
directly. Bitcoin – one of the first digital currencies – was introduced in Nakamoto (2008) and
started trading in 2010. While economists argue both in favour of and against digital currencies2,
the global cryptocurrency market capitalisation has reached $1.59 trillion and currently transacts
in excess of $135 billion daily3.

Despite advocating for anonymity and decentralization the cryptocurrency market is in fact
highly centralized. According to a U.S. Senate hearing about 99 percent of all cryptocurrency
trades occur on centralized exchanges that are used to convert funds between national currencies
and digital assets (Roubini, 2018). In addition, the top five exchanges account for more than 50
percent of all cryptocurrency transactions. Many investors also choose to keep their cryptocur-
rencies in accounts with cryptoexchanges which retain control of private keys which are required
to transfer clients’ digital assets (Hileman and Rauchs, 2017). Such practices create and amplify
exposure to the risk of exchange closures. Indeed, several studies have now documented a high
number of digital exchange closures during which investor funds are either fully or partially lost,
see e.g. Oosthoek and Doerr (2020) and Moore et al. (2018).

We address the risk investors face from closures of digital exchanges by attempting to forecast
such closures using publicly available data. If it is possible to accurately predict which markets
will remain open and which ones will go out of business then investors can take this information
into account and avoid exchanges that are likely to face closure. For this purpose we compile
a database containing eight publicly available characteristics on 238 cryptocurrency markets
and employ four popular machine learning (ML) techniques to train predictive algorithms. Our
ML methods comprise the following classifiers: decision tree, random forest, logistic regression
and support vector machine. Amongst few studies which investigate risk factors in the context
of digital exchange closures, our study is the first attempt to assess classification performance
on a test dataset. However, such out-of-sample analysis is crucial for understanding how well
the models generalize to new data, and gauges how effectively investors can protect themselves
by relying on generated forecasts. Further to measuring predictive ability we also investigate
feature importance in order to identify key predictors that contribute to classification accuracy.

In order to build a database of useful predictors we draw on several papers from the current
literature. For instance, Moore and Christin (2013) investigate determinants of digital exchange
closures using a Cox proportional hazard model. They report that transaction volume is a
statistically significant predictor that is inversely related to exchange closures. Experiencing a
security breach, on the other hand, appears to have no statistically significant impact on the

2For example, IMF’s He lists several advantages of crypto assets over fiat currencies He (2018). On the other
hand, an article titled ”Stiglitz, Roubini and Rogoff lead joint attack on bitcoin” argues against bitcoin (Newlands,
2018).

3As of February 19, 2021. Source: https://coinmarketcap.com.
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probability of closures, although it is positively correlated with it. More recent results reported
in Oosthoek and Doerr (2020) similarly suggest that there is a decreasing trend in exchange
closures resulting from security breaches over the 2011 – 2019 time frame. Moore et al. (2018)
employ longitudinal analysis to investigate 80 bitcoin exchanges established over the 2010 - 2015
period. They find that higher-volume exchanges are less likely to close and that experiencing a
security breach in the same quarter increases the odds of closure. Their analysis includes several
other predictors such as two-factor authentication and an anti-money laundering index for the
countries in which exchanges operate. Interestingly they find that these additional features have
no impact on the probability of exchange closures. Another study of interest is Johnson et al.
(2018) who develop an economic model to capture the short-term incentives of cryptocurrency
exchanges. In their model security investment plays a crucial role in determining profitability
and risk levels of digital exchanges. We take these result into account by adding multiple cyber-
security features to our list of predictor variables.

After compiling our database and splitting the sample into training and test datasets, we
optimize machine learning algorithms and assess their classification performance. Our results
may be summarised as follows. All four classifiers (decision tree, random forest, logistic re-
gression and support vector machine) perform satisfactorily, and achieve classification accuracy
ranging between 78.3 and 90.4 percent. While the random forest classifier ranks first according
to three out of four performance criteria we employ, its advantage over competing algorithms
is diminished when measured out-of-sample. This suggests that the recorded accuracy is driven
by simple patterns that may be exploited by alternative algorithms. In terms of feature impor-
tance transacted volume, exchange lifetime and security audit rank high across all algorithms
for which we are able to readily compute importances. Moreover, both random forest and lo-
gistic regression identify two additional cyber-security features – bug bounty and cold storage
– as important predictors of which exchanges will remain active. On the other hand two-factor
authentication and experiencing a previous security breach does not seem to significantly impact
the probability of an exchange remaining active according to logistic regression and decision tree
classifiers.

