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ABSTRACT
Several applications require counting the number of distinct items

in the data, which is known as the cardinality counting problem.

Example applications include health applications such as rare dis-

ease patients counting for adequate awareness and funding, and

counting the number of cases of a new disease for outbreak detec-

tion, marketing applications such as counting the visibility reached

for a new product, and cybersecurity applications such as track-

ing the number of unique views of social media posts. The data

needed for the counting is however often personal and sensitive,

and need to be processed using privacy-preserving techniques. The

quality of data in different databases, for example typos, errors and

variations, poses additional challenges for accurate cardinality esti-

mation. While privacy-preserving cardinality counting has gained

much attention in the recent times and a few privacy-preserving

algorithms have been developed for cardinality estimation, no work

has so far been done on privacy-preserving cardinality counting

using record linkage techniques with fuzzy matching and provable

privacy guarantees. We propose a novel privacy-preserving record

linkage algorithm using unsupervised clustering techniques to link

and count the cardinality of individuals in multiple datasets without

compromising their privacy or identity. In addition, existing Elbow

methods to find the optimal number of clusters as the cardinality

are far from accurate as they do not take into account the purity and

completeness of generated clusters. We propose a novel method

to find the optimal number of clusters in unsupervised learning.

Our experimental results on real and synthetic datasets are highly

promising in terms of significantly smaller error rate of less than

0.1 with a privacy budget 𝜖 = 1.0 compared to the state-of-the-art

fuzzy matching and clustering method.
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1 INTRODUCTION
The cardinality counting problem has become of tremendous inter-

est in many different applications to enable a variety of analytics of

dispersed data. However, the privacy concerns of sharing or reveal-

ing individuals’ data containing personal information for analytic

purposes require privacy-preserving processing of counting. In

most cases, the records of the same individual in different databases

do not contain a unique identifier, and the quasi identifiers in the

records, such as names, addresses, and ages, are often prone to

data errors, inconsistencies and variations. Accurately estimating

the cardinality of individuals or items represented by records in

multiple different databases without compromising the privacy of

the individuals is hence a challenging research problem.

Gaining insight into the number of unique records from multiple

data sources is crucial in many applications. A promising real-world

application is rare disease patients counting. Rare diseases in gen-

eral do not receive sufficient funding for treatment [38] and this

disparity is created in part because funders measure the impact of

their investments based on the size of patient population affected by

a given disease. Unfortunately, for a majority of rare diseases, this

data is at best a wild guess and at worst non-existent. Another ex-

ample in the health domain is disease outbreak detection where the

number of unique cases of a new disease needs to be continuously

monitored from multiple different hospitals and clinics to predict

the likelihood of an outbreak and to make preventive measures.

Similarly, national security or cybersecurity applicationsmonitor

the number of views of videos or posts in online or social media in

order to predict the potential threats of any video/post that becomes
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viral within a short time period (for example, fake news with phish-

ing links [40]) and make any timely decision. Online businesses

need to monitor the number of unique views by customers of a new

product in order to make decisions on the marketing strategies to

manage the marketing costs. Web search log analysis may require

calculating the number of distinct queries in a list of queries from

many users (e.g., the number of distinct queries made to a search

engine over a week) to improve the performance of the search en-

gine in terms of estimating the selectivity of queries and designing

good strategies for executing a query [3, 31, 54]. Social game indus-

try and e-commerce applications use count distinct metrics, such

as the daily active users (DAU) and monthly active users (MAU)

metrics [51], to estimate the workload for those online applications.

In all these example applications, the data needed to derive such

insights is personal and sensitive, and must be processed private.

While there have been several methods proposed for the cardi-

nality counting problem in general [3, 6, 18, 21, 25, 30], privacy

aspects of cardinality counting have only recently received at-

tention in the research literature. Some recent works developed

privacy-preserving algorithms for cardinality counting using dif-

ferent probabilistic data structures (KMV, FM-Sketch, or Hyper-

LogLog) [41, 42, 50]. A recent study has shown that probabilistic

cardinality estimators like HyperLogLog do not preserve privacy as

achieving accurate and private cardinality estimation is impossible,

and therefore they can be sensitive as raw data [12]. In addition,

they are not robust or tolerant to errors and variations in data.

Privacy-preserving record linkage is hence required to link or de-

duplicate records corresponding to the same individual based on

fuzzy matching of personal identifying information (PII) contained

in the quasi-identifiers (e.g. names and addresses) to count the

cardinality of individuals.

In this work, we propose a novel privacy-preserving record link-

age algorithm for linking and counting unique individuals or items

from multiple databases using a combination of Bloom filter en-

coding, local differential privacy, and machine learning techniques.

Specifically, the database owners locally encode and perturb the PII

in their records using Bloom filters and local differential privacy.

The encoded and perturbed records from all the databases are then

input to a clustering algorithm that aims to link and group records

corresponding to the same individual/item into the same cluster

and different individuals/item into different clusters.

The optimal number of clusters is then computed to calculate

the cardinality of records. Since ground-truth data is not avail-

able in real applications and is not trivial to manually label data

due to privacy and confidentiality concerns, finding the optimal

number of clusters for such unsupervised machine learning tasks

is highly challenging. Existing Elbow methods based on metrics

like silhouette coefficient and Calinski-Harabasz score measure

the inter and intra cluster distances to find the optimal number of

clusters [5, 13, 36, 52]. However, they are not accurate and optimal,

especially for linking or deduplicating records, and thereby count-

ing the correct cardinality. The main limitation is that they do not

account for the purity and completeness of clusters which are nec-

essary for accurate record linkage. Hence, we calculate the optimal

number of clusters or cardinality by proposing a novel method to

measure the purity and completeness of generated clusters. While

we propose an algorithm for the distinct-counting problem, our

proposed method for finding the optimal number of clusters can be

used with any unsupervised clustering techniques that do not have

labelled data for fine-tuning and/or evaluation.

The main contributions of this paper are:

(1) We study the problem of privacy-preserving cardinality count-

ing of individuals or items from multiple different databases

in the presence of data errors and variations.

