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Abstract
We investigate the forecasting performance of popular dynamic factor mod-
els of the yield curve after the global financial crisis (GFC). This time period
is characterized by an unprecedented low and non-volatile interest rate envi-
ronment in most major economies. We focus on the dynamic Nelson-Siegel
model and regressions on principal components and use a dataset of monthly
US treasury bond yields to show that subsequent to the GFC both mod-
els are significantly outperformed by the random walk no-change forecast.
Especially for short and medium term yields the random walk is up to ten
times more accurate. Interestingly, these results are not picked up by tradi-
tional global forecast evaluation metrics. We show that combining forecasts
mitigates the model uncertainty and improves the disappointing forecasting
accuracy especially after the GFC.
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1 Introduction

The global financial crisis (GFC) in 2007-2009 has caused major eruptions in

bond and interest rate markets, rendering many traditional yield and bond

pricing models useless (Bianchetti, 2010; Walker and McCormick, 2014). The

GFC has also led to an unprecedented, prolonged period of low interest rates

in several advanced economies subsequent to the crisis. The US are a prime

example for this development. Following the Fed’s expansive monetary policy

during the GFC, US short and medium yields have been more or less flat since

2009. We show how this unique interest rate environment severely challenges

the forecasting accuracy of popular dynamic factor yield curve forecasting

models for short and medium yields. We also show that the poor forecasting

performance in this time period is not reflected in traditional, global forecast

evaluation metrics such as the root mean squared error (RMSE) that are typ-

ically applied to measure the forecasting performance, see, e.g. Diebold and

Li (2006); Carriero et al. (2012). Hence this outcome may not be perceived in

future forecasting studies and potentially distort results and interpretations.

Finally, we suggest forecast combination strategies as a mitigating measure

to improve the forecasting accuracy.

Forecasting the yield curve has been recognized in the literature as a chal-

lenging task for decades. Despite major advances in yield curve modelling

and forecasting (Vasicek, 1977; Cox et al., 1985; Nelson and Siegel, 1987; Dai

and Singleton, 2000; Diebold and Li, 2006; Exterkate et al., 2013), the high

persistence of yields makes it typically hard for any model to outperform a

simple random walk no-change forecast (Ang and Piazzesi, 2003; Moench,

2008; Carriero et al., 2012; Xiang and Zhu, 2013). In this study we illus-

trate that the current interest rate environment even further aggravates this

challenge. After the GFC, US short and medium yield forecasts of popular

dynamic factor models not only fail to beat the random walk but are com-

pletely outperformed in relative terms, with a random walk model being up

to ten times more accurate. Surprisingly, this outcome has not been thor-

oughly investigated and documented yet in previous research.

To investigate this effect we study a dataset of monthly US Treasury bonds
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zero-coupon yields for the time period from 1995:01 to 2013:12, focusing on

the class of dynamic factor models. While they may lack the theoretical

fundament of no-arbitrage models, they promise to deliver the most accu-

rate forecasting results as suggested by Duffee (2002, 2011); Chen and Niu

(2014)), just to name a few. They are also the class predominantly used

in recent studies focusing on predicting the term structure of interest rates.

We focus on different variations of the Nelson-Siegel model, which imposes

a parametric structure on factor loadings, as well as regressions on principal

components, which extract factors and factor loadings directly from the data.

In our analysis we benchmark the forecasting performance of these models

against a random walk no-change forecast. We also include a simple au-

toregressive (AR(1)) model as an additional benchmark, since this approach

has been reported to forecast the yield curve surprisingly well (Diebold and

Li, 2006; Pooter et al., 2010). The forecasting accuracy is measured with

the commonly used root mean squared error (RMSE) and Diebold-Mariano

statistics (DM).

We start our analysis with investigating the forecasting accuracy for the en-

tire forecasting period from 2004:01 to 2013:12 and find results similar to

previous comprehensive US yield curve forecasting studies, see, e.g. Pooter

et al. (2010) or Yu and Zivot (2011). The selected factor models perform

relatively well for short maturities and long forecast horizons, but all models

fail to consistently beat the random walk. However, the sub-sample anal-

ysis reveals that subsequent to the GFC (2009:01-2013:12) the forecasting

accuracy for short and medium yields worsens dramatically relative to the

random walk. For nearly all maturities below five years the random walk

is multiple times more accurate across all forecasting horizons. For six and

twelve-months ahead forecasts the random walk is even up to ten times more

accurate. Similar results are also found when comparing the performance of

the applied dynamic factor relative to an AR(1) model. In addition, Diebold-

Mariano statistics show, that the considered models provide forecasts that

are significantly worse than those of a random walk. In other words, since the

end of the GFC the random walk and a simple AR(1) process significantly

outperform popular yield curve forecasting models in predicting short- and
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medium term yields. While the performance of forecasting models naturally

varies over time, these results are still striking over such an extended period.

We argue that since the applied dynamic models are typically calibrated over

a period that also includes significant changes in interest rates as well as in

the term structure of the yield curve, these models seem to be outperformed

by a no-change random walk forecast in a low yield environment with hardly

any fluctutions for the observed interest rates. Moreover, the models were

also estimated during periods when interest rates were significantly higher

than during the post GFC period such that forecasts created by the applied

models may not only overstate the dynamics of the interest rate term struc-

ture but also interest rate levels.

Interestingly, this performance is not picked up by commonly used global

forecast evaluation metrics when the entire out-of-sample period is consid-

ered such that the results are not reflected in the full sample RMSE’s. This

is because the forecasting errors during the critical period become relatively

small in absolute terms, especially for short and medium yields and thus

contribute relatively little to the global average. This highlights one of the

most important points of this paper: investigating the global (or average)

absolute forecasting performance may hide important information about the

relative forecasting performance over time.

A natural question to ask is how to approach the unique yield curve dynamics

subsequent to the GFC in future forecasting exercises. Different approaches

have been developed to account for structural instability. Ang and Bekaert

(2002) or Xiang and Zhu (2013), for example, suggest to apply regime-

switching models that may capture the different interest rate environment.

Exterkate et al. (2013) have also shown that including macroeconomic factors

may improve the forecasting performance especially in volatile time periods,

while gains in the forecasting performance are clearly less significant during

when volatility is low. We suggest forecast combination techniques (Tim-

mermann (2006); Guidolin and Timmermann (2009); Pooter et al. (2010))

as a possible strategy to mitigate the model uncertainty and improve the dis-

appointing forecasting accuracy, especially for the crucial time period after

the GFC. We find that simply combining all applied factor models already

3



significantly improves the forecasting accuracy compared to the individual

models, albeit this strategy is still outperformed by a random walk. We also

combine two diametrically biased variations of Nelson-Siegel and principal

component model with the AR(1) model and find that this strategy is able

to further improve the poor forecasting performance for shorter maturities

after the GFC. This strategy is also able to beat the random walk for longer

forecasting horizons. Our results also indicate that performance weighted

forecast combination schemes generally lead to more accurate forecasts than

the equally weighted performance schemes.

We contribute to the literature on yield curve forecasting in several dimen-

sions. To begin with, this is the first paper to systematically document and

explain the poor forecasting performance for medium and short term yields

associated with the popular class of dynamic factor yield curve models in the

current low interest rate environment. While we focus on the most popular,

basic variations of the models, further research may be required to examine

how alternative and more complex dynamic factor models perform in this

time period.

Second, we show how sensitive the forecasting performance is to the choice

of the evaluation metrics. It is still common to select the model with the

best global forecasting performance, which in practice amounts to selecting

the model that forecasts best on average over the entire out-of-sample period.

However, in the presence of time-varying yield curve dynamics, averaging the

results over time will result in a significant loss of information.

Third, we provide further evidence that combining different models can sig-

nificantly improve the forecasting accuracy, especially in periods where indi-

vidual models perform poorly. While the forecasting accuracy of the selected

models varies heavily over time, forecast combinations are less affected by

structural instability than either of the individual models.

Finally, our results illustrate how important it is to closely examine the dy-

namic behavior of the yield curve and to perform a thorough sub-sample

analysis and apply dynamic forecast evaluation measures to reveal the true

forecasting performance in future yield curve prediction exercises.

The remainder of the paper is organized as follows: Section 2 provides a
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review of the relevant yield curve forecasting literature. Section 3 reports

descriptive statistics and illustrates the dynamic behavior of yields during

the considered sample period. In Section 4 we introduce the selected models,

while Section 5 provides out-of-sample forecasting results and several robust-

ness checks. In Section 6 we apply different forecast combination strategies

and examine whether results can be improved in comparison to using indi-

vidual models only. Finally, Section 7 concludes and provides suggestion for

future work in the area of research.

2 Related Literature

The numerous term structure models can typically be divided into two streams

of literature, see, for example Chen and Niu (2014). The first stream consists

of models deriving the term structure based on the short rate, by eliminating

arbitrage possibilities between current and future interest rates under various

assumptions about the risk premium. Building on the work of Vasicek (1977)

and Cox et al. (1981), seminal contributions to the development of these no-

arbitrage and affine equilibrium models include Hull and White (1990); Duffie

and Kan (1996) and Dai and Singleton (2000). More recent contributions to

this stream of literature also relate the short rate to macroeconomic vari-

ables (Ang and Piazzesi, 2003; Dewachter and Lyrio, 2006; Rudebusch and

Wu, 2008; Moench, 2008). Unfortunately, no-arbitrage and affine-equilibrium

models often exhibited poor empirical forecasting performance as pointed out

by Duffee (2002, 2011).

The second stream of literature consists of reduced-form models based on

more data-driven statistical approaches. This stream has evolved from uni-

variate to multivariate time series models to the class of empirical factor

models predominantly used today. Popular univariate models are, for ex-

ample, the slope regression model, the Fama-Bliss forward rate regression

model (Fama and Bliss, 1987) or simple autoregressive processes. The multi-

variate class includes in particular vector autoregressive (VAR) models and

error correction models (ECMs). Different to the univariate models, these
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models are also able to utilize the cross-sectional dependence structure and

cointegration of observed yields at different maturities.

In this study we mainly focus on the class of empirical dynamic factor models

that recently have been extensively applied to the modeling and prediction of

the yield curve (Christensen et al., 2011; Favero et al., 2012; Exterkate et al.,

2013; Xiang and Zhu, 2013). Dynamic factor models allow to model and fore-

cast the term structure based on low-dimensional, latent factors which are

extracted from the entire yield curve while retaining the dependence struc-

ture of different maturities. The latent factors are usually either estimated by

imposing a parametric structure on the factor loadings or extracted directly

from the term structure, e.g., by means of a principal component analysis

(PCA). While these models may lack the theoretical foundation of the first

stream, the empirical literature suggests that they may provide more accu-

rate forecasts of the yields (Duffee, 2002; Pooter et al., 2010).

