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Abstract

Incomplete knowledge about climate change and the related uncertainty in climate pre-

diction makes adaptation inherently difficult. We introduce a real options framework to

determine optimal adaptation to catastrophic risk that takes into account climate change

uncertainty. The framework can be used to select optimal adaptation investments from

a number of alternatives or to determine the optimal investment sequence from available

projects. Using a case study of bushfire risk management, we illustrate that the pro-

posed framework can significantly increase the value of investments. While the results

are found to be less impacted by the uncertainty parameter, they are quite sensitive to

the expected extent of climatic change. This implies that for the purpose of investment

analysis under climate change uncertainty, it is important to include as many climate

change predictions as possible, in particular if a higher number of scenarios increases the

accuracy and robustness of the forecasts. Investment cost is found to have a large impact

on the loss caused by the NPV rule, suggesting that the real options framework is more

important for high sunk cost projects.
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1. Introduction

Climate induced catastrophes including floods, storm surges and bushfires, are predicted

to occur more frequently and cause more severe damages in the coming years under the

impact of climate change. With a higher global temperature, the climate system is more

energetic, and catastrophes become more likely to occur (Solomon, 2007). The increased

frequency and severity of natural disasters in recent decades have made such a future

outlook particularly concerning and serious attention has been paid to climate change

adaptation that mitigates catastrophic risks (Van Aalst, 2006).

Optimal adaptation to climate change, however, requires input from all levels of govern-

ment and could potentially be one of the most challenging tasks in environmental man-

agement. While it has often been argued that adaptation action may be most effective at

the local level, local stakeholders are confronted with the complex and problematic task

of planning and implementing mitigation and adaptation actions within existing budget

constraints. Therefore, optimal planning requires an appropriate economic framework

to evaluate potential climate change adaptation options, and to justify the implemented

actions.

To determine optimal strategies for catastrophic risk mitigation, several issues need to

be dealt with. First, a risk quantification framework is required that can incorporate

increasing losses induced by economic development in the region as well as the growth

of loss frequency and severity due to climatic change. Second, the framework needs to

quantify the magnitude of the uncertainty related to climate change impact so that the

impact of uncertainty can be incorporated into the investment decision. With respect to

this second issue, the usual approach of using historical climate data to estimate climate

change uncertainty may not be satisfactory. The change in the climate system occurs

slowly, with significant lags from the time when emission is admitted into the atmosphere.

Therefore using historical climate data to predict climate change may result in conser-

vative estimates that do not reflect the impacts of new and recent emission or feedback

mechanisms. Third, with uncertainty about the extent to which the climate will change,

and the irreversibility of investment projects, the opportunity to invest in an adaptation
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project is analogous to a financial call option, and optimal investment needs to take into

account the investment option value. In addition, there are usually several adaptation

projects that could be invested and the issues of which investment project to select as

well as the optimal sequence of adaptation investment, i.e. which projects to be invested

first and which ones to invest later, need to be dealt with.

The problem of evaluating catastrophic loss reduction investment under the impacts of

climate change has been examined in previous studies. These include the work of West

et al. (2001); Michael (2007); Kirshen et al. (2008); Tsvetanov and Shah (2013) who ex-

amine storm surge risk in coastal areas as well as studies by Brouwer and van Ek (2004);

Zhu et al. (2007); Bouwer et al. (2010); Mathew et al. (2012) who examine flood risk in

coastal and riverine regions and Truong and Trück (2016a) who examine the problem of

bushfire risk management in an urban area.

West et al. (2001) evaluate the increased damage of storm surge in a hypothetical re-

gion under the impact of sea level rise. They use the loss distribution approach (LDA)

to model house losses and insurance premium data to estimate the parameters of the

model. Brouwer and van Ek (2004) evaluate flood control policies in the Netherlands,

taking into account ecological benefits. Michael (2007) evaluates the increased damage

of storm surge in Maryland under climatic change, using the reduction in house eleva-

tion under increased sea levels to determine the additional cost of insurance premiums

attributed to sea level rise. Zhu et al. (2007) determine the optimal levee height and

setback for a floodplain in California, using dynamic programming to maximize the total

reduction in the expected loss.

Kirshen et al. (2008) evaluate the increased damage of storm surge in Boston when the

sea level rises, taking into account adaptation responses. They construct various scenar-

ios that differ in the number of storm surges, the extent of sea level rise and the level

of adaptation, and then evaluate the expected damage in each scenario. Bouwer et al.

(2010) evaluate the potential damage from river flooding in the Netherlands. They es-

timate the increase in the frequency of flood events under climate change based on the

increase in the cumulated 10 days rainfall and estimate flood damage using a damage
3



scanner model that relates flood damage to flood depth. Mathew et al. (2012) evaluate

adaptation options to reduce flood risk in India using the LDA. Loss frequency and sever-

ity distributions are first estimated using expert opinions and then updated using loss

observations in the study region via the Bayes’ rule. Adaptation measures are ranked by

the net present value (NPV) rule as well as the triple bottom line that incorporates en-

vironmental benefits. Tsvetanov and Shah (2013) evaluate the optimal investment time

for adopting protection against storm surge in Connecticut. They use the HAZUS-MH

MR4 risk assessment software provided by the Federal Emergency Management Agency

to estimate the damage-return period curve for each time period, which is then used to

estimate the expected damage. The optimal adaptation time is selected to maximize

the NPV of adaptation. Truong and Trück (2016a) examine the impact of risk aversion

and optimal investment timing on the value of an investment project that reduces bush-

fire risk in an urban area. They extend the standard LDA to allow for the impacts of

increased loss due to economic growth and higher frequency of bushfires as a result of

climate change. The loss frequency distribution is calibrated based on projections of pre-

vious climate change impact studies and the loss severity distribution is estimated based

on the average number of houses damaged in a fire event and house construction cost.

In most of the previous studies, the NPV rule is used to determine the investment decision:

a project is invested if its NPV is positive. The NPV rule does not consider the possibility

that the project can be invested at some future time. West et al. (2001), Zhu et al. (2007)

and Truong and Trück (2016a) departed from the NPV rule to examine the optimal time

to invest. In these frameworks, the optimal time to invest is the time when the NPV of

the project is highest compared to all other investment times. However, none of these

studies consider the value of investment flexibility that helps to cope with the uncertainty

of climate change.

