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Abstract

We examine factors impacting on the distribution of retirement wealth outcomes for superan-

nuation portfolios. We focus on the last 10 years prior to retirement as they play an important

role in determining the final wealth outcome for an investor. We evaluate the performance of

different investment strategies for a superannuation portfolio under different scenarios of market

conditions, the initial accumulated value of the portfolio, salary and contribution levels as well

as sequencing risk. We apply parametric and non-parametric techniques to evaluate different

strategies by examining wealth outcomes and risk-adjusted performance measures. Our results

point towards a superior performance of strategies that invest a higher share in growth assets

even when risk-adjusted performance measures are considered. We find that recent data sug-

gests more conservative expectations for terminal wealth. Accumulated wealth 10 years prior

to retirement has a linear effect on terminal wealth, this effect is significant with respect to

other factors such as regimes of high or low volatility. Another factor with high impact is the

presence of a crisis, particularly if it occurs in the beginning. We also find that if contributors

with lower to median income slightly increase their contribution level, they significantly increase

their chances of obtaining a terminal wealth equivalent or higher to the required amount for a

comfortably lifestyle according to ASFA.
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1. Introduction

In recent years, dynamic asset allocation and lifecycle strategies have become increasingly

popular for defined contribution plans in superannuation funds. Such strategies have the ad-

vantage of adjusting the portfolio composition towards the age of retirement. They typically

allow a superannuation member to realign the underlying asset allocation from growth stocks

to more conservative assets and cash as part of retirement planning, once they approach the

retirement age. As pointed out by Chant et al (2014), a key motivation of a lifecycle approach

is to reduce sequencing risk, i.e. to reduce the probability for members to suffer a large loss in

fund value when it matters most near retirement. Since older members most likely rely more

heavily on their superannuation fund, their propensity for bearing risk in that fund will be

reduced.

Traditionally the Australian context of MySuper products has been dominated by Target

Risk Funds (TRFs) for which the weight given to different assets is always constant. In recent

times Target Date Funds (TDFs) have replaced TRFs.TDFs strategies have the advantage of

adjusting the portfolio composition towards the age of retirement and typically switch from

growth to more defensive assets. The adjustment of the portfolio done by TDFs is known as

“set it and forget it”. In recent times other dynamic lifecycle strategies have appeared that

also offer the flexibility to take into account contribution levels, the accumulated value of the

portfolio and current market conditions, see Basu and Drew (2009) and Basu et al. (2009).

There is an ongoing debate in the literature regarding the optimal nature of Lifecycle

strategies. Many authors advocate for the standard approach in which there is a switch from

growth to conservative assets towards the age of retirement. They argue that is too risky to

invest in growth assets in the final years before retirement. However, it has also been argued

that by doing this investors may miss out on the opportunity to maximise their wealth when

the balance is already at a sufficiently high level (Basu and Drew, 2009).

In this study, we examine the impact of a number of key factors on the distribution of

retirement wealth outcomes for superannuation portfolios by focusing on the last 10 years prior

to retirement. We examine the performance of different investment strategies, in particular two

target risk funds (TRFs) strategies with (i) a relatively high, and, (ii) a significantly lower share

in growth assets in comparison to a lifecycle strategy that linearly reduces the share of equity

investments in the portfolio. We evaluate the performance of these investment strategies for a

superannuation portfolio under different scenarios of prevailing market conditions, the initial
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accumulated value of the portfolio, salary and contribution levels as well as sequencing risk. In

our analysis we do not focus only on the expected outcomes for the strategies, but also consider

risk-adjusted measures, for example probabilities of exceeding defined threshold levels such as

e.g. the lump sum required to support a comfortable lifestyle as suggested by the Association

of Superannuation Funds of Australia (ASFA, 2014).

In our analysis we apply both parametric and non-parametric techniques to model and sim-

ulate the returns of different asset classes through time. We also analyse the role of several

factors in determining the final wealth at retirement during the last 10 years of contributions.