Most of the parametric factor models build on the ground-breaking work

of Nelson and Siegel (1987) and Diebold and Li (2006). Nelson and Siegel

(1987) introduced a parsimonious three-factor model to fit the term structure

by using flexible, smooth parametric functions. They demonstrate that their

model is capable of capturing most of the typically observed shapes assumed

by the yield curve over time. Among the various extensions that have been

proposed to incorporate additional flexibility, the most popular is probably

the Svensson (1994) four-factor model. Both, the Nelson-Siegel as well as the

Svensson model are heavily used by market practitioners and central banks

to construct zero-coupon yield curves, see, for example, Gürkaynak et al.

(2007); Coroneo et al. (2011)).

The initial Nelson-Siegel model only estimated the yield curve at certain

point in time. Diebold and Li (2006) have extended Nelson-Siegel’s initial

approach into a dynamic framework and applied it successfully to forecast

the term structure of US yields. Their parsimonious three-factor model per-

forms surprisingly well, particularly at long horizons, while the three latent

factors in the model can be reinterpreted as the level, slope and curvature of

the yield curve.

Since the seminal study by Diebold and Li (2006), the literature on fore-
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casting yield curves has grown significantly and in particular the dynamic

Nelson-Siegel model has been extended numerous times. Diebold et al. (2006)

integrate the initial Diebold and Li (2006) two-step forecasting approach into

a single dynamic factor model by specifying the Nelson-Siegel weights as an

unobserved vector autoregressive process. Diebold et al. (2008) further ex-

tend the initial dynamic Nelson-Siegel model to a global context in which

modeling a large set of yield curves allows for global and country specific fac-

tors. Christensen et al. (2011) develop an arbitrage-free version of this model,

while Yu and Zivot (2011) include the evaluation of a state-space approach

and nine different ratings for corporate bonds. Hautsch and Yang (2012)

allow for stochastic volatility of the estimated yield factors, while Xiang and

Zhu (2013) develop a regime-switching Nelson-Siegel model. Most recently,

Laurini and Hotta (2014) and Chen and Niu (2014) integrate Bayesian esti-

mation methods and adaptive forecasting techniques into the dynamic factor

framework.

An alternative, non-parametric forecasting approach is to apply PCA to ex-

tract the factors directly from the entire term structure. PCA works best

with correlated time series (Duffee (2012) and is therefore a natural and pop-

ular choice to reduce the dimensions of highly correlated yield curve datasets.

A small number of orthogonal and uncorrelated factors or principal compo-

nents can usually account for a high fraction of variability in relatively high-

dimensional datasets. Following Litterman and Scheinkman (1991), several

studies apply PCA and find that the variation in interest rates can already

be explained by the first three principal components, see, e.g., Bikbov and

Chernov (2010); Leite et al. (2010). These three common factors also have

an intuitive interpretation as level, slope and curvature based on their effect

on the yield curve and can be successfully applied in forecasting exercises.

Reisman and Zohar (2004), for example, use their forecasting results in bond

portfolio selection and suggest that frequent rebalancing leads to substan-

tially higher returns. Blaskowitz and Herwartz (2009) apply PCA to the

prediction of the term structure of Euribor swap rates.

While dynamic factor models are the most promising class of yield curve fore-

casting models the near unit root behaviour of the yields makes it hard for
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any model to consistently outperform the random walk. Still, many studies

report superior forecasting results for particular datasets, however, as Pooter

et al. (2010) show in an extensive forecasting study of US yields, no model

clearly performs well across all maturities or different sample periods. More-

over, the forecasting ability of individual models considerably varies over

time.

Recent studies have shown that combining the forecasts of different models

may mitigate this model uncertainty (Guidolin and Timmermann, 2009). A

different approach may also be to include macroeconomic variables into the

forecasting procedure. Amongst others, Koopman and van der Wel (2013)

and Exterkate et al. (2013) have demonstrated that including macroeconomic

variables can significantly improve the forecasting performance for yield term

structures, especially during periods of poor forecasting accuracy.

Overall, despite recent advances, forecasting the yield curve remains a chal-

lenging task. In this study we show that forecasting short and medium yields

becomes even more arduous in the current low-interest rate environment after

the GFC.

3 Data

For the analysis, we use the end-of-month zero-coupon rates of US Treasury

bonds obtained from Bloomberg for the time period from January 2000 to

December 2013. Selecting US yields is an obvious choice as they have pre-

dominantly been used in the literature due to their supreme data quality

and availability. The US are also a prime example for an extended period of

low and non-volatile interest rates after the GFC. Bloomberg has the advan-

tage of providing up to date yields and thus including the time period after

the GFC. Using monthly frequency (n=228) we construct the term structure

with 12 maturities ranging from 3, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108 to

120 months.

Table 1 provides the descriptive statistics of the considered dataset. The

reported characteristics are in line with the stylized facts commonly found

in yield curve data, see e.g Diebold and Li (2006); Pooter et al. (2010) or
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Maturity
(months)

Mean St Dev Min Max ρ̂(1) ρ̂(12) ρ̂(30) α̂(2) α̂(12) ADF

3 2.85 2.26 0.02 6.47 0.99 0.74 0.25 -0.27 -0.05 -1.25
6 3.00 2.32 0.04 6.74 0.99 0.74 0.25 -0.35 -0.05 -1.36
12 3.12 2.32 0.11 6.88 0.99 0.75 0.27 -0.27 -0.10 -1.29
24 3.33 2.22 0.22 7.48 0.98 0.76 0.33 -0.18 -0.07 -1.28
36 3.55 2.11 0.28 7.59 0.98 0.77 0.37 -0.16 -0.06 -1.42
48 3.77 2.00 0.44 7.68 0.98 0.77 0.40 -0.12 -0.06 -1.66
60 3.95 1.85 0.62 7.72 0.97 0.76 0.40 -0.10 -0.05 -1.80
72 4.12 1.76 0.79 7.79 0.97 0.75 0.41 -0.10 -0.05 -1.90
84 4.31 1.67 0.97 7.86 0.97 0.74 0.42 -0.10 -0.05 -2.02
96 4.44 1.58 1.17 7.87 0.97 0.74 0.42 -0.10 -0.06 -2.07
108 4.54 1.50 1.37 7.89 0.97 0.73 0.41 -0.10 -0.08 -1.89
120 4.60 1.42 1.60 7.90 0.97 0.70 0.39 -0.08 -0.07 -2.30

Table 1. Descriptive Statistics for the term structure of US yields for the time period from 2000:01 to
2013:12. For each maturity we report (from left to right) mean, standard deviation, minimum, maximum,
autocorrelations at displacements of 1, 12, and 30 months, partial autocorrelations at displacements of 2
and 12 months and augmented Dickey-Fuller (ADF) test-statistics. For the ADF, the critical values for a
rejection of the unit root hypothesis are 3.45 at the 1% level (indicated by ***), 2.87 at the 5% level (**)
and 2.57 at the 10% level (*). SIC is applied to determine the lag length.

Koopman and van der Wel (2011). The average yield curve during the sample

period is upward sloping and concave, volatility is decreasing with maturity

and autocorrelations are very close to unity. The ADF statistics confirm that

yields are indeed all but non-stationary. The partial autocorrelation function

suggests that autoregressive processes of limited lag order may fit the data

well. Correlations between yields of different maturities are not reported here

but are typically high, especially for adjacent maturities.

In Figure 1, we plot the dynamic behavior for yields of selected maturi-

ties. The plot confirms that the yield curve is mostly upward sloping with

only two short periods of inverted yield curves preceding the two recessions

(March - November 2001 and December 2007 - June 2009) after the burst-

ing of the dotcom bubble and the GFC period. These periods also reveal

that short and long maturities react quite differently to economic shocks as

both recessions are characterized by a sharp decline in short yields and, thus,

an increase in the spread between short and long yields. The term spread

is generally known to remain rather large for quite some time after reces-

sions. Nevertheless, the behavior of short and medium interest rates, e.g.,

three-months to 36-months, after the GFC is startling. Following the Federal
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Figure 1. Time series of selected US yields. We plot the three-months (bold —), twelve-months (– –),
36-months (– ·), 60-months (· · ·) and 120-months maturities (—) for the time period 2000:01 – 2013:12.

Reserve Bank’s unprecedented expansive monetary policy in response to the

crisis, short yields remain flat and non-volatile for more than five years up

until now. Medium-term yields behave similar reflecting the Fed’s strong

commitment to maintaining the expansionary policy as long as required for

economic recovery.2 Assisted by several programs of ’quantitative easing’3

this has led to an unprecedented, prolonged period of low, non-volatile short

and medium yields. This unique interest rate environment is expected to

favor a random walk no-change forecast and we expect that it will pose a

peculiar challenge for the forecasting models introduced in the subsequent

sections.

4 Models

In Section 2 we have described the numerous empirical factor models that

have been developed to model and forecast the yield curve in recent decades.

2See, for example, chairman Bernanke’s famous quote ”The Federal Reserve has done,
and will continue to do, everything possible within the limits of its authority to assist in
restoring our nation to financial stability”, when speaking at the National Press Club in
2009.

3The acquisition of financial assets from commercial banks to lower longer yields while
simultaneously increasing the monetary base.
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To keep the number of models manageable, we focus on a representative sub-

set of basic models which are commonly used in the academic literature and

by practitioners. In particular we include one model imposing a parametric

structure on factor loadings, the dynamic Nelson-Siegel model, and PCA as a

model that extracts the loadings and factors directly from the observed term

structure. For both models we apply AR(1) and VAR(1) factor dynamics.

While the jointly specified VAR(1) process has the advantage of capturing

the interdependence between the derived factors, both approaches have been

reported to work well in forecasting exercises (Diebold and Li, 2006; Pooter

et al., 2010).

Furthermore, we include an AR(1) model directly applied on yield levels.

AR(1) models can be considered as simple workhorse models and have been

reported to fit and forecast the yield levels quite well. The models applied

in our empirical analysis are specified as follows:

Dynamic Nelson-Siegel Model

The Nelson and Siegel (1987) model is a parsimonious, parametric three-

factor model using curve using flexible, smooth Laguerre functions to es-

timate the yield curve. Based on the three parametric loadings, [1, (1 −
e−λtτ )/λtτ, ((1− e−λtτ )/λtτ)− e−λtτ ], the yield yt for maturity τ for the dy-

namic Nelson-Siegel model developed by Diebold and Li (2006) is modeled

as

yt,τ = β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)
, (1)

where β1...3,t denote the three latent factors, and the parameter λ controls the

exponential decay rate of the second and third loading. In line with Diebold

and Li (2006), Diebold et al. (2008) and Chen and Gwati (2013) we fix λ at

0.0609.