Flexibility in decision making has been widely recognised to play an important role in

adaptation under climate change uncertainty. In recent years, policy makers have sug-

gested to follow adaptation plans that ’maximize flexibility, keep options open and avoid

lock-in’ Kuijken (2010). Several methods including ’adaptive policymaking’ (Kwakkel

and Haasnoot, 2012), ’adaptation pathways’ (Haasnoot et al., 2012), ’dynamic adap-

tive policy pathways’ (Haasnoot et al., 2013) and ’robust adaptive policy’ (Lempert and
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Groves, 2010) have been proposed to obtain the objectives of maximizing flexibility and

keeping options open. These approaches are, however, without criticisms (Mills et al.,

2014; Truong and Trück, 2016b). By maximizing flexibility regardless of the opportunity

cost, the benefit of durable investment and long lasting policies will be foregone. As

suggested by Mills et al. (2014), the price of maximizing flexibility at any cost can be

quite high. Our paper provides a method to consider adaptation pathways - which in the

following we will refer to as investment sequence - with the important feature that we

take into account both the benefit and the cost of flexibility.

In this paper, we introduce an economic framework to select optimal adaptation invest-

ments to catastrophic risk that takes into account the uncertainty of climate change. To

evaluate investment projects, we adopt a loss distribution approach and a doubly stochas-

tic Poisson process that allows for stochastic growth of the losses. A doubly stochastic

Poisson process has also been proposed for the pricing of catastrophic bonds, see, e.g.

Lin et al. (2009). We also provide a real options framework that allows for selection of

an investment project from several projects as well as for the management of sequential

investment into different projects. Although the problem of optimally selecting a project

from many alternatives has been examined by Décamps et al. (2006), their discussion is

quite technical and may be inaccessible to many.

Our model is developed in a continuous time framework and is simple to implement.

Using a case study of bushfire risk management, we illustrate that the consideration of

investment flexibility can significantly increase the value of adaptation investment, above

the current NPV. In addition, the investment value can be further increased by consid-

ering the optimal sequence of projects to be invested. In contrast, ignoring investment

options and investment sequencing can result in the elimination of investment options

that are valuable for the management of future risk. In conducting sensitivity analysis, we

find that with more serious climate change, lower discount rates and/or lower investment

costs, the loss due to adopting the suboptimal NPV rule is lower for projects that already

have a positive NPV. Furthermore, the results on managing sequential investment sug-

gest that it is optimal to invest in a low sunk cost project first and preserve the flexibility

of investing in a high sunk cost project for the possible case when the catastrophic risk
5



is higher. This result is also consistent with findings provided by earlier studies that

are more focused on the qualitative analysis of adaptation strategies, see e.g. Hallegatte

(2009).

Our results also suggest that the option value and investment decisions are relatively

insensitive to the uncertainty parameter, while they are quite sensitive to the expected

extent of climate change impacts and to the applied discount rate. This implies that for

the purpose of investment analysis under the uncertainty of climatic change, it is im-

portant to include as many climate impact predictions as possible, in particular when a

higher number of predictions increases the accuracy and robustness of the expected fore-

casts. Such expansion of the set of climate forecasts will increase the robustness of the

statistical model within the investment framework without compromising the objective

of maximising the investment value. Investment cost is also found to have a large impact

on the loss due to the use of the NPV rule, which implies that the real options framework

is more important for high sunk cost projects.

The remainder of the paper is organized as follows. Section 2 outlines and analyzes

the developed modeling framework. Section 3 provides an application of the framework

in a case study, using catastrophic risks from bushfires as an empirical example. The

section also examines the impacts of optimal investment for alternative investment versus

sequential investment, investment costs, and the applied discount rate on the results.

Section 4 concludes and provides suggestions for future research.

2. Modeling Framework

We adapt the standard LDA to quantify potential losses from extreme events, taking

into account the growth of loss severity and the uncertain increase of the frequency of

events under climate change. We then analyze investment models to select one project

from several alternatives and to determine the optimal sequence of projects when several

projects can be invested.
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2.1. Frequency and Severity of Climate Impacted Hazards

The LDA is commonly used to model catastrophic losses in the insurance and banking

sector as well as losses arising from operational risks, see e.g., Klugman et al. (2008);

Shevchenko and Wüthrich (2006). There are also a few applications of the framework

to modeling losses related to natural or climate impacted hazards such as, e.g., storms,

earthquakes, flooding and bushfire (West et al., 2001; Härdle and Cabrera, 2010; Mathew

et al., 2012; Truong and Trück, 2016a). With this approach, the total loss over a period

(0, t] is modeled as a compound Poisson process:

St =

N(t)∑
n=1

Xn, (2.1)

where N(t) denotes the number of catastrophic events occurring from time 0 up to time

t, and Xn is the loss caused by the nth event. In this standard model, N(t) is assumed

to follow a homogeneous Poisson process with intensity Λ > 0, Xn is assumed to be

independently and identically distributed according to a distribution H(X) and Xn is

independent from N(t). A realization of two catastrophic events with severities x1, x2

over period (0, t] corresponds to {N(t) = 2;X1 = x1, X2 = x2}.

The standard model (2.1) can be extended to incorporate growing loss severity and fre-

quency. We allow the loss severity to grow over time by modeling the catastrophic loss

Xn as a product of the catastrophic loss under zero growth X0 and a growth component:

Xn = X0e
γτn . (2.2)

In Equation (2.2), γ is the growth rate of the risk prone asset values, and τn is the random

time when the nth climate impacted event occurs, which is determined by the Poisson

process. A growth in the value of risk prone assets may be due to, for example, increases

in the number of properties in a region or investment in additional infrastructure. It

may also be a result of improvements in properties’ or assets’ conditions as the economy

grows.1 The random variable X0 is the catastrophic loss when the values of the assets at

1The exponential growth of loss severity is consistent with the pattern of natural disaster losses
observed in Australia, see, e.g., Crompton et al. (2006); Crompton and McAneney (2008), and the
pattern of flood losses in Netherlands, see, e.g., Brouwer and van Ek (2004).
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risk do not grow over time, which can also be interpreted as a measure of the destruction

force of the climate impacted hazard. It is assumed that X0 is identically, independently

distributed and X0 is independent from N(t) and therefore τn. In the following, we de-

note the expected value of X0 by β.