In the rest of the paper Section 2 describes our empirical methodology and Section 3 dis-
cusses our data on cryptocurrency exchanges. Section 4 provides empirical results and Section
5 concludes.

2 Methodology

Our empirical method consists of three steps: i) training and optimising ML algorithms, ii) eval-
uating in-sample (training dataset) and out-of-sample (test dataset) classification performance
and ranking the algorithms according to their predictive ability, and iii) examining feature im-
portance and determining which predictors contribute most to forecasting ability. We start by
discussing the problem of predicting which digital exchanges will remain active and which ones
will face closure.

3



2.1 The Prediction Problem

Our aim is to predict which cryptocurrency exchange will remain active and which will go out
of business, given relevant predictor variables. This results in a classification problem where the
target variable is defined as follows

yi =

{
1 if cryptocurrency exchange i remains active
0 if cryptocurrency exchange i has closed down.

(1)

Forecasts of yi are denoted ŷai and are generated on the basis of eight available predictor variables
(x1i, x2i, . . . , x8i) which are discussed in detail in Section 3. Thus, the forecasts are constructed
according to the following equation

ŷai = φa(x1i, x2i, . . . , x8i), (2)

where φa is a function describing the relationship between the forecast and predictor variables
that depends on which forecasting algorithm a is used.

While there is a plethora of prediction models one could employ, we decide to limit our
investigation to four popular and commonly used ML algorithms. These are as follows: i)
logistic regression, ii) decision tree, iii) random forest and iv) support vector machine. These
algorithms are flexible and capable of capturing complicated relationships between the target
and relevant features. A brief description of each classifier is provided next.

Logistic regression is one of the first, see e.g. Wilson and Worcester (1943), and most widely
used methods to model binary dependent variables. It specifies the conditional probability of
success given the vector of predictors xi, as a sigmoid function of the following form P (yi =
1|xi) = 1

1+e−w′xi
where w refers to the vector of weights, including the intercept. Logistic

regression prediction are then generated as follows

ŷLRi =

{
1 if P (yi = 1|x1i, x2i, . . . , x8i) ≥ 0.5
0 otherwise.

(3)

Since we do not implement any regularization in the logistic regression we are also able to
estimate standard errors, and thus gauge the statistical significance of the estimated coefficients.

Another popular classification algorithm is the decision tree classifier. It can build complex
decision boundaries by dividing the feature space into rectangles. A decision tree consists of a
root node, decision nodes and terminal nodes as illustrated in Figure 1. These nodes are formed
by starting at the tree root and splitting the data on the feature that results in the largest
information gain (IG). The splitting procedure is repeated at each decision node until the leaves
either contain elements from only one class or by setting a limit for the maximal depth of the
tree (which avoids overfitting). In our application we employ grid search cross-validation to
optimise two hyperparameters i) tree depth, and ii) criterion used to compute IG.
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Figure 1: A Decision Tree Classifier

A random forest classifier is an ensemble of decision trees. Random forests combine predic-
tions of multiple decision trees by averaging across their estimated probabilities, thus reducing
the degree of overfitting. A random forest of k trees may be constructed via the following
algorithm:

i) Draw a random bootstrap sample of size n from the training dataset (with replacement);

ii) Grow a decision tree from the bootstrap sample:

(a) Randomly select d features without replacement;

(b) Build a tree using these d features;

iii) Repeat i) - ii) k times;

iv) Combine classifiers by averaging their probabilistic predictions. Assign class label according
to greatest probability.

In our application we optimize three hyperparameters: i) maximum tree depth, ii) number of
trees k, and iii) criterion used to compute IG.

Lastly, support vector machine classifier is an algorithm designed to be robust to outliers. It
works by maximizing the margin which is the distance between the decision boundary and the
training examples that are closest to the boundary, i.e. support vectors, as illustrated in Figure
2. We implement the algorithms with L2 regularization and optimize the regularization strength
parameter. In addition, we cross validate the kernel function as a hyperparameter across the
following values {linear, rbf, polynomial, sigmoid}.