To forecast the term structure, we follow Diebold and Li’s (2006) two-step ap-

proach.4 First, the Nelson-Siegel factors β1...3 are estimated for the in-sample

period applying ordinary least squares. Then the factors are forecasted as au-

4Note that we refrain from using the one-step state-space approach. Pooter et al. (2010),
for example, report no substantial gain in forecasting accuracy across maturities and
horizons.
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toregressive processes, i.e. for the AR(1) approach each β̂k,t+h/t is forecasted

as

β̂k,t+h/t = ĉk,h + φ̂k,hβ̂k,t, (2)

while for the VAR(1) factor dynamics, each β̂k,t+h/t is forecasted as

β̂k,t+h/t = ĉk,h + Φ̂k,hβ̂k,t, (3)

such that each individual yield forecast for maturity τ is given by

ŷt+h/t,τ = β̂1,t+h/t + β̂2,t+h/t

(
1− e−λτ

λτ

)
+ β̂3,t+h/t

(
1− e−λτ

λτ
− e−λτ

)
. (4)

In the following we will denote the two approaches by NSAR and NSVAR.

Regression on principal components

For the PCA approach, each yield is given by the following dynamic latent

factor model:

yt,τ = γ1,τβ1,t + ...+ γK,τβK,t + εt,τ , (5)

where the γK,τ describe the K factor loadings and βK,t represent K vectors

of latent factors.5 The factors and loadings are estimated with a principal

component analysis on the full set of yields for every forecasting iteration.

Note that we use standardized yields with zero mean and unit variance for

the PCA.

To derive the loadings γK,τ and latent factors βK,t, a PCA seeks an orthog-

onal matrix Γ which yields a linear transformation ΓY = B of the T x N

dimensional matrix of standardized yields Y and K x N-dimensional matrix

B of latent factors βK,t such that the maximum variance is extracted from

the variables. The matrix Γ is constructed using an eigenvector decomposi-

tion. Let Σ denote the T x T covariance matrix of Y. This covariance matrix

can be decomposed as

Σ = ΓΛΓ′, (6)

5Please note that the terms factor and principal component are used interchangeably
throughout this analysis.
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where the diagonal elements of Λ = diag(λ1, ..., λK) are the eigenvalues and

the columns of Γ are the eigenvectors. The eigenvectors are arranged in de-

creasing order of the eigenvalues and the first K eigenvectors of Γ denote

the factor loadings [γ1, ..., γK ]. The K latent factors [β1, ..., βK ] are then con-

structed by βk,t = γ′kYt. Hereby, Yt is a T-dimensional vector of the term

structure of interest rates at time t.

Applying a PCA to extract the latent factors allows for a data-driven se-

lection of the number of K factors. We decide to use the first three latent

factors in line with previous research. Typically, the first three principal

components are already sufficient to explain a high fraction of the variance

in yields (Litterman and Scheinkman, 1991; Bikbov and Chernov, 2010). We

find that for the applied dataset, the first three components explain more

than 99% in the variation of the term structure. We apply the two-step fore-

casting procedure outlined above, forecasting the components β̂k,i as AR(1)

and VAR(1) processes. Thus, h-step ahead yield forecasts for maturity τ are

then given by

ŷt+h/t,τ = γ1,τ,tβ̂1,t+h/t + γ2,τ,tβ̂2,t+h/t + γ3,τ,tβ̂3,t+h/t. (7)

In the following, we will refer to these models as PCAAR and PCAVAR.

Autoregressive (AR(1) model on yield levels

We also apply AR(1) models to individual yields of maturity τ directly,

determining h-step ahead forecasts as

ŷt+h/t,τ = ĉτ,h + φ̂hSt,τ , (8)

where ĉk and φ̂k are obtained by regressing ŝt,τ on an intercept and ŷt−h,τ .

We denote this model as AR1.

Random Walk

As the main benchmark model throughout the forecasting exercise we use a

random walk model. In this model any h-step ahead forecast is simply equal
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to the value observed at time t. Hence the forecast is always no change and

given as

ŷt+h/t,τ = yt,τ . (9)

We denote the random walk benchmark model as RW.

5 Out-of Sample Forecasting Results

5.1 Forecasting Framework and Evaluation

In the following we thoroughly investigate the performance of the applied

econometric models in forecasting the US yield curve against a random walk

benchmark. For the forecasting exercise, the sample of size N is divided

into an in-sample period of length R and an out-of-sample period of length

P . We use an initial in-sample period from 1995:1 to 2003:12 to forecast

the period from 2004:1 to 2013:12. Thus, the in-sample period includes the

bursting of the dotcom bubble and the subsequent recession and recovery,

while the out-of-sample period includes the GFC as well as pre- and post crisis

periods. The considered sample period allows us to have enough observations

to estimate the parameters of the models with sufficient accuracy and still

evaluate the forecasting performance over sufficiently long (sub-)periods with

different yield curve dynamics.

We forecast recursively such that in each time step the in-sample period is

extended by one observation to calculate the forecasts for t+h. In particular,

we create one-month (h = 1), six-month (h = 6) and twelve-month (h = 12)

ahead forecasts whereas all models are forecast iteratively.6

To assess the full sample forecasting accuracy we first report the commonly

used root mean squared error (RMSE) and Diebold-Mariano (DM) statistic.

The RMSE is a measure of global forecasting performance and summarizes

6It is still being debated whether iterated or direct forecasts are more accurate. Carriero
et al. (2012) for example find that the iterated approach produces more accurate forecasts
in yield curve forecasting. Comparing both approaches we also find better results for the
iterated approach and henceforth apply it throughout the analysis.
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the forecasting errors over the entire forecasting period. For each considered

model m, maturity τ and forecasting horizon h the RMSE for the forecasting

period P is calculated as

RMSEm
τ,h =

√√√√ 1

P

P∑
t=1

(ŷmt+h/h,τ − ymt+h,τ )2. (10)

The lower the RMSE, the more accurate the forecast. However, a smaller

RMSE in a particular sample of forecasts does not necessarily mean that

the corresponding model is truly better in population. Diebold and Mari-

ano (1995) address this concern and propose a test to assess the statistical

significance of predictive superiority. The DM-test statistic is calculated as

DMm
τ,h =

d̄√
L̂RV d̄/P

, (11)

where d̄ is the average difference d between the loss functions7 of two com-

peting forecasts given as

d̄ =
1

P

P∑
t=1

dt. (12)

L̂RV d̄ is a HAC estimator of the asymptotic (long-run) variance of
√
P/d̄

given by

L̂RV d̄ = γ0 + 2
∞∑
j=1

γj, (13)

where γ0 = var(d̄) and γj = cov(dt, dt−j). The null hypothesis is equal

predictive accuracy of the considered models. Note that we will conduct two-

sided tests, since we are interested in both, statistically significant superior

and inferior forecasting performance of the selected models against a random

walk benchmark.

7We also apply the commonly used quadratic loss functions. However, theoretically
Diebold and Mariano (1995) do not limit the loss functions that could be used.
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5.2 Forecasting Results

Table 2 presents the forecasting results for the out-of-sample forecasting pe-

riod from 2004:01 up to 2013:12. In the first line we report the RMSE of

the random walk expressed in basis points. We then report the RMSEs of

all models relative to the random walk. Hence, numbers smaller than one

(reported in bold) indicate that a model outperforms the random walk.

The significantly better forecasting performance of a model against the ran-

dom walk benchmark based on conducted DM-tests8 is indicated by (”),

while we indicate the significantly inferior performance of a model against

the random walk by (∗).
We find roughly similar outcomes to other comprehensive forecasting studies

(Pooter et al., 2010; Yu and Zivot, 2011). In absolute terms the RMSEs

are generally smaller for longer term maturities and the forecasting perfor-

mance worsens with longer forecasting horizons. In relative terms, the ap-

plied factor models perform relatively well for the shorter maturities. Nev-

ertheless, all models fail to consistently beat the random walk - not a single

model clearly performs well across all maturities and forecast horizons. The

Diebold-Mariano statistics confirm that no model is able to significantly out-

perform the random walk at any maturity.

Given the unique interest rate environment after the GFC, the superior fore-

casting performance for short and medium yields comes as a surprise. The

relatively flat short and medium yields clearly favour the random walk no-

change forecast, thus we would have expected the factor models to under-

perform the random walk. After all half the period after the GFC makes up

half of the forecasting period

Comparing the different models, the AR(1) process performs surprisingly well

and is on par with the factor models for most maturities and forecast hori-

zons. Noteworthy is also the rather disappointing forecasting performance of

the initial dynamic Nelson-Siegel model with AR(1) factor dynamics. Simi-

lar disappointing results for the dynamic Nelson-Siegel model have also been

8Detailed results and test statistics for the conducted DM-tests are reported in Appendix
A.
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reported by Pooter et al. (2010) and Moench (2008) who suggest that the re-

ported success of the initial Diebold and Li (2006) model for predicting yield

curve dynamics may be attributed to the choice of the forecasting period.

In general, capturing the factor dependence structure with VAR(1) factor

dynamics seems to lead to slightly more accurate forecasts than AR(1) dy-

namics.