Previous climate change adaptation studies, such as Fisher and Rubio (1997), Gersonius

et al. (2013), have used Geometric Brownian Motion (GBM) processes to model uncertain

development in climate variables. As a result of stochastic variation in climate variables,

the frequency of catastrophic events will also vary stochastically, since the occurrence

of catastrophic events are closely linked to climate variables (Lucas, 2010). As such,

we assume that the number of catastrophic events N(t) that occur over period (0, t]

follows a doubly stochastic Poisson process, with the intensity Λ(t) of the process evolving

according to a Geometric Brownian Motion (GBM):

dΛt/Λt = µdt+ σdWt, (2.3)

where Wt is a Wiener process, µ is the expected growth rate of Λt and σ represents the

magnitude of the uncertainty in predicting future values of Λt.

2.2. Choosing among Alternative Investment Projects

In this paper, we assume that the decision maker is risk neutral in order to focus our

analysis on the value of flexibility. For a study that incorporates risk aversion into the

analysis of optimal adaptation investments, although in a simpler setting, we refer to

Truong and Trück (2016a). Incorporating risk aversion will increase the value of projects

as well as the value of the option to invest and will therefore typically lead to earlier

investment in adaptation projects.

Let us now assume that the decision maker can invest in one of n projects only. Each

project is assumed to last infinitely and the investment cost is sunk once committed. This

is a standard assumption and has been adopted in other real options studies (Dixit and

Pindyck, 1994; Fisher, 2000; Pindyck, 2002; Baranzini et al., 2003; Gollier and Treich,

2003). In empirical applications, an infinitely lasting project is constructed as a series of

finite lifetime projects, where a new finite lifetime project is put in place whenever the
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previous project is fully depreciated.

We assume that each project i has investments cost Ii, a maintenance cost flow Ci and

reduces the loss frequency by a proportion ki, i = 1, ..., n. This means that given the

Poisson intensity Λs at time s, project i reduces the flow of expected loss at time s,

βeγsΛs, by a proportion ki. At time t, if the decision maker decides to invest in project

i, he/she will obtain the expected NPV of project i given by:

Vi(Λt) = E

[∫ ∞
t

e−rs[kiβe
γsΛs − Ci]ds− e−rtIi|Λt

]
, (2.4)

where r is the discount rate. After using the expectation of Λs, E[Λs|Λt] = Λte
µ(s−t),

where s > t, and integrating the expression, the value of project i invested at time t,

when the Poisson intensity assumes a value Λt, is given by

Vi(Λt) =
kiβΛt

r − µ− γ
e−(r−γ)t − e−rt(Ii + Ci/r). (2.5)

The investment problem is that at any time t, the decision maker observes the value

Λt and determines whether to invest in one of the projects i = 1, ..., n or to defer the

investment to a later time. If the decision maker decides to invest in project i, he/she

gets the value of project i, Vi(Λt), and the decision process stops. If the decision maker

decides to wait, then at a later point in time t+ ∆t, he/she can consider the decision of

whether to invest in one of the projects or to defer the investment again. As a result, the

value of the option to invest is the maximum of the values of the individual projects and

the value of deferring the investment. In other words, if F (Λt) is the value of the option

to invest in one of the n projects, then F (Λt) satisfies:

F (Λt) = max
{
V1(Λt), V2(Λt), ..., Vn(Λt), e

−r∆tF (Λt+∆t)
}
. (2.6)

Figure 1 illustrates the situation, where a dominant project exists (Panel a) as well as

the situation where different projects yield the highest NPV for different values of the

intensity parameter Λ (Panel b). When a dominant project m exists, i.e. there is a

project whose NPV is higher than the positive NPV of all other projects for any choice
9



Figure 1: NPV profiles of different projects. A project with a NPV always higher than
the positive NPV of all other projects (for any choice of Λ) is a dominant project. For
example, the project in Panel a, where the NPV is represented by the dotted line is a
dominant project. Panel b illustrates the situation where no dominant project exists.
Different projects yield the highest NPV for different ranges of the intensity parameter
Λ.

of Λ, Equation (2.6) reduces to

F (Λt) = max
{
Vm(Λt), e

−r∆tF (Λt+∆t)
}
, (2.7)

and the option to invest in one of the n projects reduces to the option to invest in project

m.

Applying Ito’s Lemma and subtracting F (Λt) on both sides of the equation then yields

the stochastic differential equation:

0 = max
[
Vm(Λt)− F (Λt), 0.5σ

2Λ2
tFΛΛ + µΛtFΛ − rF

]
. (2.8)

The value of the option is then given by

F (Λt) = BmΛα
t , (2.9)

where α = 1
2
− µ

σ2 +
√(

1
2
− µ

σ2

)2
+ 2r

σ2 and Bm = e−rt
(

βeγt

r−µ−γ

)α
(α−1)α−1

αα
kαm

(Im+Cm/r)
α−1 . The
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option is exercised when Λt is greater or equal to the investment threshold given by:

Λ∗m = (Im + Cm/r)[α/(α− 1)]
r − µ− γ
kmβe

γt
. (2.10)

When no dominant project exists as illustrated in Panel b of Figure 1, the optimal

investment rule may include investing in a non-dominated project when the state variable

Λt is in a low range and investing in another non-dominated project when the state

variable is in a high range. Suppose that there are two non-dominated projects, where

Project 1 is dominant for a lower range and Project 2 dominates for a higher range of

values for the state variable Λt. For a value of Λt close to zero, the optimal decision is

not to invest in any of the projects. For such a scenario, since the optimal decision is to

wait, the value of the option to invest is given by:

F (Λt) = BΛα
t , (2.11)

where α is as in (2.9) and B is a parameter to be determined. Since the decision maker

can choose to invest in either of the projects at any time, the option to invest in one

of the two projects is the higher of the values of the option to invest in each individ-

ual projects, F1(Λt) and F2(Λt). This is satisfied if B = maxiBi, i ∈ {1, 2}, where

Bi = e−rt
(

βeγt

r−µ−γ

)α
(α−1)α−1

αα
kαi

(Ii+Ci/r)
α−1 .

If B2 > B1 or equivalently,

kα2
(I2 + C2/r)

α−1
>

kα1
(I1 + C1/r)

α−1
, (2.12)

then the value of the option to invest in alternative projects, F (Λt), is equal to the value

of the option to invest in Project 2, F2(Λt). The optimal decision is to wait for investment

in Project 2 while the state variable Λt is lower than Λ∗2 (the investment threshold for

Project 2) and to invest in Project 2 when Λt is higher than Λ∗2. Thus, in this case, the

option to invest in one of the two projects is the same as the option to invest in Project 2.