In order to improve convergence properties of ML algorithms we normalize all continuous
predictors as zero mean and unit variance variables. Binary indicator features are left unchanged.
All algorithms are implemented in Python using scikit-learn libraries.
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Figure 2: A Support Vector Machine Classifier

2.2 Training Algorithms and Performance Evaluation

In order to be able to assess forecasting performance on an independent dataset we divide our
data into training and test subsamples. The training dataset contains 70 percent of the data
(166 observations), while the test dataset consists of the remaining 30 percent (72 observations).
When splitting the data we preserve the proportions of examples in each class by stratifying
data according to the target variable. Moreover, alternative 80:20 and 60:40 splits between the
training and test datasets result in similar classification accuracy.

The models are first trained and their hyperparameters optimized using the training dataset
and K-fold cross-validation where K = 10. In the second step, we compute both in-sample
(training dataset) and out-of-sample (test dataset) forecasting performance according to the
following measures: i) classification accuracy, ii) precision, and iii) recall, and iv) F1 score. These
metrics gauge somewhat different aspects of forecasting ability that cryptocurrency investors
may care about. Denoting true positives as TP, true negatives as TN, false positives as FP and
false negatives as FN we explain the four performance metrics as follows.

i) Accuracy = number of correctly classified examples
sample size = TP+TN

TP+TN+FP+FN . Classification accuracy is
defined as the ratio of correctly predicted examples to the total sample size and is probably
the most commonly used measure of classification performance. Nevertheless, it has a
disadvantage that in situations where there is a class imbalance the model can predict the
value of the majority class for all samples and still achieve a high classification accuracy.

ii) Precision = TP
TP+FP . Precision computes the ratio of true positives to all positively labelled

(predicted) examples. It answers the question of how many exchanges actually remain
active out of all the exchanges which are predicted to survive.

iii) Recall = TP
TP+FN . Recall is the ratio of correctly predicted positive example to all posi-
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tive samples. It tells us what portion of all exchanges which remain active we classify as
remaining active.

iv) F1 Score = 2 × Recall×Precision
Recall+Precision . F1 score is computed as the weighted average of precision

and recall and aims to balance these two metrics.

3 Data and Descriptive Statistics

Our dataset comprises cross-sectional data on 238 exchanges collected for the June 2010 – Jan-
uary 2021 time period. We construct this database by collecting information from publicly
available sources, as well as incorporating some of the data published in previous studies such
as Moore et al. (2018) and Oosthoek and Doerr (2020). In particular, we obtain information on
security breaches from online lists compiled by Hackernews (2019), Selfkey (2019) and Slowmist
(2021) and from other various media reporting. Information on transaction volumes and ex-
change lifetimes is collected from online information portals and news websites such as coin-
marketcap.com, coingecko.com, cryptowisser.com and coinpaprika.com. Lastly, each exchange’s
website is inspected for information on cyber-security programs and any additional relevant in-
formation. To view the websites of closed exchanges we rely on the Wayback Machine which is
described as a digital archive of the World Wide Web (archive.org).

The target active is a binary variable signifying if an exchange remains active or has closed
down, as defined in (1). Our list of predictors comprises eight features including i) volume –
average daily traded volume in USD, ii) lifetime – exchange lifetime in days and iii) breach – a
variable tracking whether there has been a security breach or not. Amongst other predictors are
binary variables representing whether or not each of the following four cyber-security measures
are implemented iv) two-factor authentication, v) bug-bounty program4, vi) security-audit, and
vii) cold-storage5. Nevertheless, not all exchanges provide information regarding all four security
programs on their website. In such cases of missing data, and for the purpose of maximising our
sample size, we take a conservative approach and code missing samples as 0, implying that the
exchange for which the data is missing does not implement the security measure in question.
This is a reasonable assumption given that cryptocurrency investors worry about cyber risks
and that digital exchanges compete on the basis of implemented security features. Finally,
our dataset is completed with a variable capturing the extent of financial regulation for each
exchange’s base country. This remaining predictor is viii) aml/cft – the anti-money laundering
and combating the financing of terrorism index of Verdugo Yepes (2011). Where an exchange
operates in multiple countries we take a conservative approach and classify it as operating in
the country with the lowest aml/cft.