(2) We introduce a novel privacy-preserving record linkage al-

gorithm for cardinality counting with provable privacy guar-

antees. Our algorithm uses Bloom filter encoding and local

differential privacy for data encoding and unsupervised clus-

tering on the encoded data to estimate the cardinality.

(3) We propose a novel clustering algorithm to find the opti-

mal number of clusters in the absence of labelled data to

predict the accurate cardinality. We develop two variations

of our clustering method and evaluate their accuracies for

cardinality estimation.

(4) We provide formal proof of privacy guarantees of our pro-

posed method.

(5) We conduct experimental evaluation on real and synthetic

North Carolina voter registration (NCVR) datasets to vali-

date the accuracy of our method. Since existing cardinality

estimators do not allow fuzzy matching for cardinality count-

ing, we compare only with a state-of-the-art baseline method

for fuzzy matching and clustering [36] to provide a fair com-

parison. The experimental results show that our methods

can achieve a very small error rate closer to 0.0 with a small

privacy budget of 𝜖 = 1.0 or 𝜖 = 2.0 even on highly corrupted

datasets, and significantly outperform the existing methods.

Outline: We provide preliminaries in the following section and

describe our methodology in Section 3. In Section 4 we present the

results of our experimental study and in Section 5 we review the

literature of privacy-preserving counting techniques. Finally we

summarise, discuss limitations, and provide directions to future

research in Section 6.

2 BACKGROUND
In this section, we describe the preliminaries of this work. We first

provide preliminaries for the Bloom filter encoding in Section 2.1.

We then describe the system architecture and threat model of the

research problem we address in this paper in Section 2.2, and finally

we describe differential privacy in Section 2.3.

2.1 Bloom filter encoding
Bloom filters are probabilistic data structures that are highly effi-

cient for storing, processing, and computation. Essentially, Bloom

filters are bit vectors that initially contain 0 in all the bit positions.

𝑘 independent hash functions ℎ𝑖 (·) (with 1 ≤ 𝑖 ≤ 𝑘) are used to

hash-map an element 𝑥 by setting the corresponding bit positions

in the Bloom filter 𝑏 to 1 (i.e. ∀𝑖 𝑏 [ℎ𝑖 (𝑥)] = 1). A Bloom filter al-

lows a tunable false positive rate 𝑓 𝑝𝑟 so that a query returns either

“definitely not” (with no error), or “probably yes” (with probability

𝑓 𝑝𝑟 of being wrong). The lower 𝑓 𝑝𝑟 is, the better utility is as there

will be a smaller number of false matches identified by matching

the Bloom filter encoded data, but the more space the filter requires.

The false positive probability for encoding 𝑛 elements into a Bloom
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Figure 1: Bloom filter encoding of string values (left) and numerical values (right) [39, 45], and fuzzy matching using Dice-
coefficient similarity function, as described in Section 2.1.

filter of length ℓ bits using 𝑘 hash functions is 𝑓 𝑝𝑟 = (1 − 𝑒−𝑘𝑛/ℓ )𝑘 ,
which is controllable by tuning the parameters 𝑘 and ℓ .

The main feature of Bloom filter encoding that makes it applica-

ble to efficient fuzzymatching of encoded records is that it preserves

the similarity/distance between records in the Bloom filter space

(with a negligible utility loss) [39, 45]. For example, with string

values the 𝑞-grams (sub-strings of length 𝑞) of string values can be

hash-mapped into the Bloom filter 𝑏𝑓 using 𝑘 independent hash

functions [39], while for numerical values, the neighbouring val-

ues (within a certain interval to allow fuzzy matching) of values

can be hash-mapped into the Bloom filter [45]. Fig. 1 illustrates an

example of fuzzy matching of string and numerical values using

Bloom filters [39, 45].

The matching of Bloom filters can be determined by calculating

the similarity value using a token-based similarity function, such

as Jaccard, Dice, or Hamming [48]. For example, Dice-coefficient

similarity metric is calculated for the example pairs of Bloom filter

encoded strings and integers in Fig. 1 as 2 ×
∑(𝑏𝑓1∩𝑏𝑓2 )∑(𝑏𝑓1 )+∑(𝑏𝑓2 ) , where

𝑏𝑓1 and 𝑏𝑓2 are the two Bloom filters. Collision of different elements

being mapped to the same bit position can occur during the hash-

mapping (depending on the parameter setting), resulting in false

positives with matching Bloom filter encoded records. However,

with appropriate parameter settings, Bloom filters have shown to

be successful in providing high matching results while being highly

efficient [35, 39, 45].

The computation complexity of encoding𝑁 = |𝐷 | records, where
𝐷 contains all the records and | · | denotes the size of a given set,

with an average of 𝑛 elements in each record (e.g. 𝑞-grams) using

𝑘 hash functions into 𝑙-length Bloom filters is 𝑂 (𝑛 · 𝑘 · 𝑁 ), the
computation complexity of Bloom filter encoded data matching

is 𝑂 (𝑁 · (𝑁 − 1)) and the communication complexity is 𝑂 (𝑁 · 𝑙).
A variety of indexing/blocking techniques has been proposed in

the literature to reduce the quadratic computation complexity of

linkage and thereby improve the scalability of linkage [49]. The

focus of this work is not on the scalability aspect, but on the utility

aspect of linkage in the absence of labelled data.

2.2 System architecture and threat model
The system architecture of our proposed method for privacy-preser

ving cardinality counting is illustrated in Fig. 2. At each data owner

side, the PII in records are encoded into Bloom filters first and

then perturbed using local differential Privacy. The encoded and

perturbed records from multiple different data owners are sent to a

linkage unit that applies our proposed clustering algorithm on the

Bloom filters such that similar Bloom filters corresponding to the

same individual/patient are grouped into one cluster. The optimal

number of clusters is estimated as the cardinality of records from

multiple databases and reported.

Only the Bloom filters are shared with the linkage unit. Bloom

filter encoding does provide some inherent privacy guarantees

due to the collision of different elements being hash-mapped to

same bits in the Bloom filters, providing uncertainty in decoding.

However, as shown in the recent research, Bloom filters can be

vulnerable to cryptanalysis attacks that map bits to 𝑞-grams or

elements based on the frequency of bits or bit patterns [9, 10]. As

another layer of privacy to provide provable privacy guarantees,

we combine Bloom filter encoding with local differential privacy.