As pointed out, in this study we are particularly interested in the forecasting

3m 6m 12m 2y 3y 5y 7y 10y

RW 21.9 21.5 22.1 24.0 26.1 27.7 30.0 27.9

NSAR 1.47* 0.97 0.92 1.04 1.14* 1.21* 1.07 1.03
NSVAR 1.12 0.90 1.07 1.08* 1.06 1.13* 1.04 1.04

h=1 PCAAR 1.16* 0.95 1.01 1.13* 1.06* 1.02 1.01 1.00
PCAVAR 1.00 0.88 1.02 1.09* 1.03 1.03 1.04 1.00
AR1 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

RW 81.1 82.6 79.8 72.7 72.4 70.4 72.5 66.9

NSAR 1.23 1.11 1.08 1.20 1.26* 1.28* 1.16 1.06
NSVAR 0.99 0.97 0.98 1.05 1.06 1.09 1.02 0.97

h=6 PCAAR 1.03 1.03 1.04 1.09 1.07 1.03 0.98 0.94”
PCAVAR 0.98 1.01 1.03 1.07 1.05 1.04 1.02 0.96
AR1 1.04 1.03 1.03 1.01 1.01 1.04 1.05 1.05

RW 145.0 144.0 133.4 112.5 100.7 86.7 85.7 78.1

NSAR 1.17 1.12 1.14 1.30 1.43 1.55* 1.42 1.31
NSVAR 0.95 0.95 0.98 1.08 1.14 1.20 1.12 1.04

h=12 PCAAR 0.95 0.97 1.00 1.06 1.09 1.09 1.02 0.94
PCAVAR 0.96 0.99 1.03 1.10* 1.13 1.15 1.11 1.03
AR1 1.05 1.04 1.03 1.00 1.02 1.12 1.18 1.20

Table 2. Forecasting results of US yields for h=1, h=6 and h=12 months-ahead forecasting horizons
and three-months, six-months, twelve-months, two-year, three-year, five-year, seven-year and ten-year
maturities. We report root mean squared error (RMSE) for the out-of-sample period 2004:1 - 2013:12
(N = 96). The first line reports the RMSE for the random walk (expressed in basis points). The RMSEs of
all other models are expressed relative to the random walk. Hence, numbers smaller than one (reported
in bold) indicate that models outperform the random walk. Numbers larger than one indicate inferior
performance. Numbers larger than one indicate inferior performance. (”) indicates statistical significant
forecasting superiority of the respective models against the random walk measured by the DM-statistic
on a 5% or smaller significance level. (*) indicates statistical significant forecasting inferiority against
the random walk. The DM-statistics are reported in Appendix A. See section 4 for a description of the
selected models.

performance of the models for the low interest rate environment following

the GFC. Unfortunately, the RMSE does not provide any insights for which
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particular time periods the models perform well and poor, since it only mea-

sures the global forecasting performance over the entire out-of-sample period.

Thus, information about the dynamic forecasting performance throughout

the forecasting period is lost.

To reveal the dynamic forecasting performance we take a closer look at the

development of the forecasting accuracy through time. First, we construct

sequences of local relative RMSEs based on rolling windows throughout the

forecasting period. Second, we divide the forecasting period into sub-samples

to conduct a sub-sample analysis.

5.3 Dynamic forecasting evaluation

Based on the forecasting errors computed in the forecasting exercise above,

we define a dynamic relative RSME as the sequence of local relative RMSEs

over centered rolling windows of size p (assuming p to be an even number)

for t∗ = R+ p/2...T − p/2 + 1. The intention of this innovative measure is to

look at the entire time path of the models relative forecasting performance.

For each model and the random walk the local RMSE for the respective

rolling window is given by

RMSEm,local
t∗,τ,h =

√√√√1

p

t=p/2−1∑
j=t−p/2

(ŷmt+h/h,τ − ŷmt+h,τ )2. (14)

We then express the sequence of local RMSEsm,localt∗,τ,h for all models relative

to the random walks local RMSEsRW,localt∗,τ,h sequence. As indicated above,

values smaller than one indicate that models outperform the random walk.

Values larger then one indicate inferior forecasting performance against the

random walk. In Figure 2 we plot the local relative RMSEs for a twelve

months forecast horizon and selected short, medium and long maturities.

The dynamic forecast evaluation reveals that prior and during the GFC

all models compete relatively closely with the random walk for all maturi-

ties with some periods of outperformance and some periods of underperfor-
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Figure 2. Dynamic relative three-months, twelve-months, 60-months and 120-months yield RMSEs for
all models against the random walk for a h=12 forecast horizon. For each model and the random walk
we calculate sequences (t∗ = R + p/2...T − p/2 + 1) of local RMSEs for rolling windows of size p=24
throughout the the forecasting period from 2004:01 - 2013:12. We then calculate the dynamic relative
RMSE by expressing the sequence of local RMSEsmt∗,τ,h for each model relative to the random walks

local RMSERWt∗,τ,h sequence. Hence, values smaller than one indicate that models outperform the random

walk. Values larger then one indicate inferior forecasting performance against the random walk.

mance. For the ten year yield, this close race also lasts throughout the entire

forecasting period. For the short an medium yields however, things change

dramatically subsequent to the GFC. The forecasting accuracy worsens sig-

nificantly in relative terms for all factor models. The Nelson-Siegel model

with AR(1) factor dynamics fares particularly bad. While the AR(1) process

performs better than the factor models it also is consistently dominated by

the random walk from 2010 onwards.

19



5.4 Subsample Analysis

These conclusions are confirmed by the results of the sub-sample analysis

reported in Table 3. For the first sub-sample from 2004:01-2009:12 the results

are roughly in line with the results reported for the entire sample above. The

factor models are partly able to beat the random walk especially for short and

medium yields. However, the outperformance is not statistically significant.

Absolute RMSEs of the sub-sample are generally high as all models and the

random walk struggle to predict the sudden drop in yields during the GFC.

The results for the crucial sub-sample period after the GFC (2009:01-2013:10)

are striking. In absolute terms, the RMSEs drop notably. In relative terms,

the forecasting accuracy of the selected dynamic factor models for short and

medium term yields worsens significantly compared to the random walk. For

some of the models, calculated RMSEs are even more than ten times higher

than the random walk. The poor forecasting performance of the considered

models relative to the random walk is particularly pronounced for shorter

and medium maturities, i.e. three-months, six-months and 12-months yields.

Moreover, conducted Diebold-Mariano tests9 show that the considered

models are significantly outperformance by the RW for many maturities and

forecasting horizons, often even at the 1% level. Unreported analysis con-

firms, that similar results hold against the AR(1) model. In other words,

after the GFC the random walk and a simple first order autoregressive pro-

cess are able to significantly outperform all considered dynamic factor model

variations. Naturally, it is expected that the forecasting performance of fore-

casting models varies over time. However, this dimension of outperformance

is still a striking result for such an extended period.

There are different reasons for the poor performance of the applied economet-

ric models against a simple random walk during the post GFC low yield and

relative flat interest rate environment. One reason may be that the models

are calbrated over a time period that also includes a dynamic behavior of the

term structure of the yield curve as well significant changes in interest rates

for given maturities. The estimated models may then overstate the dynamics

9Detailed results and test statistics for the conducted tests are reported in Appendix A.
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3m 6m 12m 2y 3y 5y 7y 10y

2004:01 - 2008:12

RW 30.8 30.1 30.5 31.4 32.3 30.8 32.7 27.9

NSAR 1.26* 0.92” 0.91 1.04 1.08 1.11 1.07 1.01
NSVAR 1.06 0.83 0.93 1.04 1.05 1.09* 1.05 1.00

h=1 PCAAR 1.14 0.95 0.99 1.09* 1.05 1.02 1.04 1.01
PCAVAR 0.98 0.82” 0.96 1.07 1.03 1.02 1.06 1.02
AR1 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02

RW 113.0 114.0 108.5 97.8 92.3 72.9 65.9 53.7

NSAR 1.02 0.95 0.93 1.00 1.01 1.09 1.10 1.08
NSVAR 0.92 0.92 0.96 1.04 1.05 1.11 1.10 1.07

h=6 PCAAR 0.97 0.98 1.00 1.03 1.00 1.00 1.00 0.97
PCAVAR 0.92 0.97 1.02 1.07 1.05 1.07 1.10 1.06
AR1 1.04 1.04 1.03 1.00 0.99 0.98 1.02 1.04

RW 207.0 204.3 186.6 156.8 136.5 100.0 83.9 63.6

NSAR 0.97 0.93 0.92 0.99 1.01 1.10 1.15 1.21
NSVAR 0.90 0.90 0.95 1.05 1.08 1.16 1.17 1.21

h=12 PCAAR 0.87 0.90 0.93 0.98 0.98 0.99 1.00 0.98
PCAVAR 0.92 0.96 1.01 1.08 1.10 1.14 1.18 1.19
AR1 1.05 1.05 1.03 0.98 0.96 0.96 1.02 1.08

2009:01 - 2013:12

RW 4.1 4.7 7.4 12.9 18.0 24.6 28.1 28.7

NSAR 5.83* 2.22* 1.16 1.06 1.31* 1.35* 1.09 1.04
NSVAR 2.95* 2.34* 2.45* 1.30* 1.06* 1.19* 1.03 1.07

h=1 PCAAR 1.93* 1.25 1.28* 1.30* 1.10* 1.03 0.99 0.99
PCAVAR 1.82* 2.22* 1.69* 1.21* 1.03 1.05 1.01 0.98
AR1 1.11 1.08 1.02 1.01 1.01 1.01 1.00 1.00

RW 7.9 9.4 9.9 22.4 38.9 63.7 75.9 76.2

NSAR 9.19* 6.74* 5.87* 2.91* 2.10* 1.47 1.18 1.03
NSVAR 4.35* 3.40* 2.67* 0.92 1.04 1.04 0.95 0.89

h=6 PCAAR 3.57* 3.07* 3.19* 1.84* 1.34* 1.04 0.95 0.91”
PCAVAR 4.32* 3.59* 2.87* 1.05 0.98 0.96 0.94 0.89
AR1 1.59 1.33 1.04 1.07 1.09 1.07 1.06 1.04

RW 8.9 10.5 11.9 26.2 43.8 74.5 92.7 93.6

NSAR 13.15* 10.65 9.41 4.76 3.24* 2.03* 1.55* 1.31
NSVAR 5.43 4.27 3.14* 1.37 1.36* 1.18 1.02 0.92

h=12 PCAAR 5.28* 4.71* 4.47* 2.33* 1.65* 1.17 1.00 0.91
PCAVAR 5.46* 4.52* 3.43* 1.42 1.24 1.08 1.00 0.91
AR1 2.50* 2.00 1.10 1.19 1.28* 1.27* 1.24 1.20

Table 3. Sub-sample forecasting results of US yields for h=1, h=6 and h=12 months-ahead forecasting
horizons and three-months, six-months, twelve-months, two-year, three-year, five-year, seven-year and ten-
year maturities. We report root mean squared error (RMSE) for the sub-sample periods from 2004:01-
2008:12 and 2009:01-2013:12. The first line reports the RMSE for the random walk (expressed in basis
points). The RMSEs of all other models are expressed relative to the random walk. Hence, numbers smaller
than one (reported in bold) indicate that models outperform the random walk. Numbers larger than
one indicate inferior performance. Numbers larger than one indicate inferior performance. (”) indicates
statistical significant forecasting superiority of the respective models against the random walk measured
by the DM-statistic on a 5% or smaller significance level. (*) indicates statistical significant forecasting
inferiority against the random walk. The DM-statistics are reported in Appendix A. See section 4 for a
description of the selected models.
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of individual yiels as well as for the entire yield curve during the unique low

interest rate period from 2009 to 2013. Further, since the models are esti-

mated during periods when short-term interest rates were significantly higher

than after the GFC, created forecasts may not only overstate the dynamics

of the interest rate term structure but possibly also the levels of short-term

interest rates.