On the other hand, if B2 < B1, then a low value for Λt yields F1(Λt) > F2(Λt) and the

value of the option is equal to the value of the option to invest in Project 1. It is optimal
11



to wait while Λt is lower than the optimal investment threshold of Project 1, Λ∗1. When

Λt is higher or equal to Λ∗1, and lower than a level Λ̂, it is optimal to invest in Project 1

immediately. When Λt is above Λ̂ and lower than the optimal investment threshold for

Project 2, Λ∗2, it is optimal to wait for investing in Project 2. For Λt above Λ∗2, immediate

investment in Project 2 is optimal. The only difference between this problem and the

problem of investing in an individual project is that we need to determine Λ̂.

Note that at Λ̂, the decision maker is indifferent between immediate investment in Project

1 and waiting for investment in Project 2, i.e. V1(Λ̂) = F2(Λ̂), and therefore Λ̂ can be

found by solving equation:

k1βΛ̂

r − µ− γ
e−(r−γ)t − e−rt(I1 + C1/r) = B2Λ̂α. (2.13)

The value of the option to invest in alternative projects is equal to the value of the option

to invest in Project 1 when Λt is lower than Λ∗1; equal to the value of Project 1 when Λt

is between Λ∗1 and Λ̂; equal to the value of the option to invest in Project 2 when Λt is

between Λ̂ and Λ∗2 and equal to the value of Project 2 when Λt is above Λ∗2.

2.3. Sequential Investment

So far in the considered setting with alternative investment projects, although we con-

sider many projects at the same time, we have restricted the decision maker to invest

in only one project over the whole time horizon. However, this would only be the case

if the decision maker is subject to a restricted budget and can afford to invest in only

one project. When the budget constraint is relaxed, it may be optimal to invest in an

additional project at a later point in time after the initial investment, if the state variable

Λt increases to a sufficiently high level. Sequential investment results in a higher option

value compared to alternative investment due to more investment opportunities. For

simplicity and to illustrate the approach, in the following we consider two projects only

in the case of sequential investment. However, an extension of the approach to sequential

investment with a higher number of projects is straightforward.

Suppose that Project 1 is invested first, and when Λ is sufficiently high, Project 2 is
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invested. The investment problem is:

F1(Λt) + F12(Λt) = max
τ1,τ2

E

[∫ ∞
τ1

[k1βe
γsΛs − C1]ds− e−rτ1I1 + (2.14)∫ ∞

τ2

[k2(1− k1)βeγsΛs − C2]ds− e−rτ2I2|Λt

]
,

where F12(Λt) is the value of the option to invest in Project 2, after Project 1 has already

been invested. Similarly, if Project 2 is invested first, then F2(Λt) + F21(Λt) is obtained.

In considering which project to be invested first, the decision maker needs to select a

sequence that maximizes the option to invest, Fs(Λt), i.e.

Fs(Λt) = max{F1(Λt) + F12(Λt), F2(Λt) + F21(Λt)}. (2.15)

At a value Λt close to zero, the values of the options are as in (2.9), with k12 = k2(1−k1)

and k21 = k1(1 − k2). From the expression of option values, it is optimal to invest in

Project 1 first, if:

kα1
(I1 + C1/r)α−1

+
((1− k1)k2)α

(I2 + C2/r)α−1
>

kα2
(I2 + C2/r)α−1

+
((1− k2)k1)α

(I1 + C1/r)α−1
. (2.16)

After the optimal sequence of investments has been identified, investments are conducted

using the optimal investment thresholds:

Λ∗i = (Ii + Ci/r)[α/(α− 1)]
r − µ− γ
kiβe

γt
, (2.17)

where i ∈ {1, 2, 12, 21} and I12 = I2, I21 = I1, C12 = C2, C21 = C1, k12 = (1 − k1)k2,

k21 = (1− k2)k1.

Clearly, the illustrated framework for sequential investment can easily be extended to a

situation where the optimal sequence of investments involves more than two projects.

2.4. Loss due to using the NPV rule

Consider an investment project, for example, the investment project m in section 2.2

with the real options value F (Λt) and the optimal investment threshold Λ∗m. It is well

known that the optimal investment threshold Λ∗m is higher than the value of the Poisson

intensity Λ̄ at which the NPV = 0 , see e.g. Dixit and Pindyck (1994), and that at the
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optimal investment threshold, the NPV of the project is positive2.

When Λt is higher than Λ̄, the advice from the NPV rule is to invest in the project and

the loss due to using the NPV rule is the difference between the option value and the

NPV, i.e. F (Λt)−V (Λt). In contrast, when Λt is lower than Λ̄, the project has a negative

NPV and is, therefore, not invested under the NPV rule. However, in this case, the loss

due to the use of the NPV rule is not zero since the project will be suboptimally invested

whenever Λt reaches Λ̄ at a future time.

The expected loss at a value Λt < Λ̄ due to the use of the NPV rule is the value of the

option at Λ̄ discounted by the time τ that the Poisson intensity takes to reach Λ̄ from its

current level Λt:

F (Λ̄)E[e−rτ ]. (2.18)

As demonstrated by Dixit and Pindyck (1994, p.315), E[e−rτ ] = (Λt/Λ̄)α, where α is

given in (2.9). Since F (Λ̄) = BmΛ̄α, the loss is then BmΛα
t , which is the value of the

option to invest. The loss due to the use of the NPV rule is therefore equal to the value

of the option for negative NPV projects and equal to the difference between the value of

the option and the NPV for positive NPV projects.

3. Case Study Analysis

In this section, we apply the proposed model to a case study of bushfire risk manage-

ment in a local government area (Ku-ring-gai) in Southeastern Australia. Ku-ring-gai

is an urban area with residential properties surrounded by three national parks. It has

89 kilometres of urban and bushland interface and ranks third in bushfire vulnerability

among the 61 local government areas in the Greater Sydney region (Chen, 2005).3 The

community in Ku-ring-gai recognizes bushfires as the most concerning risk under climate

change, followed by storms, water supply security and heat stress mortality risk (Ku-

2With Λ∗
m given in (2.10), the NPV of the project when Λt = Λ∗

m is (Im + Cm/r)/(α − 1) which is
positive since α > 1. For the proof that α > 1, see Dixit and Pindyck (1994, p.143).