Differential privacy noise is added to the Bloom filters using the

randomized response technique, as will be described in detail in the

following sub-section, in order to make the bits in the Bloom filters

differentially private so that bits cannot be distinguished based

on their presence or frequency information. Further, the linkage

unit is assumed to follow the steps of the system without deviating

or modifying the Bloom filters (i.e. integrity of Bloom filters is

preserved).

2.3 Differential Privacy
Differential privacy [14–16] guarantees for each individual in a

dataset that the probability of any information that could be dis-

covered about an individual with their data in the dataset is similar

to the probability that could be discovered without their data in the

dataset. That is, the output of any query 𝑓 performed on dataset

𝑥 will be indistinguishable from the output of the same query 𝑓

performed on dataset 𝑦, where 𝑦 differs from 𝑥 by at most one

record (the record of any individual). Moreover, it promises that

any supplementary data an adversary might have about the individ-

ual is irrelevant; the adversary is unable to identify any additional

information about an individual from the data regardless of the

auxiliary knowledge about the individual with a high probability.
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Figure 2: An outline of our system model for privacy-
preserving cardinality estimation.

Definition 2.1 (Differential Privacy [14]). A randomized function

A (i.e. a function with a randomized component) is 𝜖-differentially

private if for all measurable subset of outputs 𝑦 ⊆ 𝑅𝑎𝑛𝑔𝑒 (A) and
for all data 𝑥 , 𝑥 ′ ∈ D𝑛

such that | |𝑥 − 𝑥 ′ | |1 ≤ 1:

𝑃𝑟 (A(𝑥) ∈ 𝑦) ≤ 𝑒𝜖 × 𝑃𝑟 (A(𝑥 ′) ∈ 𝑦) . (1)

Local differential Privacy (LDP) is a differential privacy model

developed specifically to provide guarantees such that even if an ad-

versary has access to the personal responses of an individual in the

dataset, the adversary is still unable to learn additional information

about the individual from the personal data with high probabil-

ity [19]. It ensures differential privacy guarantees for each individ-

ual’s inputs by processing (perturbing) the data locally on-device

rather than requiring a trusted data curator/central server [32].

LDP has become the de-facto privacy standard around the world

in recent years, with the technology companies Google and Apple

implementing LDP in their latest operating systems and applica-

tions [1, 17, 26, 34].

Definition 2.2 (Local Differential Privacy [14]). Let A : D → Y
be a randomized algorithm mapping a data entry in D to Y. The
algorithmA is 𝜖-local differentially private if for data entry 𝑥,¬𝑥 ∈
D and all outputs 𝑦 ∈ Y,

𝑃𝑟 (A(𝑥) ∈ 𝑦) ≤ 𝑒𝜖 × 𝑃𝑟 (A(¬𝑥) ∈ 𝑦) . (2)

A widely used mechanism specifically for designing LDP algo-

rithms is the randomized response technique [53]. The primary

idea is that the data owners respond to binary questions (e.g. 0 or 1)

in a randomized manner. Since Bloom filters contain binary infor-

mation (1 or 0), we use randomized response technique to add noise

to Bloom filters such that the Bloom filters are differentially private

and robust against cryptanalysis attacks that exploit the presence

or frequency of bits in the Bloom filters, as will be described in

Section 3.1.

2.4 K-means Clustering
𝑘-means clustering is an unsupervised machine learning algorithm

that groups the unlabelled dataset into different clusters, such that

similar data points or records are grouped into the same cluster

and dissimilar records are grouped into different clusters. It is an

iterative algorithmwhere the clusters are refined over the iterations

by minimizing the sum of distances between the data points and

their corresponding clusters.

Algorithm 1 Privacy-preserving Bloom filter encoding with 𝜖-local
differential Privacy
1: Inputs:

Raw dataset from one data provider: 𝐷 ,

Privacy budget: 𝜖
2: Outputs:

Perturbed Bloom filters: 𝐵′

3: Initialize:
𝐵′ ← Φ

4: for 𝑖 = 1, . . . , 𝑛 |𝐷 | do ⊲ Do for each record in raw dataset

5: 𝑏𝑓𝑖 = encode(record𝑖 ) , record𝑖 ∈ 𝐷
6: for 𝑗 = 1, . . . , ℓ do ⊲ For each bit in the Bloom filter

7: 𝑏𝑓 ′𝑖 ← ∅
8: 𝜂 = 1

1+𝑒𝜖
9: 𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚[0, 1]
10: if 𝑝 ≤ 𝜂 then ⊲ flip 𝑏 𝑗 with probability 𝜂

11: 𝑏′𝑗 = 𝑏 𝑗

12: else
13: 𝑏′𝑗 = 1 − 𝑏 𝑗

14: end if
15: 𝑏𝑓 ′𝑖 = 𝑏𝑓 ′𝑖 ∪ 𝑏′𝑗
16: end for
17: 𝐵′ = 𝐵′ ∪ 𝑏𝑓 ′𝑖
18: end for

The value for the number of clusters (𝑘) needs to be pre-determined.

Choosing the optimal number of clusters is a challenging task. The

Elbow method is one of the common ways to find the optimal num-

ber of clusters, which uses the inter/intra cluster distances that can

be measured, for example, using Silhouette Coefficient score and

Calinski-Harabasz score to evaluate and fine-tune the parameter

𝑘 [5, 13, 36, 52].

The Silhouette Coefficient score is calculated for each data point

𝑑 as
(𝑦−𝑥 )

𝑚𝑎𝑥 (𝑥,𝑦) , where 𝑥 is the mean intra-cluster distance of which

𝑑 corresponds to, and 𝑦 is the mean nearest-cluster distance.

The elbow method executes the 𝑘-means clustering on a given

dataset for different 𝑘 values, and for each value, it calculates the

inter/intra cluster distances, for example, using the Silhouette score.

Plotting a curve between the Silhouette score and 𝑘 provides a

sharp point of bend (a point of the plot looks like an elbow), which

is considered as the best value for 𝑘 .