Hereby, we examine a wide range of scenarios of market conditions, accumulated values, salar-

ies and salary growth rates as well as interest rates and contribution levels. We then evaluate

retirement wealth outcomes across a number of criteria, including the expected portfolio value

at retirement, the distribution of simulated retirement wealth ratios (RWR) and the probab-

ility of exceeding a number of different threshold values at retirement. The inclusion of risk

related performance measures is fundamental in the analysis of strategies for superannuation

funds, since near retirement superannuation members might become more risk averse and their

willingness to take risks with regards to the final wealth outcome will be reduced.

Our results suggest that even during the last 10 years before retirement, a strategy that

predominantly invests in growth assets outperforms the more conservative target risk fund

strategy. Interestingly, and contrary to common belief, our results also seem to indicate that

the more aggressive TRF strategy tends to outperform a lifecycle investment strategy that

switches from growth to defensive assets over the considered 10 year period. The difference

in performance of the strategies becomes clear when calculating the probability of exceeding

different RWR thresholds. While the conservative TRF and the lifecycle investment strategy

only provide slightly higher probabilities to exceed a minimum RWR threshold, the growth TRF

strategy provides significantly higher expected wealth outcomes and also higher probabilities

with regards to exceeding most of the defined RWR thresholds. However, for extremely risk-

averse superannuation members, the slightly lower tail risk exposure and, therefore, better

outcomes for the portfolio in case of extreme events such as the recent global financial crisis

(GFC) might still justify to invest in lifecycle or more conservative TRF strategies.

Our findings are relatively robust across different scenarios for market returns, contribution

levels, sequencing risk and the initial balance of the superannuation portfolio 10 years before

retirement. The effect of the initial accumulated wealth at the beginning of the last 10 years

3



on the terminal wealth seems to be linear. We find that the effect of volatility and correlation

regimes is very limited whereas the presence of one year of crisis (similar to the GFC) has a

significant impact. We regards to sequencing risk, we find that the effect is higher if the crisis

occurs at the beginning of the 10 year period as it prevents the wealth of the portfolio from

taking off. After testing different contribution levels and salaries we find that increasing a mere

2.5% in the contribution level has significant impacts on the probability of reaching or exceeding

the required amount for a comfortably lifestyle according to ASFA. Our findings suggest that

low income investors should prefer the growth strategy to improve their chances of reaching a

reasonably high balance at retirement.

In order to analyse different strategies and scenarios we consider both the individual assets

as well as their dependence structure. The first models we consider are non-parametric and are

based on historical simulation. For these models we examine different bootstrap and simulation

methods. To analyse the individual assets we fit ARMA-GARCH models to account for the

serial autocorrelation and the stochastic volatility. For the dependence structure amongst

assets we consider a dynamic copula approach and fit several models that take into account the

changing nature of the dependence structure between different asset classes.

Our parametric approach enables us to incorporate factors that affect the final wealth at

retirement. With this approach we aim to provide an adequate analysis of their role. Dynamic

copula models are far more flexible than other parametric models such as the Gaussian distri-

bution. They are able to address the “heavy tailedness” of the data and the changing nature of

the dependence structure of assets in times of economic stress. Examining different models for

dependence, we find that the applied parametric models typically yield similar results. This also

holds for the nonparametric models with the exception of the models that give higher weight

to recent observations, which imply much more conservative expectations about the terminal

wealth of the portfolio.

Overall, this paper helps to provide some guidelines for contributors on the role of key

factors with regards to the value of superannuation portfolios at retirement age.

The remainder of the paper is divided into four sections. In Section 2 we discuss the applied

methodology focusing on both parametric and non-parametric techniques. We review examples

of copula families and describe the estimation of the applied copula. In Section 3 we describe the

fit of the suggested models to the empirical data and provide results on a number of goodness

of fit tests for the applied models. In Section 4 we analyse the performance of three different
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investment strategies as well as the impact of key factors on the distribution of terminal wealth

outcomes for the considered portfolios. Finally, in Section 5 we conclude and suggest future

directions for research.

2. Methodology

This section provides a brief review of approaches that will be used in the empirical analysis

to model the dynamic behaviour of the returns of a superannuation portfolio. We distinguish

between non-parametric and parametric approaches. For the former we apply a standard

bootstrap technique, as well as the block bootstrap and the stationary bootstrap to simulate

the joint returns of the asset classes. For the latter we suggest dynamic copulas in combination

with ARMA-GARCH models for the marginal return series.