5.5 Sensivity of results towards forcast evaluation met-

rics

These results obviously raise the question, why the poor relative forecasting

performance for short and medium yields subsequent to the GFC is not fully

reflected in the results reported for the entire forecasting period. After all,

the critical time period makes up half of the out-of-sample period. This is

also highly important for future yield curve forecasting studies encompassing

this time period.

The answer can be found in the decreasing magnitude of forecasting errors

caused by the low interest rate environment after the GFC. Not surprisingly,

with flat short and medium yields close to the zero bound, forecasting errors

and RMSEs drop significantly in absolute terms. This is illustrated in Figure

3, where we plot the six-months yield forecasts against the six-months actual

yield for the forecasting horizons h=12 and the corresponding forecasting

errors for the random walk, one Nelson-Siegel and one PCA variation.

First of all, it is quite obvious that, different to random walk and AR(1)

model, all selected dynamic factor models have problems forecasting the pe-

riod after January 2010. While AR(1) model and random walk adapt rather

quickly to the changed environment both factor models, especially the para-

metric Nelson-Siegel model with AR(1) factor dynamics, continuously over-

and under predict the actual yield. Only the PCAAR model picks up the

new interest rate environment towards the end of the period. It is also im-

portant to note, that at times all models predict negative yields when the

actual yield is close to the zero bound. This is a highly undesired effect for

many pricing and hedging purposes.
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Figure 3. US yield forecasts and forecasting errors for randwom walk, NSAR, PCAAR and AR1 model.
We plot the six-months actual yield together with the forecasts of the selected models for a forecasting
horizon of h=12 months (upper panel). The lower panels provide plots of the time series of the forecasting
errors (Actual yield - forecasted yield) for the random walk, NSAR and PCAAR model.

Figure 3 also confirms that the forecasting errors for small and medium yields

become rather small in absolute terms subsequent to the GFC. Usually the

forecast errors especially for shorter maturities are relatively large as the

shorter maturities are rather volatile. Thus the poor relative forecasting

performance after the GFC vanishes in global forecast evaluation measures
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averaged over the entire forecasting period. The RMSE being based on a

quadratic loss function further aggravates this effect. What usually is a de-

sired outcome may lead in this case to biased inferences about the forecast-

ing performance post the GFC. This highlights one of the most important

points of this paper: investigating the global (or average) absolute forecasting

performance may hide important information about the relative forecasting

performance over time and lead to false inferences of the true forecasting

capabilities of models.

Interestingly, the unique behaviour of yields after the GFC also poses a chal-

lenge for other forecasting measures relying on absolute differences in fore-

casting errors. As an additional evaluation metric we apply the innovative

fluctuation test developed by Giacomini and Rossi (2010). This test allows

to look at the entire path of local test-statistics and reveals the statistical

significance of the forecasting performance over time. The sequence of local

test-statistics is calculated based on the local loss function differentials ∆Lj

computed over centered rolling windows of size p and given as

Fm
t∗,τ,h = σ̂−1p−1/2

t+p/2−1∑
j=t−p/2

∆Lj(ŷ
RW
t+h/h,τ , ŷ

m
t+h/h,τ ), (15)

where σ̂2 is a HAC estimator of the asymptotic (long-run) variance. The test

statistic Fm
t∗,τ,h is equivalent to Diebold and Marianos (1995) computed over

rolling windows. Giacomini and Rossi (2010) also provide critical values to

test the null of equal predictive accuracy. See Giacomini and Rossi (2010)

for more details.

In Figure 4 we plot the fluctuation test statistics for the six-months yield and

a forecast horizon of h=12 based on rolling windows of size p=24 with cor-

responding two-sided critical values.10 The fluctuation test correctly reflects

the direction of out- and underperformances. However, none of the local test-

10Note that unlike the forecasting exercises conducted in previous sections that were based
on a recursive window estimation, flucuations tests were conducted based on a rolling
window estimation as proposed in Giacomini and Rossi (2010). We also conducted
the fluctuation tests using a recursive window estimation, where results did not differ
qualitatively from the rolling window methodology.
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statistics post the GFC indicates statistically significant outperformance by

the random walk. This is surprising, given the statistically significant out-

performance for the sub-sample period reported in Table 2. Further analysis

reveals, that the decreasing loss functions distort the local test-statistics cal-

culated based on the the global L̂RV d̄. This confirms the observation of

Martins and Perron (2012) who find power problems of the fluctuation tests

in the presence of instabilities in the differences of the loss functions.
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Figure 4. Fuctuations test statistics for all models against the random walk for six-months yields and
h=12 forecast horizon. The t∗ = R+ p/2...T − p/2 + 1 sequence of local test-statistics is calculated based
on rolling windows of size p=24 throughout the the forecasting period from 2004:01 - 2013:12. Values
smaller than zero zero indicate that models outperform the random walk. Values larger then zero indicate
inferior forecasting performance against the random walk. Values larger/smaller than the critical values
indicated statistically significance. The critical values [3.01;−3.01] are obtained from Giacomini and Rossi
(2010).

6 Forecast Combination

A natural question to ask is how to best approach the instability in the rela-

tive performance of the selected models. Previous research discusses several

interesting measures to approach unstable environments, for example adap-

tive forecasting (Chen and Niu, 2014) or regime switching models (Xiang

and Zhu, 2013). A promising approach advocated in recent literature is also

to combine the forecasts of individual models. Several studies (Guidolin and

Timmermann, 2009; Pooter et al., 2010) have shown that combining multiple
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forecasts may increase the forecasting accuracy. This approach is particularly

promising in our case, since the forecasting accuracy of our selected models

heavily varies over time, often diametrically. Thus combined forecasts are

likely to be more robust to structural instability than either of the individual

models.

In the following section we therefore investigate different combinations of

individual forecasts in order to improve the forecasting accuracy especially

for the crucial time period after the GFC. We consider three different fore-

cast combination strategies. The first simply includes all four factor models

(NSAR, NSVAR, PCAAR, PCAVAR - ’factor’). The second one includes

the NSAR, PCAAR and the AR1 forecast (’fAR1’). The graphical analysis

in Figure 3 shows, that NSAR and PCAAR model seem to be diametrically

biased in their forecasts of short and medium yields after the GFC. Combin-

ing both models should thus improve the individual forecasts. Including the

AR1 forecast is an obvious choice as the AR(1) process performs rather well

compared to the random walk. For the third one we also include forecasts

generated by a random walk no-change model (NSAR, PCAAR, AR1, RW -

’far1RW’) into the combination scheme. Given the superior forecasting per-

formance of the random walk in particular after the GFC, it is reasonable

to expect that combining forecasts that also include a simple random walk

model will further improve the results for the second sub-sample period from

2009:01-2013:10.

With M models and hence M individual forecasts for a τ -maturity yield at

time t a linearly combined forecast (”cf ”) based on weights wτt,m is given by

ŷcft+h/t,τ = wτ ′t ŷ
m
t+h/t,τ =

M∑
m=1

wτt,mŷ
m
t+h/t,τ , (16)

where the Mx1 vector of weights wτm is time varying.

For each forecast combination we consider two forecasting combination schemes:

equal weights (CFEW) and performance weights (CFPW). For equal weights,

each weight is given by

wτt,m = 1/M. (17)
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For performance weights, each forecast is weighed by the inverse of its MSE

(Mean squared error)11 over the previous v = 24 months. The MSE for each

model m, maturity τ at time t is calculated as

MSEτ
t,m =

1

v

t∑
t−v

e2
t+h/t,m, (18)

where e2
t+h/t,m is the squared forecast error of model m at time t. Each weight

is then given as

wτt,m =
1/MSEτ

t,m∑M
m=1 1/MSEτ

t,m

. (19)

This way, a model with a previously lower MSE is given a relatively larger

weight than a model with a previously higher MSE performing model. Com-

bining the three forecast combination strategies with the two combination

schemes leaves us with six forecast combination strategies which we de-

note CFEWfactor, CFPWfactor, CFEWfar1, CFPWfar1, CFEW-

far1RW and CFPWfar1RW.

Table 4 presents the results of these six forecasting strategies for the entire

sample period. The corresponding Diebold-Mariano statistics are reported in

Appendix B. As indicated by the results, still none of the combination strate-

gies is able to consistently beat the random walk on a statistically significant

level. However, combining forecasts does indeed reduce the model uncer-

tainty and delivers more stable forecasts across maturities and forecasting

horizons. More importantly, most forecasting strategies perform better than

the individual dynamic factor models in Table 2. Including the random walk

into the combination strategy does not significantly improve the performance.

We also find that the performance based combination schemes deliver slightly

more accurate forecasts than the equally weighted performance schemes.