3 METHODOLOGY
In this section, we describe our proposed method for privacy-

preserving distinct-counting of individuals/entities from multiple

different databases. Our method consists of two main modules: 1)

data encoding and 2) linkage and clustering. The former is con-

ducted at the local data owner side, and the latter is conducted by

the central linkage unit.

3.1 Data encoding
Data providers encode their datasets into Bloom filters, one Bloom

filter per record. The PII in each of the records are hash-mapped

into one record-level Bloom filter per record, as described in Sec-

tion 2.1. Then, the Bloom filters are perturbed using the randomized

response method to make the Bloom filters differentially private.

Randomized response method is utilized to provide 𝜖-local differen-

tial privacy (LDP) guarantees by flipping each bit in the Bloom filter

of encoded records locally by the data providers with probability
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𝜂 = 1

1+𝑒𝜖 . Then, the perturbed Bloom filters are sent to the linkage

unit for linking and clustering.

Definition 3.1 (Adjacent Bloom filters). Adjacent Bloom filters are

two Bloom filters 𝑏𝑓 and 𝑏𝑓 ′ of length ℓ bits that differ by only one

bit position, i.e. ∀𝑖,1≤𝑖≤ℓ 𝑎𝑛𝑑 𝑖≠𝑗𝑏𝑖 = 𝑏′
𝑖
𝑎𝑛𝑑 𝑏 𝑗 ≠ 𝑏′

𝑗
.

Lemma 3.2 (𝜖-LDP for Bloom filters). Flipping the bits in Bloom
filters with 1

1+𝑒𝜖 probability makes the bits in the Bloom filters 𝜖-local
differentially private.

Proof. Let us assume two adjacent Bloom filters 𝑏𝑓 and 𝑏𝑓 ′

of two records, each containing ℓ bits that differ in only one bit

position 𝑗 . Let A : {0, 1}ℓ → {0, 1}ℓ be a random noise function

such that A(𝑖) = 𝑖 with probability
𝑒𝜖

1+𝑒𝜖 , and A(𝑖) = 1 − 𝑖 with
probability

1

1+𝑒𝜖 , where 𝑖 ∈ {0, 1}.
This gives us the expression:

𝑃𝑟 [A(𝑏𝑓 , 𝜖) = 𝑣]
𝑃𝑟 [A(𝑏𝑓 ′, 𝜖) = 𝑣] =

ℓ∏
𝑖=1

𝑃𝑟 [A(𝑏𝑖 ) = 𝑣𝑖 ]
𝑃𝑟 [A(𝑏′

𝑖
) = 𝑣𝑖 ]

(3)

Note that any two adjacent Bloom filters 𝑏𝑓 , 𝑏 𝑓 ′ ∈ {0, 1}ℓ can
only differ in one bit position. Without loss of generality, let us

assume that the differing bit position is the first bit position ( 𝑗 = 1)

in the two Bloom filters, i.e. 𝑏1 ≠ 𝑏′
1
and 𝑏𝑖 = 𝑏′

𝑖
with 2 ≤ 𝑖 ≤ ℓ .

This simplifies the ratio in (3) by considering only the first bit

position.

𝑃𝑟 [A(𝑏𝑓 , 𝜖) = 𝑣]
𝑃𝑟 [A(𝑏𝑓 ′, 𝜖) = 𝑣] =

𝑃𝑟 [A(𝑏 𝑗 ) = 𝑣 𝑗 ]
𝑃𝑟 [A(𝑏′

𝑗
) = 𝑣 𝑗 ]

, (4)

where 𝑗 = 1. This ratio is maximized when 𝑗𝑡ℎ bit position is flipped

in only one of the two Bloom filters (maximum ratio).

𝑒−𝜖 ≤ 𝑃𝑟 [A(𝑏𝑓 , 𝜖) = 𝑣]
𝑃𝑟 [A(𝑏𝑓 ′, 𝜖) = 𝑣] ≤

𝑒𝜖

1+𝑒𝜖
1

1+𝑒𝜖
≤ 𝑒𝜖 (5)

Bounding the above ratio, we get

−𝜖 ≤ ln

(
𝑃𝑟 [A(𝑏𝑓 , 𝜖) = 𝑣]
𝑃𝑟 [A(𝑏𝑓 ′, 𝜖) = 𝑣]

)
≤ 𝜖 (6)

□
By making the bits in the Bloom filters differentially private, we

make them robust against cryptanalysis attacks based on sensitive

bits [9]. The Bloom filter encoding function with local differential

privacy is outlined in Algorithm 1. The local differentially private

Bloom filters of records are then sent to the linkage unit for clus-

tering and calculating the unique individual counts based on the

number of clusters. At the linkage unit, clustering algorithm is

used, as will be described in detail in the following sub-section, to

link and group records which are likely to correspond to the same

entity into the same cluster. The number of clusters is the number

of unique individuals across multiple datasets from different data

providers.

The perturbed Bloom filters are generated by randomly flipping

each bit in the Bloom filters with the probability 𝜂 = 1

1+𝑒𝜖 . The
Euclidean distance between an original Bloom filter 𝑏𝑓 and its

perturbed Bloom filter 𝑏𝑓 ′ is:

Figure 3: Probability of 𝑏𝑓 and 𝑏𝑓 ′ being grouped into the
same cluster versus privacy budget 𝜖 in Equation (8), with
cluster size 𝑟 ∈ [0.005, 0.010, 0.015, 0.020, 0.025, 0.030], and ℓ =

200.

bf1

bf1’,ε=8.0

bf1’,ε=2.0

r=0.005

r=0.03

bf2

bf2’,ε=8.0

bf2’,ε=2.0

r=0.04

Figure 4: Bloom filters belonging to the same entity being
grouped into the same cluster versus privacy budget 𝜖, with
cluster size 𝑟 ∈ [0.005, 0.030, 0.040], and ℓ = 200.

∥𝑏𝑓 , 𝑏 𝑓 ′∥2 =

√√√
ℓ∑︁

𝑖=1

(𝑏𝑖 − 𝑏′𝑖 )2, (7)

where ℓ is the length of a Bloom filter, 𝑏𝑖 is the 𝑖
𝑡ℎ

bit in original

Bloom filter 𝑏𝑓 and 𝑏′
𝑖
is the 𝑖𝑡ℎ bit in its perturbed Bloom filter 𝑏𝑓 ′.