Table 1 provides some summary statistics for our dataset.

4Bug bounty is a program offered by websites and software developers by which individuals can receive recog-
nition and compensation for reporting bugs, especially those pertaining to security vulnerabilities.

5Cold storage (cold storage wallet) is a hardware device used to store cryptocurrency that is kept offline, thus
protecting the funds from unauthorized access, cyber attacks and other vulnerabilities to which a system that is
connected to the internet is susceptible.
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Table 1: Descriptive Statistics

mean std min 25% 50% 75% max

active 0.55 0.50 0.00 0.00 1.00 1.00 1.00
breached 0.26 0.44 0.00 0.00 0.00 1.00 1.00
two-factor 0.90 0.30 0.00 1.00 1.00 1.00 1.00
bug-bounty 0.31 0.46 0.00 0.00 0.00 1.00 1.00
security-audit 0.30 0.46 0.00 0.00 0.00 1.00 1.00
cold-storage 0.80 0.40 0.00 1.00 1.00 1.00 1.00
aml/cft 27.23 6.82 11.90 22.84 28.33 33.67 35.33
volume 311.18 870.00 0.00 0.09 16.84 187.47 7344.85
lifetime 1303.03 842.00 19.00 730.25 1035.00 1894.25 3502.00

Notes: Computations are based on a dataset comprising 238 cryptocurrency exchanges.
Volume is measured in millions of USD.

As indicated by the first column of the table about 55 percent of the 238 cryptocurrency ex-
changes contained in our database remain active, while 26 percent of the exchanges have suffered
some form of security breach. A majority of the exchanges implement two-factor authentica-
tion (90 percent of all exchanges) as well as cold storage facilities (80 percent). On the other
hand, bug bounty and security audits are less commonly implemented by digital exchanges,
with respective frequencies of 31 and 30 percent. The anti-money laundering and combating of
financing of terrorism (aml/cft) index varies substantially and exhibits a mean value of 27.23
out of 49.

Lastly we discuss the properties of the lifetime and volume predictors. The average lifetime
for our sample of cryptocurrency exchanges appears to be about 1303.03 days, with a mini-
mum of 19 days and the maximum of 3502 days. Thus, some exchanges have been quite short
lived. In addition, the standard deviation of lifetime is 842.00 days which is high relative to its
mean. The mean daily volume is USD 311.18 million, and also varies substantially from USD
300.616 (displayed as 0.00 in USD millions) to USD 7344.85 million. Thus our dataset is highly
heterogeneous in terms of exchange properties.

We next turn our attention to pairwise correlations presented in Table 2, which contribute
to prediction accuracy discussed in the next section.

8



Table 2: Correlation Matrix

active breached two-
factor

bug-
bounty

security-
audit

cold-
storage

aml/cft volume lifetime

active 1.00 -0.13 0.33 0.35 0.40 0.41 -0.12 0.28 0.37
breached -0.13 1.00 -0.26 -0.01 0.07 -0.20 0.05 0.02 0.04
two-factor 0.33 -0.26 1.00 0.22 0.18 0.58 -0.12 0.11 0.30
bug-bounty 0.35 -0.01 0.22 1.00 0.34 0.22 0.06 0.18 0.05
security-audit 0.40 0.07 0.18 0.34 1.00 0.26 0.02 0.16 0.29
cold-storage 0.41 -0.20 0.58 0.22 0.26 1.00 -0.04 0.15 0.17
aml/cft -0.12 0.05 -0.12 0.06 0.02 -0.04 1.00 -0.05 0.01
volume 0.28 0.02 0.11 0.18 0.16 0.15 -0.05 1.00 0.02
lifetime 0.37 0.04 0.30 0.05 0.29 0.17 0.01 0.02 1.00

Notes: Computations based on a dataset comprising 238 cryptocurrency exchanges.