3Bushfire vulnerability is defined as the number of addresses within 130 meters of bushland.
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ring-gai Council, 2010).

A number of options have been identified by Ku-ring-gai Council to reduce the risks

from bushfires. These include, among others, building new fire-trails, constructing new

rural fire-stations and rezoning land, see Ku-ring-gai Council (2010). Fire trails allow

for controlled hazard reduction burning, break wild fire transition and potentially allow

more time for fire fighters to respond to bushfires. Constructing more rural fire stations

provides volunteer rural fire fighters with effective fire suppression equipment and will

reduce the response time. Thus, such an investment project may also significantly reduce

the risk of a fire to become more severe. In the following, we will consider a situation,

where two alternative adaptation investment projects are being examined: a project that

involves the construction of additional fire trails and a project that requires investment

in an additional rural fire station. We will use this case study to illustrate the proposed

framework and to provide economic insights on the value of investment flexibility.

3.1. Parameter Calibration

Bushfire risk in Australia is highly impacted by climate variables, especially temperature

and windspeed, and is predicted to increase significantly in future years due to the impact

of climatic change (Lucas, 2010). Reliable forecasts about how the climate will change,

are, however, difficult to obtain, since the change depends on, e.g., carbon emissions

with a significant time lag, while predictions based on historical climate observations

may be unsatisfactory (Wei et al., 2015; Matsumoto and Andriosopoulos, 2016). Studies

that forecast climate change usually utilize climate models that simulate the interactions

among important drivers of climate, including atmosphere, oceans, land surface and ice

(Solomon, 2007). In this paper, we rely on climate change predictions to calibrate the

Poisson intensity process Λt. Our method of using forecasts from climate change studies

to calibrate the risk process is similar to the method used by Mills et al. (2014) who

consider the problem of optimal adaptation investment to reduce the impact of sea level

rise in a two period framework.

We consider a forecast for the growth rate of the intensity for extreme bushfires, λT =

ln ΛT , provided at the current point in time t by a given climate model using a given

15



emission scenario, as a possible value that λT can take at a future point in time T . Using

a range of climate models with several emission scenarios will provide a number of fore-

casts of λT . These forecasts can then be used to estimate the distribution of λT given

the current information at time t. Since ΛT follows a GBM, see Equation (2.3), λT is

normally distributed with mean (µ − 0.5σ2)(T − t) and variance σ2(T − t). Using the

estimated distribution of λT , we can then determine the parameter estimates for µ and σ.

We use 20 forecasts of the frequency of extreme fire weather events in Southeastern Aus-

tralia as provided by Hasson et al. (2009). These forecasts are generated from 10 general

circulation models using a low (B1) and a high (A2) GHG emission scenario. We assume

that each model uses different radiative forcing parameter values that are equally prob-

able and that the two emission scenarios are also equally likely. The 20 forecasts then

form an empirical distribution for ΛT and the annual growth rates for the frequency of

extreme bushfire events can be calculated from these predictions. Based on the provided

forecasts, our estimate for the average annual growth rate for the period 2010 - 2100 is

1.59% with a standard deviation of 1.54%. Fitting a normal distribution to the predicted

annual growth rates then yields an estimated distribution with a mean of 1.59% and a

standard deviation of 1.50%. The estimated distribution for λT is illustrated in Figure 2.

The current value of the Poisson intensity Λ0 can be estimated using the PerilAus

database that records bushfire events since 1906. It is observed that until 2016, there

were 3 bushfire events with significant damage to houses and infrastructure in the area,

so the current estimate for the Poisson intensity is Λ(0) = 0.027.

To determine the discount rate, we use the estimation results provided by Truong and

Trück (2016a) who estimate the stochastic interest rate model proposed by Cox et al.

(1985), and use the expected discount factor given by the stochastic interest rate model

to find the certainty equivalent discount rate. The estimated certainty equivalent dis-

count rate is found to converge quickly to the long run level (4.5%), and for simplicity,

we assume that the discount rate is constant at 4.5%.

To estimate the loss severity distribution, we assume that houses are either completely
16



Figure 2: Estimated distribution for the annual growth rate of bushfire intensity λT for
the year 2100. We use 20 alternative forecasts generated from 10 general circulation
models using a low (B1) and a high (A2) GHG emission scenarios as in Hasson et al.
(2009), yielding estimates of µ = 1.59 and σ = 1.50 for the distribution of λT .

destroyed by bushfires or will survive unscathed based on the empirical observation by

Crompton et al. (2010). The loss severity is then a product of the number of damaged

houses and the reconstruction cost per house. The reconstruction cost per house is es-

timated by subtracting the average land value estimated by the NSW Valuer General

(DOL, Department of Land (2009)) from the average net-of-realtor-commission property

sales price in the region provided by Hatzvi and Otto (2008)4. The reconstruction cost

per house is estimated as $405,000.

The number of damaged houses in a bushfire event is estimated based on the information

provided by a local expert from the bushfire brigade. The expert suggests that for a

severe bushfire, the average number of houses being damaged is 30, which implies an

expected loss without growth of loss exposure of $12.15 million.

To estimate the investment costs, loss mitigation effectiveness and project life, we use

the expert elicitation method that has been used in many previous climate adaptation

4Note that we assume an additional 2.5% realtor commission for property sales.
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Table 1: Information on estimated and assumed parameter values, including the current
intensity of bushfires λ(0), the expected intensity growth rate µ, the volatility of inten-
sity growth rate σ, expected loss E(X0) and the estimated growth rate of the cost of
reconstruction γ. For each type of projects (fire trails vs rural fire station), the table
also provides information about the assumed impacts on risk mitigation of the project k,
the lifetime of each project M , the investment cost per project IM , project maintenance
costs C and the applied discount rate r.