The value of ∥𝑏𝑓 , 𝑏 𝑓 ′∥2
2
follows Binomial Distribution, which can be

approximated to the Normal Distribution with a large number of ℓ

and a probability 𝜂, ∥𝑏𝑓 , 𝑏 𝑓 ′∥2
2
∼ 𝑁 (𝜇, 𝜎2), 𝜇 = ℓ𝜂, 𝜎 =

√︁
ℓ𝜂 (1 − 𝜂).

Assume if the Euclidean distance ∥𝑏𝑓 , 𝑏 𝑓 ′∥2 is less than a constant

integer value (threshold) 𝑟 ∈ [0, ℓ], then the original Bloom filter

and the perturbed Bloom filter are grouped into same cluster. The

probability of 𝑏𝑓 and 𝑏𝑓 ′ being classified as the same entity is:

𝑃 (∥𝑏𝑓 , 𝑏 𝑓 ′∥2 ≤ 𝑟 ) = 𝑃
©«
√√√

ℓ∑︁
𝑖=1

(𝑏𝑖 − 𝑏′𝑖 )2 ≤ 𝑟
ª®¬ (8)

=
1

2

+ 1

2

erf

(
𝑟2 − ℓ𝜂√︁
2ℓ𝜂 (1 − 𝜂)

)
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Figure 5: Minimum inter-cluster distance of Bloom filters
versus privacy budget 𝜖, ℓ = 200.

As shown in Fig. 3, with the increasing privacy budget 𝜖 , the

probability to flip bits 𝜂 decreases (less noise) and thus the proba-

bility of 𝑏𝑓 and 𝑏𝑓 ′ being grouped into the same cluster increases.

With a larger value of threshold 𝑟 , a smaller value of privacy budget

is required to keep 𝑏𝑓 and 𝑏𝑓 ′ in the same cluster. There is a trade-

off between privacy budget 𝜖 and distance between Bloom filters

𝑏𝑓1 and 𝑏𝑓2 from two unique persons as illustrated in Fig. 4. If 𝜖 is

small, for example 𝜖 < 2, 𝑏𝑓 ′
1
and 𝑏𝑓 ′

2
are grouped into same cluster.

If 𝑟 is too large, the outlayers of 𝑏𝑓1 and 𝑏𝑓2 are overlapped. There-

fore, it is a challenge to group Bloom filters from the same entity

into unique clusters while to ensure Bloom filters from different

entities are grouped into different clusters.

3.2 Unsupervised clustering
With the noisy encoded Bloom filters from different data providers

as input to the linkage unit, a clustering algorithm is used to group

similar Bloom filters into clusters. Due to privacy constraints, it

is not trivial to generate labelled data to train a supervised ma-

chine learning algorithm for cardinality estimation in the privacy-

preserving context. Hence an unsupervised clustering algorithm is

used to do the clustering without training labels, such as 𝑘-means

clustering or Hierarchical clustering. In addition, Elbow methods

with inter and/or intra-cluster distance metrics like Silhouette Score

and Calinski-Harabasz score are used in the literature to find the

optimal number of clusters 𝑘 in 𝑘-means clustering [5, 13, 36, 52].

Ideally, the optimal value 𝑘∗ for number of clusters needs to be de-

termined based on the quality of clusters generated, such as purity

and completeness of clusters.

Definition 3.3 (Purity of clusters). A cluster 𝑐 is pure if all the

records 𝑟 ∈ 𝑐 are similar to each other, i.e. belong to the same

cluster.

Definition 3.4 (Completeness of clusters). A cluster 𝑐 is complete

if all records in the dataset 𝐷 that are similar to the cluster center

of 𝑐 are grouped into 𝑐 .

However, the traditional Elbow methods are far from accurate

due to the limitation of data distribution, impurity, incompleteness

and uncertainty of generated clusters, as will be validated by our

experimental results in Section 4. Therefore, we propose a new

algorithm to find the optimal 𝑘 value in the unsupervised 𝑘-means

clustering.

Algorithm 2 Linking and clustering records for cardinality counting
1: Inputs:

Encoded noisy datasets from N multiple data providers: 𝐵′𝑖 ,
𝑖 ∈ [1,N],
Number of reference Bloom filters: 𝑛ref ,

Number of dummy Bloom filters for each reference Bloom filter:

𝑛dum ,

Flipping probability for generating dummy records for reference

Bloom filters: 𝑝flip
2: Outputs:

𝑘∗

3: for 𝑖 = 1, . . . , 𝑛ref do
4: Create a reference Bloom filter 𝑏𝑓ref,i ⊲ obtained from either Method A or B

5: 𝐵ref = 𝐵ref ∪ 𝑏𝑓ref,i
6: for 𝑗 = 1, . . . , 𝑛dum do
7: Create dummy record 𝑏𝑓ref,dum,j

8: 𝐵ref,dum = 𝐵ref,dum ∪ 𝑏𝑓ref,dum,j

9: end for
10: end for
11: 𝑋 = 𝐵ref + 𝐵ref,dum +

∑N
1
𝐵′𝑖 ⊲ X is the training dataset

12: for 𝑘 = 1, . . . , 𝑛 |𝐷 | do
13: 𝑘,𝑋 → k-means and train

14: Obtain purity𝑖 , ∀𝑖 ∈ [1, . . . , 𝑛ref ] by Equation (9)

15: purity𝑘 =
∑𝑛

ref

𝑖=1
purity𝑖

16: end for
17: 𝑘∗ = argmax𝑘 purity𝑘

A set of reference Bloom filters with known training labels is

generated to evaluate the clustering performance. Our proposed

clustering algorithm first generates random Bloom filters or ran-

domly selects a subset of Bloom filters as reference Bloom filters,

and then generates corresponding dummy Bloom filters for each

reference Bloom filter. The reference Bloom filters can be generated

in two methods:

• Method A: randomly creates a number of fake Bloom filters

following a uniform distribution.

• Method B: selects a subset of all Bloom filters from the dif-

ferent data providers.