2.1. Nonparametric Approaches

The first modelling method selected in this study is a form of block bootstrap simulation,

see Künsch (1989). To illustrate the rationale for this approach let us first consider a standard

bootstrap resampling method. We consider monthly return data from January 1970 to Decem-

ber 2013. In a standard bootstrap the empirical monthly return vector of the asset classes in

the sample are randomly resampled with replacement to generate asset class return vectors for

the entire 10-year investment horizon. Since we randomly draw rows (representing months)

from the matrix of asset class returns, we are able to retain cross-correlation between the asset

class returns as given by the historical data series while assuming that returns for individual

asset classes are independently distributed over time. Because the resampling is done with

replacement, a particular data point from the original dataset can appear multiple times in

a given bootstrap sample. This is particularly important in examining the probability distri-

bution of future outcomes. For example, September, 1987 is the worst month for the stock

market in our 44-year dataset. In this month the log-return from stocks was -54.7%, while

bonds yielded a return of 1%. Although this is only one observation in 44 years worth of data,

i.e. 528 monthly observations, a bootstrap sample of 10 years of monthly returns can include

the return observation for September, 1987 several times in a sequence. Similarly, return ob-

servations for other months, good or bad, can also be repeated a number of times within a

bootstrap sample. Because this method allows for inclusion of extreme return outcomes for a

number of times in a particular simulated 10-year return path, a much wider range of outcomes

is possible. We consider two approaches to this model. In the first approach we assume that
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future scenarios follow a uniform distribution from previous scenarios. In the second approach

we assign different weights to the scenarios. Under this weighting scheme we let the probability

of past returns decline exponentially as we go back in time. Under this model, given a sample

of size n, sorted chronologically, the weight given to the i-th observation is

λn−i(1− λ)

1− λn
, (1)

where 0 < λ ≤ 1 is the weighting parameter. Note that the weight or probability assigned

to the i-th return scenario is λ times the weight assigned to the (i + 1)-tḣ return. Also, when

λ → 1 the weights approach an equal value of 1
n
, for all scenarios, so this is equal to the first

approach. Following similar studies we set λ = 0.995, see e.g. Hull (2012) and Shepperd (2013).

The asset class return vectors obtained by bootstrap resampling are combined with their

respective weighs under each asset allocation strategy to generate portfolio returns for each

month in the 44 year horizon. The simulation trial is iterated a large number of times for

lifecycle strategies.

In spite of being able to capture cross-correlation, a major drawback of this method is its

inability to capture autocorrelation. Because of this in a second model we consider a block

bootstrap in which more than one element of the sample is taken to account for the serial

autocorrelation. The block we consider is two years of data. This means that when a particular

month is sampled a block of two years consisting of the returns for this month and the following

23 months is included, allowing autocorrelations for each asset class to be taken into account.

In these two historical simulation methods we assume that each of the elements of the

sample has the same probability to be sampled. To complement this we also consider an

approach with exponentially declining weights that assigns a higher probability to the more

recent return observations. Models based on historical simulation have the advantage of letting

the data speak for itself by avoiding a parametric assumption; however they do not allow for

returns beyond a level that has been observed historically and, therefore, may underestimate

future extreme events. To overcome this drawback, often a parametric model in combination

with Monte Carlo simulation is used to generate simulation scenarios.

2.2. Parametric Approaches

Traditionally, parametric models for dependence have been based on the assumption of a

multivariate distribution. This assumption restricts not only the dependence structure but
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also the marginal distributions. Further to this, these models generally rely on the correlation

between the series to model dependence. The pitfalls of relying on the correlation coefficient

only when measuring dependence have been extendedly reported in financial literature, see e.g.

Embrechts et al. (1999).

As a response to this, copula functions have been used more recently to quantify dependence

in risk related contexts. These models have the flexibility of modelling the dependence structure

without restricting the marginals, allowing for a separation of the two, see e.g. Nelsen (2006).

In more recent times dynamic copula models have emerged to also account for the changing

nature of dependence structure through time, see e.g. Cherubini et al. (2012).