Next, we focus on the forecasting performance within the sub-sample

periods, see Table 5. For the period from 2004:01 to 2008:12 combining

individual forecasts also slightly improves the forecasting accuracy compared

11Note that we follow Timmermann (2006) in using the MSE to construct the weights
instead of the RMSE we report in Tables 2 and 3.
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3m 6m 12m 2y 3y 5y 7y 10y

RW 21.9 21.5 22.1 24.0 26.1 27.7 30.0 27.9

CFEWfactor 1.08 0.86” 0.93 1.05* 1.04 1.05* 1.05 1.01
CFPWfactor 1.05 0.85” 0.92 1.04* 1.04 1.04* 1.05 1.00

h=1 CFEWfar1 1.11* 0.95 0.96 1.04* 1.04 1.05 1.02 1.00
CFPWfar1 1.05 0.94 0.95 1.03* 1.03 1.03 1.01 0.99
CFEWfar1RW 1.07 0.96 0.96 1.03* 1.03 1.03 1.01 1.00
CFPWfar1RW 1.02 0.95 0.95 1.02* 1.02 1.02 1.00 0.99

RW 81.1 82.6 79.8 72.7 72.4 70.4 72.5 66.9

CFEWfactor 0.92 0.92 0.95 1.01 1.01 1.05 1.06 1.03
CFPWfactor 0.88 0.89 0.91 0.98 0.98 1.03 1.05 1.02

h=6 CFEWfar1 1.02 1.00 1.00 1.05 1.06 1.08 1.04 1.00
CFPWfar1 0.95 0.95 0.95 1.00 1.02 1.06 1.03 0.99
CFEWfar1RW 1.01 1.00 0.99 1.03 1.04 1.04 1.02 0.99
CFPWfar1RW 0.95 0.96 0.96 0.99 1.00 1.02 1.01 0.98

RW 145.0 144.0 133.4 112.5 100.7 86.7 85.7 78.1

CFEWfactor 0.89 0.90 0.93 1.00 1.02 1.08 1.11 1.13
CFPWfactor 0.86 0.87 0.90 0.96 0.97 1.04 1.09 1.10

h=12 CFEWfar1 0.99 0.98 1.00 1.07 1.13 1.21 1.18 1.13
CFPWfar1 0.93 0.94 0.95 1.00 1.04 1.14 1.13 1.07
CFEWfar1RW 0.99 0.98 0.99 1.04 1.08 1.14 1.11 1.07
CFPWfar1RW 0.94 0.95 0.95 0.98 1.00 1.06 1.06 1.03

Table 4. Forecasting combination results of US yields for h=1, h=6 and h=12 months-ahead forecasting
horizons and three-months, six-months, twelve-months, two-year, three-year, five-year, seven-year and
ten-year maturities. We report the root mean squared error (RMSE) for the out-of-sample period 2004:1
- 2013:12 (N = 96). The first line reports the RMSE for the random walk (expressed in basis points). The
RMSEs of all other models are expressed relative to the random walk. Hence, numbers smaller than one
(reported in bold) indicate that models outperform the random walk. Numbers larger than one indicate
inferior performance. (”) indicates statistical significant forecasting superiority of the respective models
against the random walk measured by the DM-statistic on a 5% or smaller significance level. (*) indicates
statistical significant forecasting inferiority against the random walk. The DM-statistics are reported in
Appendix B. See text for a description of the selected forecast combination strategies.
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to the previous results. For several short term yields and in particular for a

h = 12 months forecasting horizon the outperformance is even statistically

significant. All three strategies fare comparably well. Again, there is no

notable advantage by including the random walk. Interestingly, there is also

no notable difference between equally weighted and performance weighted

combination schemes.

For the crucial second sub-sample period after the GFC (2009:01 to

2013:12), combining different models significantly improves the forecasting

performance, albeit most of the strategies are still being dominated by the

random walk. The RMSE for a three-months yield forecast over a six-months

horizon, for example, decreases to 1.88 relative to the forecasting error of a

random walk for the performance weighed combination of all factor models

(CFPWfactor). Recall that the initial RMSEs for the individual models in

Table 3 range from 3.57 to 9.19 for the same maturity and forecasting hori-

zon. In particular the CFPWfar1 strategy performs comparably well with

the relative RMSEs being significantly smaller than the individual RMSEs

for this period. Obviously this is partly due to the relatively good perfor-

mance of the simple AR(1). Not surprisingly, the most promising strategy

turns out to be the performance weighted forecast combination of the NSAR

and PCAAR model with both the AR(1) model and the random walk (CFP-

WfarRW). This strategy even outperforms the simple random walk forecast

for most forecast horizons and maturities, in particular for the 3m, 6m and

12m yields as well as for yields with longer maturities such as 7y and 10y

yields.

In general, weighting the individual models based on their previous per-

formance makes a remarkable difference compared to the equally weighted

forecast combination for this time period. Further examining this issue, we

investigate the weights allocated to each of the included models, when the

performance based weighting technique is applied to create forecast combi-

nations. Figure 5 displays the development of the weights for the two most

promising performance weighted forecast combination strategies, CFPWfar1

and CFPWfarRW. The figure illustrates that the AR(1) process (forCFP-

Wfar1) and the random walk (for CFPWfarRW) receive consistently high
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3m 6m 12m 2y 3y 5y 7y 10y

2004:01 - 2008:12

RW 30.8 30.1 30.5 31.4 32.3 30.8 32.7 27.9

CFEWfactor 1.08 0.86” 0.93 1.05 1.04 1.05 1.05 1.01
CFPWfactor 1.05 0.85” 0.92 1.04 1.04 1.04 1.05 1.00

h=1 CFEWfar1 1.08 0.95 0.95 1.03* 1.03 1.03 1.04 1.01
CFPWfar1 1.05 0.94” 0.94 1.02* 1.02 1.03 1.03 1.00
CFEWfar1RW 1.05 0.96 0.96 1.02* 1.02 1.02 1.02 1.00
CFPWfar1RW 1.01 0.95 0.95 1.02* 1.01 1.02 1.02 1.00

RW 113.0 114.0 108.5 97.8 92.3 72.9 65.9 53.7

CFEWfactor 0.92 0.92 0.95 1.01 1.01 1.05 1.06 1.03
CFPWfactor 0.88 0.89 0.91” 0.98 0.98 1.03 1.05 1.02

h=6 CFEWfar1 0.98 0.97 0.97 0.99 0.98 1.01 1.03 1.01
CFPWfar1 0.92 0.93 0.93” 0.95 0.95 0.99 1.02 1.00
CFEWfar1RW 0.98 0.98 0.98 0.99 0.98 1.00 1.01 1.00
CFPWfar1RW 0.93 0.94 0.94 0.95 0.95 0.98 1.01 0.99

RW 207.0 204.3 186.6 156.8 136.5 100.0 83.9 63.6

CFEWfactor 0.89” 0.90” 0.93” 1.00 1.02 1.08 1.11 1.13
CFPWfactor 0.86” 0.87” 0.90” 0.96 0.97 1.04 1.09 1.10

h=12 CFEWfar1 0.94” 0.94 0.95 0.96 0.97 1.00 1.04 1.07
CFPWfar1 0.89” 0.90” 0.90” 0.92 0.92 0.96 1.03 1.04
CFEWfar1RW 0.95 0.95 0.96 0.97 0.97 0.99 1.02 1.03
CFPWfar1RW 0.91 0.92 0.92 0.93 0.92 0.94 1.00 1.02

2009:01 - 2013:12

RW 4.1 4.7 7.4 12.9 18.0 24.6 28.1 28.7

CFEWfactor 2.19* 1.33* 1.43* 1.14* 1.07 1.12 1.02 1.01
CFPWfactor 1.27 1.05 1.22 1.10 1.05 1.09 1.01 1.00

h=1 CFEWfar1 2.26* 1.20* 1.07 1.06 1.07 1.07 1.00 0.99
CFPWfar1 1.01 0.98 1.00 1.03 1.05 1.04 0.99 0.99
CFEWfar1RW 1.82* 1.11 1.03 1.04 1.05 1.04 0.99 0.99
CFPWfar1RW 0.97 0.94 0.96 1.01 1.03 1.02 0.97 0.99

RW 7.9 9.4 9.9 22.4 38.9 63.7 75.9 76.2

CFEWfactor 2.78* 2.18* 1.99* 1.30* 1.24* 1.08 0.98 0.91
CFPWfactor 1.88* 1.69* 1.69* 0.94 1.05 1.02 0.95 0.90

h=6 CFEWfar1 3.13* 2.49* 2.43* 1.62* 1.35* 1.12 1.03 0.97
CFPWfar1 1.19 1.09 1.07 1.27* 1.22 1.09 1.00 0.96
CFEWfar1RW 2.49* 2.04* 2.02* 1.43* 1.23* 1.07 1.00 0.97
CFPWfar1RW 0.98 0.95 1.00 1.14 1.11 1.03 0.97 0.96

RW 8.9 10.5 11.9 26.2 43.8 74.5 92.7 93.6

CFEWfactor 4.12* 3.50* 3.34* 2.09* 1.74* 1.32* 1.11 0.99
CFPWfactor 2.73* 2.47* 2.35* 1.41* 1.37 1.17 1.03 0.94”

h=12 CFEWfar1 4.34* 3.73* 3.72* 2.44* 1.90* 1.42* 1.22 1.11
CFPWfar1 1.42 1.29 1.01 1.55* 1.55* 1.30 1.15 1.04
CFEWfar1RW 3.39* 2.98* 3.00* 2.05* 1.64* 1.28 1.14 1.06
CFPWfar1RW 0.93 0.80 0.82 1.27* 1.27* 1.15 1.06 1.00

Table 5. Sub-sample forecasting combination results of US yields for h=1, h=6 and h=12 months-ahead
forecasting horizons and three-months, six-months, twelve-months, two-year, three-year, five-year, seven-
year and ten-year maturities. We report the root mean squared error (RMSE) for the out-of-sample
periods 2004:1 - 2008:12 and 2009:1 - 2013:12 . The first line reports the RMSE for the random walk
(expressed in basis points). The RMSEs of all other models are expressed relative to the random walk.
Hence, numbers smaller than one (reported in bold) indicate that models outperform the random walk.
Numbers larger than one indicate inferior performance. (”) indicates statistical significant forecasting
superiority of the respective models against the random walk measured by the DM-statistic on a 5% or
smaller significance level. (*) indicates statistical significant forecasting inferiority against the random
walk. The DM-statistics are reported in Appendix B. See text for a description of the selected forecast
combination strategies.
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weights when producing the combined forecasts. The figure also illustrates

how in more recent periods, the weight of the AR(1) and random walk signif-

icantly increase due to a superior forecasting performance. As illustrated in

the lower panel of Figure 5, for the initial forecasting periods from 2005-2007,

forecasts created by the PCA and Nelson-Siegel based factor models obtain

relatively high weights, while from 2010 onwards the random walk becomes

the dominant model and crowds out the factor models but also the AR(1)

process.

Overall, our results clearly illustrate that forecast combinations are able to

provide superior forecasts for the term stucture of interest rates in compar-

ison to using individual econometric models. We also find strong evidence

for the fact that during separate regimes of yield curve behavior, different

models will provide the most appropriate forecasts. In particular during the

transition from a more volatile behavior of the yield curve to the current low

interest rate environment with only minor fluctuations, weights allocated to

the individual models change dramatically. Therefore, our results strongly

encourage the use of forecast combination schemes, with a random walk no-

change model as one of the included models.
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Figure 5. Development of forecast combination weights. We plot the changes in the weights of the CF-
PWfar1 (top plot) and CFPWfar1RW (bottom plot) strategy for six-monhts maturity and h=12 forecast
horizon. The CFPWfar1 strategy encompasses the NSAR, PCAAR and AR1 model. The CFPWfar1RW
includes in addition the random walk. The Weights are calculated based on the inverse MSE of the
previous v=24 months. See text for a more detailed description of the selected forecast combination
strategies.