As shown in Fig. 5, the distribution of reference Bloom filters

generated by Method B follows a similar distribution as the original

encoded Bloom filters with LDP noise. It is noted that when the

privacy budget is too small 𝜖 < 1.0, the data distribution of reference

Bloom filters with pure noise generated by Method A is similar to

the distribution of the encoded Bloom filters with LDP noise.

For each reference Bloom filter 𝑏𝑓
ref
, a number of dummy Bloom

filters 𝑏
ref,dum𝑖

, 𝑖 ∈ [1, 𝑛
dum
] are then generated by randomly flip-

ping each bit in reference Bloom filter 𝑏𝑓
ref

with the flipping prob-

ability 𝑝
flip

. A larger 𝑝
flip

means generating dummy Bloom filters

that are far from the reference Bloom filters, while a too small 𝑝
flip

might mean generating not a diverse set of Bloom filters to fine-

tune the model. It is important to note that the reference Bloom

filters from which the linkage unit generates these dummy Bloom

filters are either already differentially private or fake Bloom filters

(methods B and A, respectively), and hence they would not reveal

any information about the original Bloom filters.

The aim of these reference and dummy Bloom filters is to provide

some form of labelled data to fine-tune and evaluate unsupervised

clustering techniques. In real applications, like rare disease patient

records linking, ground-truth data is not available and/or accessible

due to privacy constraints. Current methods to evaluate and choose
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the optimal number of clusters 𝑘 in unsupervised clustering tech-

niques, like 𝑘-means clustering, are based on the inter and intra

similarities/distances between generated clusters, which do not

provide an accurate method to evaluate how pure and complete are

the generated clusters.

Our proposed method checks whether the reference Bloom fil-

ters are grouped with their corresponding dummy Bloom filters to

evaluate the optimal 𝑘 in the 𝑘-means clustering algorithm. Each

Bloom filter is classified into a cluster with a label 𝑐 ∈ [0, 𝑘 − 1]. In
order to evaluate the clustering quality and find the best optimal 𝑘 ,

we introduce a new purity function for each reference Bloom filter

𝑖 at cluster 𝑐:

purity𝑖 =
𝑛𝑖,dum,𝑐

𝑛𝑖,dum + 𝑛𝑐 − 1 − 𝑛𝑖,dum,𝑐

, (9)

where 𝑛𝑖,dum,𝑐 is the number of dummy records for 𝑖𝑡ℎ reference

Bloom filter that are grouped in the same cluster with label 𝑐 , 𝑛𝑐
is the number of Bloom filters that are grouped into the cluster

with label 𝑐 , 𝑛𝑖,dum is the total number of dummy records for 𝑖𝑡ℎ

reference Bloom filter. This purity function measures how accurate

the clustering is in terms of grouping all the dummy Bloom filters

of each reference Bloom filter into the same cluster as the reference

Bloom filter.

Based on this purity function, we calculate the purity of all

reference Bloom filters with different values of 𝑘 , and then find the

optimal 𝑘 using the Elbow method with the purity score. Current

Elbow methods use silhouette score [36] or Calinski-Harabasz [5].

Our proposed clustering method is outlined in Algorithm 2.

The optimal clustering outcome is subject to:

∥𝑏𝑓𝑖 , 𝑏 𝑓 ′𝑖 ∥2 ≤ 𝑟,∀𝑖 ∈ [1, . . . , 𝑛 |𝐷 | ], (10)

∥𝑏𝑓𝑖 , 𝑏 𝑓𝑗 ∥2 > 𝑟,∀𝑖, 𝑗 ∈ [1, . . . , 𝑛 |𝐷 | ], 𝑖 ≠ 𝑗 . (11)

where 𝑛 |𝐷 | is the size of all input datasets, 𝑏𝑓𝑖 and 𝑏𝑓𝑗 belong to

any two unique entities in the dataset, and 𝑏𝑓𝑖 and 𝑏𝑓
′
𝑖
belong to

the same individual in the dataset. In the ideal case, the Bloom

filters corresponding to the same individual are grouped into the

same cluster, while the Bloom filters corresponding to two different

individuals are grouped into different clusters.

4 EXPERIMENTAL EVALUATION
In this section we present and discuss the results of experimental

study of our proposed method.

Datasets: We used three sets of datasets extracted from the North

Carolina Voter Registration (NCVR) database
1
. This database con-

tains records of voters in the North Carolina State, USA. Ground-

truth is available based on the voter registration identifiers to eval-

uate the accuracy of our proposed cardinality estimator in our

experiments. We used given name (string), surname (string), sub-

urb (string), postcode (string), and gender (categorical) attributes as

PII for the linkage. The ground-truth cardinality is 171 in all three

sets of datasets, i.e. the datasets contain records corresponding to

171 unique voters.

The first set contains duplicate records of the same person with

no modified or corrupted PII values. The second set contains dupli-

cate records with modified or corrupted PII values (20% of records)

1
Available from http://dl.ncsbe.gov/data/

to reflect real-world data errors and variations, while the third set

contains highly corrupted PII values (40% of records) to evaluate

how real data errors impact the accuracy of cardinality estima-

tion. We used the GeCo tool [44] to generate the synthetically cor-

rupted/modified duplicate records. We applied various corruption

functions from the GeCo tool [44] on randomly selected attribute

values, including character edit operations (insertions, deletions,

substitutions, and transpositions), and optical character recognition

and phonetic modifications based on look-up tables and corruption

rules [44]. We implemented the prototype of our proposed algo-

rithm in Python 3.5.2, and ran all experiments on a server with four

2-core 64-bit Intel Core I7 2.6 GHz CPUs, 8 GBytes of memory and

running Ubuntu 16.04. The programs and test datasets are available

from the authors.

Baseline method: We compare our methods with the baseline

Elbow method that uses the silhouette coefficient metric [36] to

find the optimal number of clusters. We do not compare with other

existing cardinality estimators as they do not allow fuzzy match-

ing for counting the cardinality and hence do not provide a fair

comparison. The accuracy of count estimation is measured using

the estimation error and error rate, i.e. the difference between true

count and estimated count and rate of error. Privacy is measured

using the privacy budget 𝜖 .