Parameters Value
Current Poisson intensity (λ(0)) 0.027
Expected Rate of Poisson intensity growth (µ) 1.59 %
Volatility of Poisson intensity growth(σ) 1.50 %
Expected loss severity (E(X0)) $12.15 M
Growth rate of reconstruction cost (γ) 1%
Risk mitigation by the fire station (k1) 18%
Risk mitigation by the fire trails (k2) 20%
Lifetime of the fire station (M1) 40 years
Lifetime of the fire trails (M2) 50 years
Investment cost per project for rural fire station (I1

M) $0.75 million
Investment cost per project for fire trails (I2

M) $1.5 million
Maintenance cost of rural fire station (C1) $70,000
Maintenance cost of fire trails (C2) $50,000
Discount rate (r) 4.5%

studies, see e.g. Baker and Solak (2011); Mathew et al. (2012), to overcome the problem

of data scarcity. The expert specifies that additional fire trails are expected to reduce the

frequency of house damaging bushfire events by 20%, while investment in an additional

fire station is expected to reduce the frequency of house damaging bushfire events by

18%. We assume that the risk reduction for the two adaptation investments is indepen-

dent due to the different nature of the investments. While fire trails will lead to a reduced

risk as a result of an increased and more effective hazard reduction burning program, a

new fire station will allow a better protection of properties and infrastructure near a park.

The investment cost of an infinite lifetime project can be calculated from the investment

cost IM for a finite lifetime project estimated by the expert (Table 1) by firstly converting

IM into an annuity flow, A:

A = IM
1− (1 + r)−1

1− (1 + r)−(M+1)
.
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The annuity A is then used to calculate the investment cost of an infinite life project:

I = A(1 + r)/r. (3.1)

At the discount rate of 4.5%, the present value of building a fire station every 40 years

for $0.75 million each is $0.90 million while the present value of building bushfire trails

every 50 years for $1.5 million, is $1.68 million.

3.2. Baseline Case

In a first step we discuss the obtained results for the estimated models and calibrated

parameters in the previous section. A summary of the results for this baseline case is

provided in Table 2. Given the estimated parameters, the NPV of immediate adaptation

investment in the fire station is $641,563, while the NPV for investment in the fire trails

is $649,824. Should the NPV rule be used, the investment into the fire trails would be

preferred to the fire station since it yields a higher NPV under immediate investment.

After the investment into the fire trails, bushfire risk is reduced by 20% and the NPV of

the fire station is reduced to $22,600, since there remains less risk for the fire station to

mitigate. However, since the NPV of the fire station is positive, it would still be invested

according to the NPV rule. Thus, using the NPV rule to guide investment, both the

fire trails and the fire station would be invested immediately with an overall NPV for

investing in both projects at time t = 0 of $672,424.
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Table 2: Results for baseline case for different investment settings. Investment can be
conducted individually into one of the projects, i.e. a new fire station or fire trails
according to the NPV rule at t = 0 or according to the decision rule provided by the real
options model. Alternatively, both investments can be undertaken at t = 0 (F1 + F2) or
sequential investment (either F1 +F12 or F2 +F21) can be conducted, taking into account
the optimal sequential timing for each investment.

Investment model

Investment value NPV rule Real option
Individual Investment
F1 (Fire station) $641,563 $759,445
F2 (Fire trails) $649,824 $809,978

Combined/Sequential Investment
F1 + F2 $672,424 -
F1 + F12 - $1,224,939
F2 + F21 - $1,217,363

The NPV profiles of the two projects are depicted in Figure 3. The fire station dominates

when Λt is lower than 0.026, otherwise the fire trail investment dominates. In addition,

since condition (2.12) is satisfied, the option to invest in the fire trails is higher than the

option to invest in the fire station for all Λt (despite the dominance of the NPV profile of

the fire station for Λt < 0.026). If the decision maker has to choose between investment

into fire trails or the fire station, the fire trails project would be selected. The value

of the option to invest in alternative projects is then equal to the value of the option

to invest in the fire trails ($809,978). It is optimal to invest in the fire trails when the

Poisson intensity is equal to or higher than Λ∗2 = 0.034. Using the NPV rule instead

of the real options framework to determine investment would result in a loss of 19.77%

($809,978-$649,824=$160,154) of the option value.

In contrast, if the decision maker can invest in the fire trails as well as the fire station in a

sequential order, he/she should invest in the fire station first when the Poisson intensity

reaches 0.033 and invest in the fire trails when the Poisson intensity is at or above 0.042.

At the current value of the Poisson intensity, the value of the option to invest in the fire

station first and the fire trails later is $1,224,939, while the value of the option to invest

in the sequence of fire trails first and fire station later is $1,217,363. As expected, the

value of the sequential investment option is less than the sum of individual investment
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Figure 3: NPV profiles of investment into a fire station (solid) and into a fire trail
investment projects for different values of Λt. The fire station dominates when Λt is
lower than 0.026, otherwise the fire trail investment dominates.

options ($1,569,423), due to the fact that after a project has been invested, there remains

less risk to be mitigated. The consideration of sequential investment increases the option

to invest by 51.23% ($414,960) and increases the loss due to the use of the NPV rule to

45.11% ($1,224,939-$672,424=$552,515) of the option value. A summary of the results

for different investment strategies, i.e. individual, combined and sequential investment

according to the NPV rule and taking into account the optimal timing and sequencing of

the projects, is provided in Table 2.

3.3. Impact of Uncertainty

The impact of uncertainty on the option values and on the loss due to the usage of a

simple NPV rule is examined by increasing the uncertainty parameter σ by 10% (from

1.50% to 1.65%). With an increase in uncertainty, the option value of the fire station

increases by 0.15% (to $760,600) while the option value of the fire trails increases by a

higher proportion of 0.17% (to $811,342). This is due to the higher investment cost of

the fire trails compared to that of the fire station.

Even with an increase in uncertainty, the fire trails project is still preferred when only one

project is selected for investment. For the sequential investment, the order of investment

also remains unchanged. The value of the option to invest in the fire trails is increased

by 0.17% and since the NPV of the project is not affected by the increase in uncertainty
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(under the risk neutrality assumption), the loss in the option value due to the use of the

NPV rule is increased by 0.85% (to $161,518). The value of the option to invest in the

optimal sequence of investment projects is increased by 0.21% and since the NPVs of

the projects are not affected by the change in uncertainty, the loss in the option value of

sequential investment due to the use of the NPV rule is increased by 0.45% (to $577,717).

The impact of uncertainty is examined further by allowing σ to vary over a range from 0

to 10%. As shown in Figure 4, the value of the option to invest in alternative investments

and the value of the option for sequential investment are both increasing in uncertainty,

with the latter increasing at a higher rate. As a consequence, the loss due to immedi-

ate investment based on the NPV rule is higher when uncertainty is higher and when

sequential investment is feasible.

Figure 4: Impact of different values of uncertainty parameter (0 < σ < 0.1) on option
values and the loss due to using a NPV rule. We plot the value of the option to invest in
alternative projects (solid), the value of the sequential investment option (dashed), the
loss in the option value of alternative projects (dotted), and the loss in the option value
of sequential investment due to the use of NPV rule (dotdash).