Considering correlations between the target variable and various predictors provided in the
first row of the table we observe that security-audit and cold-storage exhibit relatively large
and positive correlations with active which are respectively 0.40 and 0.41. These are followed in
magnitude by the correlations between active and lifetime, bug-bounty and two-factor predictors,
which are each estimated to be 0.37, 0.35 and 0.33. Additionally volume also has a positive and
moderate correlation with active at 0.28, while breached and aml/cft variables are negatively
correlated with the target. Thus, it would appear that implementing cyber-security features,
a longer trading track record and greater transaction volume are positively associated with
exchanges which remain active. On the other hand, experiencing a security breach and operating
in countries with greater emphasis on anti-money laundering efforts is negatively related to the
active markets, although these two correlations are rather small in magnitude.

In the second row of Table 2 we see that experiencing a security breach is negatively related
to two-factor and cold-storage, as expected. These correlations are however not large in mag-
nitude with the estimates of -0.26 and -0.20. Rows 3 – 6 suggest that the four cyber-security
measures are all positively correlated, with correlations raging from 0.18 between security-audit
and two-factor, to 0.58 which is found between cold-storage and two-factor. While some of these
correlations may present a difficulty in disentangling the effects of individual features on the
target, i.e. multicollinearity, as discussed in Section 4.2, they have no adverse effect on the clas-
sification performance. Given that we aim to maximize the forecasting ability we decide to leave
all four security features in the dataset. Lastly, while volume exhibits relatively low correlations
with other predictors, lifetime seems to be moderately and positively correlated with two-factor
and security-audit.

4 Empirical Results

We start by discussing classification performance results, which we then follow with the analysis
of feature importance and a visualisation of the predictions.
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4.1 Measuring Classification Performance

Table 3 presents four measures of in-sample classification performance which are computed using
the training dataset6.

First, we note that all four algorithms achieve satisfactory performance across different mea-
sures of classification ability. The best performing algorithm according to classification accuracy
is random forest, which reaches in-sample accuracy of 0.904. In the second and third places are
decision tree and support vector classifiers with accuracy metrics of 0.880 and 0.843, respectively.
Lastly logistic regression attains the accuracy of 0.783. Thus, the difference between the highest
and the lowest classification accuracy is about 0.12, i.e. 12 percent, using the training dataset.

Table 3: In-sample Forecasting Performance (Training Dataset)

Algorithm Accuracy Precision Recall F1 Score

Random Forest 0.904 0.895 0.934 0.914
Decision Tree 0.880 0.838 0.967 0.898
Support Vector 0.843 0.865 0.846 0.856
Logistic Regression 0.783 0.816 0.780 0.798

Notes: Metrics are computed from the training dataset consisting of
166 samples (70 percent of all data).

Although Table 3 sorts values according to classification accuracy, all four performance
measures are largely consistent in their rankings. As evident from the top row of the table
random forest ranks first in terms of accuracy, precision and F1 score. The only metric which
ranks random forest in the second place is recall where decision tree classifier achieve the highest
value.

Having explored in-sample classification performance we now turn to out-of-sample metrics
provided in Table 4, which are computed on the basis of the test dataset. These results provide
a better representation of the true predictive ability since the test dataset has not been used
for the purpose of training the algorithms and optimizing hyperparameters. While the out-of-
sample performance rankings are similar to what we observed using in-sample data, they are
less uniform. This is particularly notable for alternative measures of performance such as recall,
where discrepancies between different classifiers can reach up to 20 percent.

According to out-of-sample measures of classification performance, random forest ranks first
according to two out of four criteria – accuracy and F1 score. In contrast, random forest’s
precision is 0.812 which places it in the fourth place, while the top position is now taken by the
support vector classifier with the precision of 0.892. These value are, nevertheless, similar in
magnitude. Lastly, according to recall the decision tree classifier is best with the recall of 1.000
while random forest comes second with the recall of 0.975. Decision tree classifier ranks second
according to accuracy (sharing the second place with the support vector classifier), recall and

6While we split our data according to the 70:30 percent ratio between the training and test datasets (as noted
in Section 2.2), alternative 60:40 and 80:20 splits result in similar classification performances and relative rankings.
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Table 4: Out-of-sample Forecasting Performance (Test Dataset)

Algorithm Accuracy Precision Recall F1 Score

Random Forest 0.861 0.812 0.975 0.886
Decision Tree 0.847 0.784 1.000 0.879
Support Vector 0.847 0.892 0.825 0.857
Logistic Regression 0.819 0.865 0.800 0.831

Notes: Metrics are computed on test dataset consisting of 72 samples
(30 percent of all data)

F1 score.
Next, we examine the results of our best classifier – random forest – in more detail using the

confusion matrix produced in Figure 3.

