University of Illinois System in HOO Text Correction Shared Task Alla Rozovskaya, Mark Sammons, Joshua Gioja and Dan Roth {rozovska, mssammon,gioja,danr}@illinois.edu

Text Correction Task

The **Text Correction task** addresses the problem of detecting and correcting mistakes in text. This task is challenging, since many errors are not easy to detect.

HOO Text Correction Shared Task

- Writing mistakes made by **non-native** speakers of English.
- Focuses on papers in the **Natural** Language Processing community.

Our Contributions

- We target several common types of errors: articles, prepositions, word choice, punctuation.
- We implement **adaptation techniques** for article and preposition error correction and demonstrate their success.

Adaptation Techniques

- Mistakes made by non-native speakers are systematic.
- Injecting knowledge about typical errors into the system improves its performance significantly.
- In our previous work, we proposed methods to adapt a model to the typical errors using error statistics.
- The preposition and article systems use these methods with additional improvements.

Recognition, and Correction). •Dale and Kilgarriff (2011) give only Recall scores for type-based performance because it is not possible to compute Precision for open-class errors. Since it is easy to obtain high recall by proposing many edits and, similarly, easy to obtain high precision by just proposing no edits, we have done a slightly different evaluation for closed-class errors, articles and prepositions, and present results sorted by F-score.

System Components

Component	Relative Freq.	Targeted Errors	Examples
Artide	18%	Missing/Unnecessary/	Section 5:1 describes the details of None*/the evaluation metrics.
		Replacement	The main advantage of the*/None phoneticalign- ment is that it requires no training data.
Preposition	9%	Replacement	Pseudo-word searching problem is the same to*/as decomposition of a given sentence into pseudo-words.
Word choice	-	Various lexical and grammatical errors	
Punctuation	18%	Missing/Unnecessary	In the thesaurus we incorporate LCS based*/LCS- based semantic description for each verb class.

The column "Relative frequency" shows the proportion of a given error type in the pilot data. The category "Article" is based on the statistics for determiner errors, the majority of which involve articles.

Type-Based Pe	rformance
----------------------	-----------

Team	Run	Detection	Recognition	Correction
JU	0	0.029	0.029	0.029
LI	3	0.048	0.048	0.033
NU	0	0.372	0.368	0.276
UD	-	-	-	
UI	8	0.505	0.505	0.449
UT	1	0.040	0.025	0.025

Articles. For each team, the F-scores for the best run are shown.

Team	Run	Detection	Recognition	Correction
JU	0	0.035	0.035	0.035
	8	0.039	0.039	0.039
NU	0	0.266	0.266	0.168
	5	0.079	0.079	0.000
UI	8	0.488	0.488	0.363
UT	4	0.202	0.202	0.117

Prepositions. For each team, the F-scores for the best run are shown.

•In the overall performance, our system ranked first in all three evaluation metrics (Detection,

Article/Preposition Errors

- Trained on the ACL Anthology corpus
- Features: words and part-of-speech tags in a 4-word window.

• A discriminative learning framework (Averaged Perceptron) in Learning Based Java (Rizzolo and Roth, 2007).

 Adaptation to the typical errors based on the methods proposed in Rozovskaya and Roth (2010, 2011).

Word Choice Errors

- Various context-sensitive confusions: spelling errors, grammatical, and word choice errors.
- A Naïve Bayes classifier trained on the ACL Anthology and the North American News NY Times Text.

Punctuation Errors

• Missing commas: corrected with a set of rules.

• **Misuse of hyphens**: discover automatic rules by extracting mappings between hyphenated and non-hyphenated sequences using n-gram counts computed from the ACL Anthology Corpus.

 $LCSbased \rightarrow LCS$ -based para-linguistics \rightarrow paralinguistics

This research is supported by the U.S. Department of Education and DARPA.