The use of copula and dynamic copula models have proven to be very effective in modelling

dependence. However, they are based on the assumption of having an independent and identic-

ally distributed random sample, an assumption that is often violated. In order to overcome

this limitation, the application of copulas in combination with models that also account for

heteroscedasticity, such as ARCH and GARCH models, have been suggested, see e.g. Shams

and Haghighi (2013). Our approach is based on a Dynamic Copula model with ARMA-GARCH

innovations and will be described in more detail in the following section.

2.2.1. ARMA-GARCH- Models for Individual Assets

The first step in our model is to find an appropriate model for the marginals. Thus, we

need to estimate the parameters for the conditional mean and conditional variance equations

to account for their stochastic nature. We focus on different ARMA-GARCH specifications for

each of the considered series and abstain from using additional exogenous variables. In order

to avoid overfitting, the best model is chosen based on Akaike’s Information Criterion (AIC)

and the Ljung Box Test p-values. Our model provides more flexibility to modelling conditional

correlations as it involves less complicated calculations in comparison to e.g. the GARCH-

BEKK model by Engle and Kroner (1995). Considering their popularity in the economic and

financial literature, we assume that the variance of the individual series of asset returns can be

modelled by ARMA-GARCH models.

2.2.2. Dynamic Copula Models

A copula is a function that combines marginal distributions to form a joint multivariate

distribution. The concept was initially introduced by Sklar (1959) but has only gained strong

popularity for use in modelling financial or economic variables in the last two decades. For
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an introduction to copulas see e.g. Joe (1997) or Nelsen (2006), for applications to various

issues in financial economics and econometrics, see, e.g. Cherubini et al. (2004), Frey and

McNeil (2003), Patton (2006), just to name a few. As shown by Cherubini and Luciano (2001),

Jondeau and Rockinger (2006), Junker et al. (2006) and Luciano and Marena (2003), the

use of correlation usually does not appropriately describe the dependence structure between

financial assets and this could lead to inadequate risk measurement. Ang and Chen (2002) and

Longin and Solnik (2001) empirically demonstrate that, in general, asset returns are more highly

correlated during volatile markets and during market downturns. Dowd (2004) suggests that

the strength of the copula framework is attributable to not requiring strong assumptions about

the joint distributions of financial assets in a portfolio. Jondeau and Rockinger (2006) and

Patton (2006) illustrate that copulas can be applied, not only directly to the observed return

series but also, for example, to vectors of innovations after fitting univariate GARCH models

to the individual return series. Overall, the use of copulas offers the advantage that the nature

of dependence can be modelled in a more general setting than using linear dependence only.

Copulas also provide a technique for decomposing a multivariate joint distribution into marginal

distributions and an appropriate functional form for modelling the dependence between the

asset returns.

In the following paragraphs we will briefly summarize the basic ideas and properties of

copulas. For a definition of copulas we refer e.g. to Sklar (1959) or Joe (1997). Let X1 and X2

be continuous random variables with distribution functions F1 and F2 and a joint distribution

function. Following Sklar (1959), there exists a function C such that

C(F1(x1), F2(x2)) = F (x1, x2). (2)

This function C is called a copula and denotes a joint cumulative density function (CDF)

of the independent, U˜[0; 1] distribution functions. Moreover, if the marginal distributions F1

and F2 are continuous, the copula function C is unique, see Sklar (1959), and the copula is an

indicator of the dependence between the variables X1 and X2.

The literature suggests a wide range of different copulas, see, e.g., Joe (1997) or Nelsen

(2006) for an overview of the most common parametric families of copulas. In the following we

will limit ourselves to a description of a number of copula families that will be used further on

in the empirical analysis. Among the most commonly used copulas in finance are the Gaussian,
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Student t, Clayton and Gumbel copula.