Figure 3: Confusion Matrix – Random Forest Algorithm and Test Data

Out of the total of 72 samples contained in the test dataset, there are 40 exchanges which remain
active (class 1) and 32 exchanges that have closed down (class 0). As can be seen from the second
row, only 1 of the 40 active exchanges are misclassified as facing closure by the random forest
classifier. This corresponds to the recall of 0.975 presented in Table 4. In contrast, of the 32
exchanges which went out of business we successfully predict 23 while random forest misclassifies
9 as remaining active. This results in a true negative rate (specificity) of 0.697. Thus, while we
are able to separate the classes with high accuracy a certain amount of risk still prevails when
predicting which exchanges will close down.

In order to gain further insight into the problem we consider which features contribute most
to classification ability.

4.2 Feature Importance

Feature importance refers to the usefulness of predictors in forecasting the target variable.
However, there is no single method to measuring feature importance for all algorithms. For
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instance our support vector classifier tackles potential nonlinearies via kernel methods such that
even simple measures of feature importance, e.g. the magnitude of estimated weight coefficients7,
become unavailable. Nevertheless, three of the four classifiers we consider here provide measures
of feature importance which we are able to easily compute. Should evidence from such multiple
algorithms suggest that a certain feature is ”important” then we can have greater confidence in
the impact of that predictor.

Figure 4: Feature Importance According to Random Forest Classifier

Figure 4 presents the estimates of Gini importance computed from the random forest clas-
sifier. These are calculated as normalised reductions in node impurity (Gini impurity) resulting
from every feature and then averaged across all constituent trees. As evident from the fig-
ure, volume (in USD) appears to be the main predictor used in separating which exchanges
will remain open and which markets will close. The second most important feature is lifetime.
These two top predictors are followed by three cyber-security features, namely, security-audit,
bug-bounty and cold-storage. The measure of anti-money laundering regulation in base countries
aml/cft plays a smaller role, while breached and two-factor seem to have marginal impacts on
the classification ability of random forest.

Considering feature importance according to the decision tree classifier in Figure 5 we confirm
the importance of volume, lifetime and security-audit features. Here the importance of each
feature is computed as the total reduction of Gini impurity resulting from that feature (similar
to previosly discussed random forest feature importance). As depicted in the picture volume
now plays a much more important role while lifetime and security-audit exhibit similar and
smaller influences. The remaining five predictors play no role in the decision tree classifier.

Lastly we look at the logistic regression model. Table 5 reports marginal effects and their p-
values which provide a different perspective on feature importance to what we discussed above.

7Considering the magnitude of estimated weight parameters provides information about feature importance
when the features are measured on the same scale (standardised in some way).

12



Figure 5: Feature Importance According to Decision Tree Classifier

Marginal effects measure how the predicted probability of a binary outcome changes with a
change in a risk factor. For instance, we can look at how the probability of remaining active
changes with a 1-unit increase in (normalized) volume, or for an exchange with security audit
versus an exchange without it. Using this approach, we can comment both on the magnitude of
the impact of each predictor, i.e. the size of the marginal effect and their statistical significance.

Considering the p-values reported in the last column of the table, we see that volume, cold-
storage, bug-bounty, security-audit and lifetime all exhibit statistically significant coefficients at
the 5 percent level. All of these features also exhibit positive parameters, implying that they
increase the probability of remaining active. For instance, increasing the (normalised) volume
feature by one unit will increase the probability of remaining active by 0.414, while a 1-unit
increase in (normalized) lifetime will result in a 0.117 change in the same probability. Of the bi-
nary variables, we see that implementing cold-storage, bug-bounty and security-audit respectively
result in 0.211, 0.194 and 0.194 increases in the probability of remaining in business. We can
see that these five variables also played an important role in the random forest classifier, while
the decision tree classifier was stricter, identifying a three-variable subset in feature importance
analysis.