7 Conclusion

This paper provides a pioneer study in documenting the challenge which the

current low interest rate environment poses to popular dynamic factor yield

curve forecasting models. To examine the forecasting accuracy during this

unique time period we apply a dataset of monthly US Treasury yields (12 ma-

turities ranging from three-months to 120-months) obtained from Bloomberg
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for the time period from 1995:01 to 2013:12. We focus on the popular class of

dynamic factor models and investigate variations of the parametric dynamic

Nelson-Siegel model and regressions on principal components (PCA).

The forecasting results for the entire period confirm findings from previous

forecasting studies. RMSEs are generally smaller for longer term maturities

and the forecasting performance worsens with longer forecasting horizons.

The selected factor models perform relatively well for short term maturities,

but all models fail to consistently beat the random walk.

In our study, we are particular interested in the forecasting performance of

the estimated models subsequent to the GFC period (2009:01-2013:12) that

is dominated by flat, non-volatile short and medium interest rates. Given

this unique interest rate environment, we would expect the random walk

to perform relatively well in comparison to the applied econometric models

during this sub-period. However, we argue that this behavior will not be

detected by examining forecasting errors over the entire sample period, since

such an analysis does not reveal when individual models make their largest

and smallest forecast errors. We therefore conduct a dynamic forecasting

evaluation and sub-sample analysis. As it turns out the relative forecast-

ing accuracy for short- and medium term rates changes dramatically after

the GFC. The investigated dynamic factor models not only fail to beat the

random walk but are completely outperformed in relative terms. Diebold-

Mariano statistics show that the outperformance of the models by a simple

random walk no-change forecast is also statistically significant, often at the

1% level.

This naturally raises the question, why these results were not reflected in the

RMSEs reported for the entire period. The answer lies in the size of the fore-

casting errors after the crisis. As the forecast errors become relatively small

in absolute terms after the GFC, the results of this period that represents

half of our out-of-sample forecasting period, contribute relatively little to the

total, and thus, also to the average forecasting error, that is measured by

the RMSE. Investigating only the global forecasting performance, therefore,

may hide important information about the relative forecasting performance

of competing models over time.
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Overall, the above results for the period after the GFC are startling. It is

well known that model uncertainty in regard to methodology, time period

and dataset is generally high when forecasting the term structure of inter-

est rates (Moench, 2008; Pooter et al., 2010). Naturally, the performance of

forecasting models varies over time, albeit the magnitude of the relative out-

performance over such a prolonged period is striking. We argue that since the

applied dynamic models are typically calibrated over a sample period that

also includes significant changes in interest rate as well as volatile periods

for the term structure of the yield curve, they may overstate the dynamics

of individual yiels as well as for the entire yield curve during the unique

low interest rate period from 2009 to 2013. Moreover, the models were also

estimated during periods when interest rates were significantly higher than

during the post GFC period such that forecasts created by the applied mod-

els will not only overstate the dynamics of the interest rate term structure

but possibly also interest rate levels what is also evidenced by our results.

As this unique interest rate environment may well last for some more time

into the future12 the above results have important implications for current

and future yield curve forecasting exercises.

First, it is crucial to carefully examine the dynamic behaviour of the term

structure and conduct sub-sample analysis accordingly. It is still common

to measure forecasting accuracy predominantly with RMSEs computed over

the entire sample period and select the model with the best global forecast-

ing performance. However, a thorough sub-sample analysis and dynamic

forecasting measures are crucial to truly expose a model’s predictive abili-

ties. Dynamic forecast evaluation measures such as, e.g., fluctuation tests

suggested by Giacomini and Rossi (2010) are required to identify periods of

superior or inferior forecasting accuracy and should. However, as illustrated

in our study, even such tests, focusing on the local performance of forecast-

ing models, may have difficulties in significantly detecting differences in the

perofrmance between the applied techniques in the presence of instabilities

12Fed chair Janet Yellen only recently confirmed there will be ’considerable time’ before
the central bank may raise its benchmark rate. See the transcript of Chair Yellen’s Press
Conference on 19 March, 2014.
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in the differences of the loss functions (Martins and Perron, 2012).

Secondly, future yield curve forecasting studies need to pay special attention

to the forecasting accuracy of the investigated models after the GFC. The

forecasting errors for short and medium yields in this period are relatively

small in absolute terms, thus, it is highly likely that a poor relative forecast-

ing performance is not picked up by commonly used global forecast evaluation

measures such as the RMSE. Not considering the unique behaviour of short

and medium yields in this time period may distort future results and inter-

pretations.

Finally, it is important to develop mitigating measures to improve the relative

forecasting accuracy in periods of flat, non-volatile interest rates. As a po-

tential approach we identify forecast combination strategies. Simply equally

combining all factor models already notably improves the inferior perfor-

mance relative to the random walk. Combining two variations of Nelson-

Siegel and PCA model, an AR(1) model directly applied on yield levels and

the random walk, with model weights based on their recent forecasting per-

formance significantly improves the forecasting accuracy, albeit the combi-

nation scheme is still not able to consistently beat the random walk. We also

observe that it is typically different models that will provide the most appro-

priate forecasts through time. In particular during the transition from a more

volatile behavior of interest rates to the current low yield environment with

only minor fluctuations, weights allocated to the individual models change

dramatically, with the random walk dominating the other models during the

post GFC period. Overall, the results show that combining forecasts has the

potential to significantly improve the forecasting accuracy especially for a

time period where individual models perform poorly.

Our results also point towards the benefits of using adaptive forecasting tech-

niques or regime switching models to predict the yield curve in different

economic environment as they have recently been suggested by Xiang and

Zhu (2013); Chen and Niu (2014). Such models may be more suitable to

identify different phases of interest rate and yield curve behavior and may

capture the change between volatile or quiet regimes also in their forecasts.

Recent results, see, e.g., Koopman and van der Wel (2011); Exterkate et al.
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(2013) have also shown that including macroeconomic variables can signifi-

cantly improve the forecasting performance of yield curve models. It is thus

worthwhile to investigate whether including macroeconomic variables may

also enable the selected factor models to adjust quicker to the new interest

rate environment and improve the forecasting accuracy. We leave these tasks

for future research.
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A US Yields - Diebold-Mariano statistics

3m 6m 12m 2y 3y 5y 7y 10y

NSAR 4.97* -0.76 -1.45 1.82 2.57* 3.77* 1.54 0.99
NSVAR 1.84 -1.11 0.80 2.70* 1.66 3.20* 0.98 1.25

h=1 PCAAR 2.13* -1.06 0.23 4.20* 2.13* 1.24 0.47 0.12
PCAVAR 0.00 -1.51 0.23 2.30* 1.42 1.48 1.06 -0.11
AR1 1.93 1.80 1.49 1.45 1.23 0.85 0.71 0.62

NSAR 1.74 1.26 0.99 1.94 2.39* 2.15* 1.31 0.78
NSVAR -0.10 -0.39 -0.32 0.93 1.01 1.06 0.29 -0.60

h=6 PCAAR 0.30 0.27 0.45 1.66 1.81 1.06 -0.47 -2.17”
PCAVAR -0.24 0.07 0.53 1.52 1.00 0.57 0.25 -0.58
AR1 0.88 0.80 0.66 0.39 0.53 0.94 0.93 0.78

NSAR 1.08 0.91 1.01 1.64 1.94 2.15* 1.89 1.93
NSVAR -0.61 -0.68 -0.36 1.43 1.45 1.52 0.97 0.50

h=12 PCAAR -0.48 -0.31 -0.04 0.82 1.42 1.42 0.35 -1.74
PCAVAR -0.54 -0.11 0.47 2.10* 1.71 1.35 0.89 0.37
AR1 0.63 0.54 0.38 0.08 0.49 1.30 1.52 1.53

Table 6. Diebold-Mariano forecast accuracy test-statistics of all investigated models against the ran-
dom walk for US yields. We report the results of the period from 2004:01 to 2013:12 for one-month,
six-months and twelve-months forecast horizons and three-months, six-months, twelve-months, two-year,
three-year, five-year, seven-year and ten-year maturities. Note that negative values indicate superi-
ority of the investigated models against the the random walk. (”) denotes significance of the
outperformance relative to the asymptotic null distribution at the 5% or smaller level. (*) denotes signif-
icance of the inferior performance against the random walk relative to the asymptotic null distribution at
the 5% or smaller level. See section 4 for a description of the selected models.
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3m 6m 12m 2y 3y 5y 7y 10y

NSAR 2.57* -2.07” -1.68 1.54 1.24 1.92 1.05 0.48
NSVAR 0.85 -1.78 -0.79 1.30 1.24 2.01* 0.89 0.15

h=1 PCAAR 1.85 -1.23 -0.12 2.81* 1.38 1.03 0.80 0.39
PCAVAR -0.35 -2.24” -0.43 1.56 1.11 1.02 1.20 0.82
AR1 1.67 1.55 1.35 1.28 1.08 0.81 0.99 1.03

NSAR 0.19 -0.77 -1.31 -0.05 0.15 0.83 1.05 0.97
NSVAR -1.07 -0.98 -0.64 0.80 0.74 0.99 1.00 0.88
PCAAR -0.33 -0.15 0.05 0.50 0.15 0.19 0.03 -0.91

h=6 PCAVAR -1.12 -0.43 0.27 1.43 0.98 0.82 0.99 0.72
AR1 0.86 0.83 0.69 0.03 -0.67 -0.69 0.37 0.56

NSAR -0.22 -0.75 -0.75 -0.09 0.06 0.41 0.64 1.05
NSVAR -1.80 -1.29 -0.84 0.80 0.71 0.75 0.72 0.85
PCAAR -1.24 -0.86 -0.58 -0.29 -0.45 -0.19 0.01 -0.21

h=12 PCAVAR -1.12 -0.46 0.16 1.62 1.12 0.81 0.74 0.77
AR1 0.64 0.57 0.40 -0.32 -1.65 -0.77 0.19 0.60

Table 7. Diebold-Mariano forecast accuracy test-statistics of the random walk against all selected models
and the AR(1) model against all selected models for US yields. We report the results of the sub-sample pe-
riod 2004:01-2009:12 for one-month, six-months and twelve-months forecast horizons and three-months,
six-months, twelve-months, two-year, three-year, five-year, seven-year and ten-year maturities. Note that
negative values indicate superiority of the random walk. (”) denotes significance of the outper-
formance relative to the asymptotic null distribution at the 5% or smaller level. (*) denotes significance
of the inferior performance against the random walk relative to the asymptotic null distribution at the 5%
or smaller level. See section 4 for a description of the selected models.
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3m 6m 12m 2y 3y 5y 7y 10y