Parameter setting: Default parameter setting for the Bloom filter

encoding is 𝑞 = 2 for strings, length of Bloom filters is ℓ = 200,

and the number of hash functions is 20. Privacy budgets used are

𝜖 = [1.0, 2.0, 3.0, 4.0, 5.0, 10.0]. It is important to note that, un-

like with central differential privacy, with local differential pri-

vacy achieving a high utility with a very small privacy budget

(≤ 1) is non-trivial. When 𝜖 = 0.1, almost 50% of the bits in the

Bloom filters need to be flipped, which makes the Bloom filters

completely non-informative. Other local differential privacy algo-

rithms proposed, for example by Google for RAPPOR statistics and

Apple for mobile usage statistics [1, 17], also use 𝜖 in the range

of 𝜖 ∈ [1.0, 2.0, 4.0, 6.0, 8.0]. 𝜖 = 10.0 is used as a baseline with no

privacy guarantees. For the clustering algorithm, the default refer-

ence Bloom filters pick ratio used is 0.1, the default dummy/noisy

Bloom filter ratio is set to 0.1, and the flipping probability for the

dummy/noisy Bloom filters is used in the range [0.10 − 0.30], with
a step of 0.01. We vary the flipping probabilities in the dummy

Bloom filters and evaluate the 𝑘 value and error rate as it impacts

the quality of clustering depending on the data quality and privacy

budget. We ran each of the experiments 50 times and reported the

average results.

Discussion: We first compare the optimal 𝑘 value (𝑘∗) provided
by our algorithm with the ground-truth cardinality and evaluate

the error in estimation with different flipping probabilities used

in the clustering algorithm on the records encoded with different

privacy budgets. The results of our methods (Method A and Method

B) compared with the baseline method on the clean dataset are

shown in Fig. 6. As shown, the ground-truth cardinality is 171.

When 𝜖 = 1.0, 26% of bits are flipped in the Bloom filters, which

means 52 out of 200 bits are flipped making most of the Bloom

filters unique. Hence, the estimated cardinality by Method A is

200, leading to an error of 29. Even when the flipping probability
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Figure 6: Estimated cardinality (𝑘 value) of Method A and Method B with different flipping probabilities compared with the baseline
method [36] on the clean datasets with 𝜖 ∈ [1.0, 2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom filters pick ratio is 0.1 and dummy Bloom filters ratio
is 0.1 in these experiments.

Figure 7: Error rate of cardinality estimation of Method A and Method B with different flipping probabilities compared with the baseline
method [36] on the clean datasets with 𝜖 ∈ [1.0, 2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom filters pick ratio is 0.1 and dummy Bloom filters ratio
is 0.1 in these experiments.

in dummy Bloom filters reduces to 0.0, the estimated cardinality

remains constantly as 200 with Method A. Compared to Method A,

Method B has better performance in terms of smaller error of 7. The

reason is that Method B selects a subset of real Bloom filters from

all data providers as the reference Bloom filters, whereas Method

A randomly generates fake Bloom filters as reference Bloom filters.

With privacy budgets larger than 1.0 the error in estimation

becomes 0.0 for smaller flipping probabilities, i.e. the optimal 𝑘

becomes equal to the ground-truth with both our methods. With

increasing 𝜖 , zero or smaller error can be achieved even with larger

flipping probabilities. When 𝜖 = 10.0, zero error is achieved with

the estimation for flipping probabilities up to 0.15. However, as can

be seen, the baseline method’s estimated cardinality (optimal 𝑘) is

far from the ground truth value with all privacy budgets, even with

larger 𝜖 . Our methods significantly outperform the baseline method

by providing the optimal 𝑘 value equal or closer to the ground truth

value leading to smaller or zero error rate on all datasets. Error
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Figure 8: Estimated cardinality (𝑘 value) of Method A and Method B with different flipping probabilities compared with the baseline
method [36] on the corrupted datasets with 𝜖 ∈ [1.0, 2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom filters pick ratio is 0.1 and dummy Bloom filters
ratio is 0.1 in these experiments.

Figure 9: Error rate of cardinality estimation of Method A and Method B with different flipping probabilities compared with the baseline
method [36] on the corrupted datasets with 𝜖 ∈ [1.0, 2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom filters pick ratio is 0.1 and dummy Bloom filters
ratio is 0.1 in these experiments.

rates are shown in Fig. 7. These results show the accuracy of our

methods compared to the baseline method.

Given the global and distributed nature of the data provider net-

work, we expect inconsistencies in the PII attributes among others.

We hence evaluate our proposed methods on corrupted datasets

to validate the effectiveness of our methods with inconsistent and

low quality data. The estimated cardinalities of Method A and

Method B for different flipping probabilities and different privacy

budgets compared with the baseline method on corrupted datasets

are shown in Fig. 8, and the error rates in estimations are shown in

Fig. 9. Both Method A and Method B perform mostly similar on this

dataset and achieved similar error rates in cardinality estimation.

Since the datasets are already corrupted, random generation of

reference Bloom filters and sampling a subset of corrupted records’

Bloom filters do not make significant difference with these datasets.

As can be seen in the results, optimal 𝑘 with a very small error rate

closer to 0.0 can be found with both methods, and with increasing

𝜖 , optimal error rates of 0.0 (for smaller flipping probabilities) are
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Figure 10: Estimated cardinality (𝑘 value) of Method A and Method B with different flipping probabilities compared with the baseline
method [36] on the highly corrupted datasets with 𝜖 ∈ [1.0, 2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom filters pick ratio is 0.1 and dummy Bloom
filters ratio is 0.1 in these experiments.

Figure 11: Error rate of cardinality estimation of Method A and Method B with different flipping probabilities compared with the baseline
method [36] on the highly corrupted datasets with 𝜖 ∈ [1.0, 2.0, 3.0, 4.0, 5.0, 10.0]. The reference Bloom filters pick ratio is 0.1 and dummy Bloom
filters ratio is 0.1 in these experiments.

achieved. We can observe that achieving a high utility in terms

of lower error rate with a small budget becomes challenging with

data with errors and variations compared to clean datasets. How-

ever, our methods significantly outperform the baseline method

and still be able to achieve a small optimal error rate < 0.02. For

example, when 𝜖 = 3.0, our methods have an optimal error rate of

0.02 when the flipping probabilities are less than 0.175, while the

Elbow method with silhouette coefficient metric has an error rate

of 0.26.

