# Lexical access in primary school-aged children with hearing loss: voicing and place of articulation contrasts



**UNIVERSITY** 

W



# Background

- In spoken-word recognition:
  - words that partially match the speech signal are activated
  - when these lexical competitors no longer match, they are deactivated
- Compared to normal hearing (NH) adults, postlingually deafened adults using cochlear implants (CIs) may:
  - experience more and longer activation of lexical competitors activate target words more slowly and hesitantly [e.g., 1,2]
- Some evidence that child CI users also experience more lexical competition than those with NH [3].
- Not much known about these processes in listeners with hearing aids (HAs).
- Perception of voicing and in particular place of articulation (PoA) contrasts seems especially hard for listeners with hearing loss (HL) [e.g., 4].

# **Research Questions**

- How do difficulties perceiving voicing and PoA contrasts affect spoken-word recognition in children with HL?
- In particular, how do they affect:
  - the time course of lexical activation and competition?
  - the effort expended during spoken-word recognition?

## Method

**Participants**: 29 monolingual Australian English-speaking children:

- 9 with HL (6 bilateral HAs, 1 CROS aid, 2 bilateral CIs; 3F, 6M), mean age 10;5 years (SD = 1;5)
- 20 with NH (9F, 11M), mean age 10;7 years (SD = 1;2)

**Procedure**: visual-world eyetracking paradigm with concurrent pupillometry

#### **Dependent measures**:

- response accuracy
- response time
- fixation proportions
- baseline-corrected pupil dilation



#### Stimuli:

- 72 spoken CVC words embedded in a carrier phrase
- visual displays containing two minimal pairs:
  - pair 1: target (e.g., cup) & onset competitor (e.g., cub)
  - pair 2: two distractors (e.g., head and bed)

#### Within-subject variable: type of minimal pair contrast

- voicing or PoA contrast between plosives (36 experimental trials)
- plosive contrasted with non-plosive (36 control trials)

# Laurence Bruggeman<sup>1,2</sup> and Katherine Demuth<sup>2</sup>

<sup>1</sup>The MARCS Institute for Brain, Behaviour and Development, Western Sydney University & ARC Centre of Excellence for the Dynamics of Language; <sup>2</sup> Department of Linguistics, Macquarie University L.Bruggeman@westernsydney.edu.au

# Predictions

- Compared to those with NH, children with HL will have
  - lower accuracy & higher RT
  - slower target fixations and more/longer competitor fixations
  - greater baseline-corrected pupil dilation
- These differences will be greater in experimental than in control trials

# **Analysis and Results**

### Accuracy and RT (Figure A)

- Generalized linear mixed models
- Accuracy: effect of group & contrast type
- RT: effect of contrast type

### Fixations to target and competitor (Figure B & C)

- Jack-knifed fixation data modelled with logistic curves (targets) and double Gaussian curves (competitors) [5] and estimates retrieved for individual participants' curve parameters [6]
- Linear mixed models on retrieved estimates of slope and maximum amplitude (target fixations) and offset amplitude (competitor fixations)
  - Target slope: effect of group & contrast type
  - Target maximum amplitude: effect of group & contrast type
  - Competitor offset amplitude: effect of group & contrast type

### Pupil dilation (Figure D)

- Measured as percentage change relative to baseline before start of each trial Linear mixed models on height of peak pupil dilation
- Peak height: effect of group & contrast type









- Compared to children with NH, children with HL
- made more mistakes
- experienced more prolonged lexical competition
- fixated target images more hesitantly
- expended more listening effort
- Compared to control trials, voicing and PoA contrasts led to
  - more mistakes
  - slower responses
  - longer interference from lexical competitors
  - more uncertainty in target fixations
  - more listening effort
- - groups of children, but not more so for those with HL
  - possibly due to low participant numbers in HL group

#### Future plans:

- Collect more data once face-to-face testing is possible again
- Examine effect of hearing device type
- Analyse additional collected measures:
- working memory (digit span)
- vocabulary (PPVT-4)
- speech perception (CNC word list)

[1] Farris-Trimble, A., McMurray, B., Cigrand, N., & Tomblin, J. B. (2014). The process of spoken word recognition in the face of signal degradation. Journal of Experimental Psychology: Human Perception *and Performance*, 40, 308-327

[2] McMurray, B., Ellis, T. P., & Apfelbaum, K. S. (2019). How do you deal with uncertainty? Cochlear implant users differ in the dynamics of lexical processing of noncanonical inputs. Ear and Hearing, 40, 961-980.

[3] Schwartz, R. G., Steinman, S., Ying, E., Mystal, E. Y., & Houston, D. M. (2013). Language processing in children with cochlear implants: A preliminary report on lexical access for production and comprehension. Clinical Linguistics & Phonetics, 27, 264-277. [4] Kishon-Rabin, L., Gehtler, I., Taitelbaum, R., Kronenberg, J., Muchnik, C., & Hildesheimer, M. (2002). Development of speech perception and production in children with cochlear implants. Annals of Otology, Rhinology & Laryngology, 111, 85-90. [5] McMurray, B. (2017). Nonlinear curvefitting for Psycholinguistics (Version 24). Retrieved from https://osf.io/4atgv/

[6] Smulders, F. T. Y. (2010). Simplifying jackknifing of ERPs and getting more out of it: Retrieving estimates of participants' latencies. *Psychophysiology*, 47, 387-392.

## Acknowledgements

This study was funded, in part, by ARC Laureate Fellowship [FL130100014] to Katherine Demuth. We thank The Shepherd Centre and the Parents of Deaf Children for assistance with participant recruitment

# ARC CENTRE OF EXCELLENCE FOR THE DYNAMICS OF LANGUAGE

# Discussion

were numerically but not statistically slower to click on the target image

No significant interactions between group and contrast in any analysis voicing and PoA contrasts may make spoken-word recognition harder for both

Re-analyse pupil data using growth-curve analysis or curve fitting

## References