3.4. Impact of Climate Change

We examine the impact of a more serious climate change scenario by increasing the growth

rate µ by 10% to 1.75%. In this scenario, the NPVs of the projects are significantly in-

creased: the NPV of the fire station is increased by 43.91% (to $923,295) and the NPV of

the fire trails is increased by 48.17% (to $962,860). The option values increase by a lesser
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extent, with the option to invest in the fire station increasing by 32.37% (to $1,005,272)

and that of the fire trails increasing by 33.12% (to $1,078,228).

In the scenario of more serious climate change, the option to invest in the fire trails re-

mains larger than the option to invest in the fire station. The optimal investment strategy

for alternative investments is therefore to wait and invest in the fire trails. For sequential

investment, investing in the fire station first and the fire trails later also remains to be the

optimal strategy. The loss in the value of the alternative investment option is reduced by

27.96% to $115,367 while the loss in the value of the sequential investment option due to

the NPV rule usage is reduced by 19.42% to $445,191. This is a result of the assumption

of a more serious climate change scenario, that favours earlier adaptation investment and

therefore reduces the difference between the investment decision given by the NPV rule

and that given by the real options model.

The impact of a more serious climate change scenario is further explored by allowing µ to

vary over a range from 0 to 2% (Figure 5). Under a more serious climate change scenario,

adaptation projects are more beneficial and the investment options become more valu-

able. Regarding the loss due to the NPV rule, it depends not only on the option value

but also on whether or not the projects are invested under the NPV rule, as explained in

section 2.4. When µ is lower than 1.1%, the NPVs of the two projects are negative such

that no projects are invested and losses are equal to the values of the options. When µ

is higher than 1.1%, the NPVs of the two projects are positive with the NPV of the fire

station higher than the NPV of the fire trails. Using the NPV rule, the fire station would

be invested while additional investment in the fire trails would be justified only when µ

is higher than 1.58% (note that the NPV of the fire trails decreases when the fire station

is invested).

The loss in the value of the option to invest in alternative investments is equal to the loss

in the value of the option to invest in the fire trails, since this option value is higher than

the option value of the fire station. When µ is lower than 1.1%, the NPV of the firetrails

is negative. Increases in µ will increase the value of the option and therefore increase the

loss. As µ increases beyond 1.1%, further increases in µ lowers the optimal investment
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threshold, as evident in (2.10), and reduces the difference in the optimal investment deci-

sion and the investment decision given by the NPV rule. The loss is reduced as a result.

The loss in the value of the option to invest in sequential projects is equal to the value

of that option when µ is lower than 1.1%. When µ is higher than 1.1% and lower than

1.58%, the loss is equal to the sum of the option value for the investment in the fire trails

after the fire station has been invested and the difference between the option value of

the fire station and its NPV. The increase in the loss, when µ increases for this range

of values, indicates that the loss in the option value of the fire trails dominates the loss

in the option value of the fire station. When µ is above 1.58%, a further increases in µ

reduces the difference between investments under the NPV rule and that under the real

options model. The loss is therefore reduced.

Figure 5: Impact of different values for the growth rate of the Poisson intensity (0 < µ <
0.02) as a proxy for different climate change scenarios on option values and the loss due
to using the NPV rule. We plot the value of the option to invest in alternative projects
(solid), the value of the sequential investment option (dashed), the loss in the option value
of alternative projects(dotted), and the loss in the option value of sequential investment
(dotdashed) due to the use of the NPV rule.

3.5. Impact of the Discount Rate

The impact of the applied discount rate is examined by increasing the discount rate by

10% (to 4.95%). The increase in the discount rate results in a sharp decrease in the

NPVs of the projects: the NPV of the fire station is decreased by 65.70% (to $220,038)
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and the NPV of the fire trails decreases by 79.56% (to $132,830). This high sensitivity

of the projects’ NPV to the applied discount rate is due to the projects having larger

benefits in the far future when catastrophic risks are higher. The option values are also

decreased, although by a lesser extent. The value of the option to invest in the fire station

is decreased by 43.85% (to $426,413) while the value of the option to invest in the fire

trails is decreased by 46.73% (to $431,458).

Since the option to invest in the fire trails still has a higher value than the option to

invest in the fire station, when only one project can be invested, the fire trails project

is still selected. For sequential investment, investing in the fire station first and the fire

trails later also remains as the optimal sequence. The loss in the value of the alternative

investment option, which is the difference between the option to invest in the fire trails

and its NPV, is increased by 86.46% (to $298,628) due largely to the reduction in the

NPV of the fire trail. In contrast, the loss in the value of the sequential investment option

is decreased by 20.14% (to $441,244). This is because under the higher discount rate,

the NPV of additional investment in the fire trails changes from positive to negative and

the loss in the value of the option to further invest in the fire trails equals to the option

value, which is less sensitive to changes in discount rate than the NPV.

The impact of the applied discount rate is further investigated by allowing the discount

rate to vary from 4% to 5% (Figure 6). In general, a higher discount rate reduces the

NPV of investment projects and increases the loss in the values of the investment options.

3.6. Impact of Investment Cost

The impact of investment costs on option values is examined by increasing the investment

costs by 10%. The increase in investment cost reduces the NPV of the fire station by

13.99% to $551,793, and reduces the NPV of the fire trails by 25.82% to $482,050. The

value of investment options are also reduced, although by a smaller amount. The value of

the option to invest in the fire station is reduced by 6.23% (to $712,098) while the value

of the option to invest in the fire trails is reduced by 9.93 % (to $729,507).

At the higher investment costs, the value of the investment option of the fire trails is
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Figure 6: Impact of different values of the discount rate (4% < r < 5%) on option values
and the loss due to using an NPV rule. We plot the value of the option to invest in
alternative projects (solid), the value of the sequential investment option (dashed), the
loss in the option value of alternative projects(dotted), and the loss in the option value
of sequential investment (dotdashed) due to the use of NPV rule.

still higher than that of the fire station and the construction of fire trails remains the

preferred project for alternative investments. The loss in the value of the alternative in-

vestment option due to the NPV rule is increased by 54.51% to $247,457. For sequential

investment, investing in the fire station first is still optimal. The loss in the value of the

sequential investment option increases by 4.89% to $579,552. The smaller impact of the

higher investment costs on the loss in sequential investment option value is largely due

to the NPV of additional investment in the fire trails becoming negative at the higher

investment costs. The loss in the option value of further investment in the fire trails is

therefore equal to the value of that option, rather than the difference between the option

value and the NPV as in the baseline case. Since changes in investment costs have higher

impact on the NPV than on the option value, the loss in the value of the sequential

investment option increases by a smaller amount.