Generally, as expected for larger 𝜖 (e.g. 𝜖 ≥ 3.0), with increasing

flipping probabilities the error rate increases as well. On the other

hand, with smaller 𝜖 (≤ 2.0), more differential privacy noise is

added to Bloom filters, and hence, larger flipping probabilities might

mean that the added noise in the Bloom filters is reduced, leading to

smaller error ratewith larger flipping probabilities. This is especially

the case with corrupted datasets. Hence, depending on the data

quality level and privacy budget, an appropriate flipping probability

can be chosen to get the best performance. Optimising the flipping
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probability based on the privacy and data quality constraints is left

as a future work.

We finally evaluate the performances on highly corrupted datasets.

The results for Method A and Method B are shown in Fig. 10 and

Fig. 11. Similar to corrupted datasets, both methods provide similar

error rates with Method B being slightly better in terms of achiev-

ing optimal lower error rates for smaller 𝜖 than Method A. As can

be seen, achieving a small error rate is even more challenging with

these highly corrupted datasets compared to corrupted datasets.

Our methods still achieve a small error rate, for example less than

0.05 with 𝜖 = 3.0 in the presence of data errors and variations,

whereas the baseline Elbow method achieves 0.8 error rate. Pro-

viding a higher error rate even when no differential privacy noise

(𝜖 = 10.0) is added indicates the ineffectiveness of the baseline

method. Our methods can achieve a very small error rate even

with a small privacy budget and on highly corrupted datasets by

fine-tuning the flipping probability parameter depending on the

privacy and data quality constraints.

5 RELATEDWORK
Different approaches have been proposed to estimate the cardinal-

ity of multiple sets, as surveyed in [28]. The naive approach of using

a bitmap of size of the universe, where all the bit positions are ini-

tialized to 0 and each item is assigned with a number and therefore

corresponding bit position in the bitmap is set to 1 whenever an

item is observed, is not feasible. Sorting is used as another tradi-

tional method where the items are sorted to eliminate duplicates in

the sets [54]. However, sorting is an expensive operation for large

sets. Hashing allows de-duplication of sets in one pass over the sets

without sorting them, however, it requires more memory space.

While these methods allow calculating the exact cardinality of

sets, they are not only expensive in terms of both memory size and

runtime, but also are not effective with real data that contain data

errors, typos, and variations. Fuzzy matching for record linkage

methods have been investigated [8]. A Bloom filter is a probabilistic

data structure used for efficiently checking set membership [4].

This can be used for fuzzy matching problem [33, 47] effectively

with appropriate parameter settings for the Bloom filter [35, 39, 45].

Another general approach is sampling [20, 22, 27] which assumes

that the sample generally reflects the properties of the whole. En-

suring true randomness is a difficult task, so the success of random

sampling may be limited by the selection process and/or the proper-

ties of the data itself. Haas et al. [27] showed that almost all the data

need to be sampled in order to bound the estimation error within

a small constant, which reflects the problem with sampling-based

approaches.

Employing other types of probabilistic data structures, such

as Sketches and HyperLogLog, is used as an efficient and effec-

tive method in several cardinality estimation algorithms. A fam-

ily of such algorithms are developed by Flajolet and Martin [23].

HyperLogLog is one of these algorithms that have widely been

used in many applications and research [2, 7, 43]. Several recent

works have studied privacy-preserving cardinality estimators us-

ing probabilistic data structures combined with differential privacy.

Randomized response-based differentially private algorithms for

Bloom filters [42], FM-sketch [50], and K Minimum Values (KMV)-

based sketch [41] have been developed. A recent work has shown

that cardinality estimators, such as HyperLogLog and Sketches, do

not preserve privacy without impacting the utility to a significant

level [12]. Further, none of these works allow fuzzy matching to

count the cardinalities, making the cardinality estimators not robust

or tolerant to data errors and variations in the duplicate records.

A long line of research has been conducted in privacy-preserving

fuzzy matching and linkage over the past three decades, as surveyed

in [24, 48, 49]. While machine learning-based techniques show

promising results in terms of high linkage quality, these are often

supervised, i.e. they are dependant on significantly large training

data and the existence of ground-truth labels. Only few unsuper-

vised techniques have been developed for linkage [11, 29, 37, 46].

However, most of these techniques either do not consider privacy

constraints or are not capable of fine-tuning/optimising the cluster-

ing performance due to unlabelled data.

6 DISCUSSION, LIMITATIONS AND FUTURE
WORK

In this paper we have addressed the problem of privacy-preserving

cardinality estimation of individuals/entities represented by records

from multiple databases. Our proposed method uses Bloom filter

encoding with local differential privacy to encode the data and

unsupervised clustering to fuzzy link records and calculate the

optimal number of clusters as the cardinality of unique individuals.

We propose a novel method to calculate the optimal number of

clusters in the absence of ground-truth labels of matching and non-

matching records, which is often the case with privacy-preserving

applications. Our experimental results show that, compared to the

baseline Elbow method, our method can achieve a high accuracy

of cardinality estimation even on corrupted records with a small

privacy budget.

In the future, we aim to apply our proposed algorithm for the rare

disease patient counting application. Rare disease patient counting

application involves small-scale datasets as the number of patients

with rare disease is generally small – most rare diseases often have

10, 100 or just 1000 patients spread across the world. However, ex-

perimenting on large datasets for other applications of cardinality

estimation and improving the scalability to large databases is one

important future work. Moreover, optimising the flipping probabil-

ity constrained on the level of data quality and privacy budget is yet

to be investigated and implemented in our algorithm. Our proposed

𝜖-local differentially private algorithm provides robustness against

cryptanalysis attacks on Bloom filter encodings. Evaluating the

robustness of the linkage algorithm to other types of attacks, such

as membership inference attacks or adversarial attacks is left as an

important future work. Finally, facilitating real-time counting and

efficient dynamic updates without requiring to re-do clustering is

an important yet challenging research direction.
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