The remaining features, i.e. two-factor, aml/cft and breached, are not statistically significant
at any conventional level of significance. However, as we can see two-factor variable has a positive
estimate coefficient while aml/cft and breached exhibit negative coefficients, as expected. The
insignificance of two-factor could be due to the relatively high correlations between this variable
and other security features making it difficult to disentangle individual effects (see Table 2).
Another possible explanation, is that the lack of two-factor authentication may compromise
user accounts of individual investors but not the viability of the exchange as a whole. The same
explanation may be hypothesized for the large p-value on breached, which in fact identifies any
type of security breach no matter how large or small the breach may be.
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Table 5: Marginal Effects Estimated by Logistic Regression

dy/dx Std. Err. z-stat. p-value

volume 0.414 0.126 3.272 0.001
cold-storage 0.211 0.091 2.309 0.021
bug-bounty 0.194 0.058 3.324 0.001
security-audit 0.194 0.063 3.069 0.002
lifetime 0.117 0.030 3.942 0.000
two-factor 0.105 0.175 0.602 0.547
aml/cft -0.039 0.029 -1.336 0.182
breached -0.099 0.073 -1.351 0.177

Notes: The columns present i) marginal effects, ii) standard
errors, iii) z-statistics and iv) p-values.

Lastly, we plot the predicted and realised samples from the test dataset against the three
features which are designated as being important by multiple algorithms – namely volume, life-
time and security-audit. While the presented predictions are generated using all eight features,
the visualisation illustrates the relationship between the forecasts and the plotted predictors in
a 3-dimensional subspace. As can be seen from the graph most of the predictions (smaller solid
circles) fall inside the realized data samples (larger transparent circles). More importantly, the
colors of the larger and smaller circles mostly match indicating a high degree of classification
accuracy.
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Figure 6: Classification 3-dimensional Subspace

5 Conclusion

A large majority of investors conduct their cryptocurrency trades on organised digital exchanges
despite having the possibility of peer-to-peer trading. Additionally, many investors also keep
their cryptocurrencies in accounts with the exchanges, thus charging them with the safekeeping
of their digital assets. These practices create exposure to the risk of digital exchange closures.

In this paper we compile a database containing eight publicly available characteristics on
238 cryptocurrency exchanges, 107 of which have closed since 2010. Using the collected data
we build machine learning models to predict which digital markets will remain open and which
will face closure. For the prediction task we employ four popular machine learning classifiers
comprising i) decision tree, ii) random forest, iii) logistic regression and iv) support vector
machine. Finally, we rank the alternative algorithms according to four different measures of
classification performance, identify key predictor variables and visualize some predictions.

Our best algorithm is a random forest classifier which reaches in-sample classification accu-
racy of 0.904 (on training data) and out-of-sample accuracy of 0.861 (on independent test data).
Nevertheless, all four classification methods accomplish relatively good performance with the
minimum classification accuracy of 0.783 across all different algorithms. In-sample estimates of
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precision (0.895) and F1 score (0.914) also favour random forest, while the recall metric places
decision tree classifier to the top (0.895) and random forest second. While in-sample estimates
of accuracy show more variation across different classifiers than their out-of-sample counter-
parts, the estimates of recall are more disperse when measured out-of-sample. This highlights
the importance of considering alternative measures of performance when comparing different
classifiers.

From the list of eight exchange characteristics, average traded volume, exchange lifetime
and security audit are found to be key predictors across multiple classifiers. Two additional
cyber-security features, namely bug bounty and cold storage programs are also found to be
important according to our random forest and logistic regression classifiers. On the other hand,
experiencing a security breach, having two factor authentication and the extent of anti-money
laundering regulation in the countries where the exchange operate does not seem to have a
significant impact on the probability of remaining active.

While summarising risk factors inferred from several different models is not straightforward,
we conclude that investors may be able to reduce their risk of digital exchange closures by
trading on the markets which record relatively high transaction volumes, have a long track
record of trading and implement multiple security features. Nevertheless, our results also show
that a certain level of risk remains even after accounting for all the exchange characteristics
considered in this paper. Traders should therefore aim to stay informed of any other pertinent
information, as well as consider transferring their digital assets from organized exchanges to
their own cryptocurrency wallets.
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