We further investigate the impact of investment cost by allowing the change in investment

costs to vary from -40% to 40% (Figure 7). For investment projects with a positive

NPV, the loss due to applying the NPV rule is higher for investment projects with

higher investment costs. For alternative investments, when the increase in investment

costs passes 17%, the investment cost of the fire trails becomes too large relative to the
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reduction in bushfire risk delivered by the project and it is preferred to wait to invest in

the fire station, rather than the fire trails. The switch in the preferred investment project

causes a slight jump in the loss in the value of alternative investment. Similarly, when

the increase in investment costs passes 38%, the optimal sequence of investment changes,

causing a jump in the loss in the option value of sequential investment.

Figure 7: Impact of reduction and increase in the investment costs (−40% < ∆(IjM) <
40%, j = {1, 2}) on option values and the loss due to using NPV rule. We plot the value of
the option to invest in alternative projects (solid), the value of the sequential investment
option(dashed), the loss in the option value of alternative projects(dot), and the loss in
the option value of sequential investment (dotdashed) due to the use of NPV rule.

3.7. Summary of Sensitivity Analysis

The sensitivities of the NPV, the option values of investment and the loss incurred by

using the NPV rule, to a 10% increase in the considered variables are summarized in Table

3. The conducted sensitivity analysis illustrates that the results are relatively insensitive

to the uncertainty parameter, while they are quite sensitive to the assumptions about

the impact of climatic change, and to the applied discount rate. This implies that for

the purpose of investment analysis under uncertainty of climate change, it is important

to include as many climate change predictions as possible. This is true in particular,

if a higher number of predictions increases the accuracy of the expected forecasts. The

investment cost also has a large impact on the loss due to the application of the NPV

rule, suggesting that the real options framework is more important for high sunk cost

projects.
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Table 3: Sensitivity of the results for NPV and option value of the investment to a 10%
increase in the value of considered key variables. The uncertainty parameter σ = 1.50%,
the discount rate (4.5%) and investment costs ($0.75M for fire station and $1.5M for fire
trail) are increased by 10%. For the climate change variable, we assume that the expected
growth rate of Poisson intensity µ = 1.59% is increased by 10% to 1.75%

10% Increase ∆ NPV ∆ Option Value ∆ Loss NPV rule vs.
optimal investment

Alternative Investment
Uncertainty 0% 0.17% 0.85%
Climate Change 48.17% 33.12% -27.96%
Discount rate -79.56% -46.73% 86.46%
Investment cost -25.82% -9.93% 54.51%

Sequential Investment
Uncertainty 0% 0.21% 0.45%
Climate Change 80.53% 35.18% -19.42%
Discount rate -122.01% -46.01% -20.14%
Investment cost -38.30% -7.64% 4.89%

4. Conclusion

In this paper, we provide a new modelling framework that allows to analyze and se-

lect optimal investment in catastrophic risk reduction projects under the uncertainty of

climate change. An valuable feature of our model is that it allows to incorporate the

uncertainty about climate change predictions into the analysis of investment decisions.

The framework allows to analyze alternative investments where the decision maker can

select only one project among many, possibly due to budget constraints. Importantly, it

further allows to select optimal sequential investments where the decision maker is free

to choose any investment projects that improve the social welfare.

We illustrate the application of the framework to a case study of bushfire risk manage-

ment in a local government area in Australia. The results suggest that the value of

investment flexibility under uncertainty is large relative to the NPV of the considered

projects. Using the NPV rule will result in suboptimal outcomes, in comparison to the

application of a real options framework. The loss is higher for the case where the decision

maker is not constrained to select one investment project only, but can invest in several

projects at the same time. These results clearly emphasize the importance of applying

real options analysis.
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An interesting finding from the empirical application is that if the decision maker is con-

strained by their financial budget and can invest in only one project, it is optimal to

select the largest project in order to obtain the largest reduction in catastrophic risk. On

the other hand, if the decision maker is free to select investment projects to maximize the

long term social welfare, it is optimal to select a low sunk cost project first to preserve

the investment flexibility and only invest in a high sunk cost project when the climate

change impact turns out to be quite serious. Compared with the case of a single project

investment, investment starts earlier when a sequence of projects is considered. Further-

more, the optimal investment strategy for sequential investment is consistent with results

obtained by a more qualitative analysis in previous studies, see e.g. Hallegatte (2009),

that suggest to invest in low sunk cost projects first to preserve flexibility. Sequential

investment analysis is, therefore, essential for climate change adaptation projects. These

results also suggest that in order to enable effective adaptation, financial assistance from

higher government levels to local governments may be necessary, so that local govern-

ments are less constrained financially and are able to preserve investment flexibility. Our

findings illustrate that in particular for managing sequential investments, local govern-

ments should base their investment decisions on a real options model instead of a simple

NPV rule.

Optimal investment decisions, including which project to select for alternative invest-

ment as well as the order of the invested projects in a sequential investment framework,

are robust to changes in the considered key parameters. Further, the NPVs and option

values of the projects are relatively insensitive to the uncertainty parameter, while they

are quite sensitive to the impact of climatic change and the applied discount rate. There-

fore, for the purpose of investment analysis under uncertainty about climatic change, it

is important to include as many predictions about climate change impact as possible,

in particular if a higher number of predictions increases the accuracy and robustness

of the expected forecasts. Initial investment costs for adaptation projects also have a

large impact on the loss induced by the application of a NPV rule, which implies that

the application of a real options framework is more important for high sunk cost projects.
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Note that in our empirical analysis, we use a univariate approach to estimate the Poisson

intensity of bushfire events. With this approach, the Poisson intensity only increases

when a new event occurs, although the stochastic variation of climate variables will

influence the pattern of extreme climate events. A better approach is probably to use

a generalized linear model to relate catastrophic events to climate variables. Once the

statistical relation is established, the Poisson intensity can be inferred from observed

climate variables. This more statistically rigorous approach is beyond the scope of the

current paper and is left to future research.
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