NSAR 11.53* 6.46* 1.43 1.15 3.32* 3.33* 1.14 0.86
NSVAR 6.11* 4.81* 6.06* 2.95* 2.08* 2.51* 0.54 1.24

h=1 PCAAR 4.51* 1.85 2.60* 4.04* 2.25* 0.78 -0.25 -0.17
PCAVAR 4.02* 5.06* 3.51* 2.31* 1.47 1.10 0.18 -0.77
AR1 1.51 1.20 0.70 1.08 0.65 0.42 0.11 0.02

NSAR 6.65* 6.67* 6.38* 7.89* 4.51* 1.90 0.85 0.25
NSVAR 4.81* 3.31* 2.70* -0.43 0.27 0.22 -0.37 -1.49
PCAAR 3.12* 2.83* 3.35* 3.99* 2.59* 0.71 -0.85 -2.37”

h=6 PCAVAR 2.78* 3.01* 3.26* 0.27 -0.18 -0.27 -0.47 -1.13
AR1 1.90 1.21 0.44 1.68 1.49 0.86 0.61 0.39

NSAR 17.73* 0.00 0.00 0.00 8.85* 3.62* 2.09* 1.71
NSVAR 0.00 0.00 9.92* 1.37 4.68* 1.42 0.16 0.00
PCAAR 2.50* 2.34* 2.38* 3.13* 3.45* 1.64 0.00 0.00

h=12 PCAVAR 4.18* 6.90* 7.11* 1.62 0.00 1.19 -0.05 0.00
AR1 3.94* 0.00 0.50 1.84 2.10* 2.08* 1.63 1.25

Table 8. Diebold-Mariano forecast accuracy test-statistics of the random walk against all selected models
and the AR(1) model against all selected models for US yields. We report the results of the sub-sample pe-
riod 2009:01-2013:12 for one-month, six-months and twelve-months forecast horizons and three-months,
six-months, twelve-months, two-year, three-year, five-year, seven-year and ten-year maturities. Note that
negative values indicate superiority of the random walk. (”) denotes significance of the outper-
formance relative to the asymptotic null distribution at the 5% or smaller level. (*) denotes significance
of the inferior performance against the random walk relative to the asymptotic null distribution at the 5%
or smaller level. See section 4 for a description of the selected models.

44



B US Yields Forecast Combination - Diebold

Mariano statistics

3m 6m 12m 2y 3y 5y 7y 10y

CFEWfactor 1.56 -2.02” -0.51 2.76* 1.47 2.29* 0.91 0.35
CFPWfactor 0.94 -2.23” -0.85 2.31* 1.28 1.98* 0.84 0.19

h=1 CFEWfar1 2.12* -1.57 -0.99 3.41* 1.48 1.72 0.63 -0.15
CFPWfar1 1.06 -1.89 -1.29 2.67* 1.20 1.35 0.53 -0.42
CFEWfar1RW 1.79 -1.75 -1.21 3.16* 1.30 1.29 0.31 -0.31
CFPWfar1RW 0.50 -2.10 -1.55 2.45* 0.99 0.92 0.17 -0.61

CFEWfactor -0.41 -0.76 -0.79 1.14 1.30 1.06 0.35 -0.67
CFPWfactor -0.85 -1.18 -1.36 0.18 0.47 0.79 0.20 -0.85

h=6 CFEWfar1 0.34 -0.03 -0.08 1.28 1.40 1.19 0.59 -0.03
CFPWfar1 -0.70 -0.96 -1.16 0.00 0.39 0.98 0.51 -0.22
CFEWfar1RW 0.19 -0.16 -0.21 1.13 1.16 0.89 0.31 -0.29
CFPWfar1RW -0.91 -1.09 -1.28 -0.30 -0.10 0.56 0.17 -0.53

CFEWfactor -0.84 -0.93 -0.51 1.35 1.54 1.63 1.17 0.80
CFPWfactor -1.21 -1.33 -1.10 0.30 0.62 1.08 0.89 0.31

h=12 CFEWfar1 -0.24 -0.33 -0.03 0.98 1.29 1.54 1.36 1.27
CFPWfar1 -1.02 -1.10 -0.95 -0.04 0.41 1.13 1.20 0.97
CFEWfar1RW -0.36 -0.44 -0.16 0.86 1.16 1.36 1.12 0.97
CFPWfar1RW -1.11 -1.18 -1.04 -0.28 0.00 0.60 0.80 0.53

Table 9. Diebold-Mariano forecast accuracy test-statistics of the forecast combination strategies against
the random walk for US yields. We report the results of the forecasting period 2004:01-2013:12 for one-
month, six-months and twelve-months forecast horizons and three-months, six-months, twelve-months,
two-year, three-year, five-year, seven-year and ten-year maturities. Note that negative values indicate
superiority of the investigated models against the the random walk. (”) denotes significance of
the outperformance relative to the asymptotic null distribution at the 5% or smaller level. (*) denotes
significance of the inferior performance against the random walk relative to the asymptotic null distribution
at the 5% or smaller level. See section 6 for a description of the selected combination strategies.
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3m 6m 12m 2y 3y 5y 7y 10y

CFEWfactor 1.10 -2.22” -0.97 1.93 1.00 1.39 0.97 0.32
CFPWfactor 0.81 -2.35” -1.12 1.57 0.90 1.26 0.95 0.17

h=1 CFEWfar1 1.50 -1.78 -1.12 2.88* 0.94 1.12 0.90 0.36
CFPWfar1 0.93 -2.00” -1.38 2.27* 0.75 0.94 0.86 0.04
CFEWfar1RW 1.31 -1.91 -1.28 2.78* 0.86 0.96 0.77 0.31
CFPWfar1RW 0.42 -2.20 -1.59 2.19* 0.63 0.73

CFEWfactor -1.52 -1.39 -1.17 0.33 0.19 0.58 0.76 0.44
CFPWfactor -1.92 -1.86 -1.97” -0.58 -0.30 0.41 0.65 0.24

h=6 CFEWfar1 -0.63 -0.82 -0.80 -0.42 -0.83 0.12 0.45 0.19
CFPWfar1 -1.37 -1.72 -2.00” -1.63 -1.55 -0.18 0.40 0.08
CFEWfar1RW -0.69 -0.88 -0.85 -0.52 -1.10 -0.06 0.26 -0.01
CFPWfar1RW -1.50 -1.77 -2.04 -1.73 -1.76 -0.54 0.12 -0.17

CFEWfactor -5.33” -2.73” -2.58” 0.02 0.23 0.44 0.53 0.62
CFPWfactor -4.08” -3.39” -3.31” -0.60 -0.22 0.19 0.45 0.52

h=12 CFEWfar1 -4.27” -1.89 -1.63 -1.42 -0.64 -0.03 0.27 0.45
CFPWfar1 -2.85” -2.73” -2.59” -1.73 -1.06 -0.33 0.20 0.30
CFEWfar1RW -4.30 -1.94 -1.68 -1.47 -0.69 -0.10 0.17 0.28
CFPWfar1RW -2.66 -2.67 -2.53 -1.68 -1.13 -0.53 0.02 0.14

Table 10. Diebold-Mariano forecast accuracy test-statistics of the forecast combination strategies against
the random walk for US yields. We report the results of the sub-sample period 2004:01 to 2009:12 for
one-month, six-months and twelve-months forecast horizons and three-months, six-months, twelve-months,
two-year, three-year, five-year, seven-year and ten-year maturities. Note that negative values indicate
superiority of the investigated models against the the random walk. (”) denotes significance of
the outperformance relative to the asymptotic null distribution at the 5% or smaller level. (*) denotes
significance of the inferior performance against the random walk relative to the asymptotic null distribution
at the 5% or smaller level. See section 6 for a description of the selected combination strategies.
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3m 6m 12m 2y 3y 5y 7y 10y

CFEWfactor 4.84* 2.86* 3.14* 2.54* 1.86 1.84 0.30 0.21
CFPWfactor 1.54 0.39 1.77 1.95 1.29 1.48 0.16 0.09

h=1 CFEWfar1 5.72* 2.19* 1.00 1.86 1.61 1.33 0.03 -0.42
CFPWfar1 0.18 -0.14 0.04 0.97 1.10 0.89 -0.28 -0.56
CFEWfar1RW 4.65* 1.52 0.51 1.51 1.33 0.91 -0.26 -0.57
CFPWfar1RW -0.58 -0.59 -0.57 0.60 0.78 0.46 -0.67 -0.73

CFEWfactor 2.32* 2.23* 2.19* 4.04* 2.14* 0.54 -0.17 -1.17
CFPWfactor 2.56* 2.24* 2.42* -0.47 0.47 0.13 -0.37 -1.35

h=6 CFEWfar1 3.63* 2.89* 2.65* 2.82* 2.32* 0.95 0.23 -0.35
CFPWfar1 0.94 0.54 1.04 2.00* 1.78 0.77 0.04 -0.55
CFEWfar1RW 3.23* 2.59* 2.59* 2.64* 1.99* 0.67 0.02 -0.55
CFPWfar1RW -0.39 -0.73 -0.05 1.76 1.34 0.36 -0.27 -0.81

CFEWfactor 2.26* 2.14* 2.22* 4.18* 6.14* 2.00* 0.74 -0.15
CFPWfactor 3.02* 3.44* 4.21* 2.27* 0.00 1.32 0.24 -2.85”

h=12 CFEWfar1 4.40* 3.18* 2.55* 2.91* 3.07* 2.15* 1.28 0.93
CFPWfar1 1.40 1.39 0.03 2.13* 2.46* 1.86 0.98 0.50
CFEWfar1RW 4.42* 3.08* 2.48* 2.78* 2.79* 1.81 1.01 0.63
CFPWfar1RW -3.09 -2.47 -1.60 2.12* 2.37* 1.48 0.52 0.00

Table 11. Diebold-Mariano forecast accuracy test-statistics of the forecast combination strategies against
the random walk for US yields. We report the results of the sub-sample period 2009:01 to 2013:12 for
one-month, six-months and twelve-months forecast horizons and three-months, six-months, twelve-months,
two-year, three-year, five-year, seven-year and ten-year maturities. Note that negative values indicate
superiority of the investigated models against the the random walk. (”) denotes significance of
the outperformance relative to the asymptotic null distribution at the 5% or smaller level. (*) denotes
significance of the inferior performance against the random walk relative to the asymptotic null distribution
at the 5% or smaller level. See section 6 for a description of the selected combination strategies.
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