Probably the most intensively applied copulas in financial applications are the Gaussian and

Student t copula. The Gaussian copula is constructed using a multivariate normal distribution

and is defined as

C(u1, u2) =

Φ−1(u1)∫
−∞

Φ−1(u2)∫
−∞

1

2π
√
|R|

exp

(
−x′R−1x

2

)
dx, (3)

where Φ denotes the standard univariate Gaussian distribution, u = (u1, ..., u2) and x =

(x1, ..., x2)′. The normal copula correlates the random variables rather near the mean and

not in the tails. Therefore, it fails to incorporate tail dependence which can often be observed

in financial data. In order to add more dependence in the tails, alternatively, the Student

t-copula can be applied. The Student t copula is well known as accounting for stylised facts

such as fat tails and the presence of tail dependence, see Joe (1997). The Student t copula

with ν degrees of freedom and correlation matrix R is expressed in terms of integrals of its

corresponding density tν,R.

C(u1, u2) =

t−1
ν (u1)∫
−∞

t−1
ν (u2)∫
−∞

Γ
(
ν+2

2

)
Γ
(
ν
2

)
πν
√
|R|

(
1 +

x′R−1x

ν

)− ν+2
2

dx, (4)

where tν denotes the Student t distribution with ν degrees of freedom.

Both the Gaussian and Student t copula are symmetric. However, often financial variables

are observed to exhibit tail-dependence in only one of the tails, either the upper right or lower

left edge of the data. For example, tail-dependence in the lower left tail indicates that the two

variables have a tendency to simultaneously yield high negative returns. However, in situations

where returns from one of the variables are highly positive the other financial variable may not

be affected to the same extent. To model asymmetric tail-dependence, so-called Archimedean

copulas can be used, see e.g. Cherubini et al. (2004). In this work we use two of the most

prominent members of the family of Archimedean copulas, the Clayton and Gumbel copula,.

The Clayton copula is defined as

Cθ(u1, u2) = (u−θ1 + u−θ2 − 1)
−1
θ ,

θ > 0.
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The Gumbel copula is defined as

Cθ(u1, u2) = exp
(
−[(− log u1)θ + (− log u2)θ]

1
θ

)
, (5)

θ > 1. These copulas are both asymetric. Note that the higher the value of parameter , the

greater is the degree of dependence between the considered variables. For further properties

and examples of elliptical and Archimedean copulas and the construction of such copulas by

using generator functions, we refer to Cherubini et al. (2004) or Nelsen (2006).

Note that due to the possible heteroskedastic behaviour of the return series, in the empirical

analysis we will not apply copula models to the observed returns directly. Instead the copula

functions will be estimated using the vectors of innovations after fitting univariate ARMA-

GARCH models to the individual return series e.g. Jondeau and Rockinger (2006) and Patton

(2006).

After fitting the stochastic process for the marginal return series, a dynamic conditional

copula model can be estimated to specify the dynamics of the copula dependence parameter.

Patton (2006) proposes observation-driven copula models where the time-varying dependence

parameter is a parametric function of transformations of the lagged data and an autoregressive

term. Then, using the marginal distribution of the standardized residuals, the dynamics of the

parameters for the Gaussian, Student’s t, Gumbel or Clayton copula can be specified. For the

dynamics of the correlation for the Gaussian and Student t copula, following Patton (2006),

we apply the following model:

ρt = Λ1

{
ω + βρt−1 + α

1

12

12∑
j=1

F−1(ut−j)F
−1(vt−j)

}
, (6)

with link function

Λ1(x) =
(1− e−x)
(1 + e−x)

which ensures that the estimated correlation parameter ρt remains in its domain (−1, 1).

In a similar manner, the model for the two Archimedean copulas can be specified as:

θt = Λ2

{
ω + βτUt−1 + α

1

12

12∑
j=1

|ut−j − vt−j|

}
, (7)

with link functions
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Λ2(x) = ex

for the Clayton copula (θ > 0) and

Λ2(x) = ex + 1

for the Gumbel copula (θ > 1). The two transformation functions are also chosen to

guarantee that the copula dependence parameter for the Clayton and Gumbel copula always

remains in its domain.

Note that in this specification, the previous value of the parameter is used as a regressor to

capture the persistence in the dependence parameter, while the mean of the last 12 observations

of the transformed variables and , previous observations are used to capture any variation in

dependence between the innovation series. The suggested dynamic copula models can then

be estimated using maximum likelihood. In the following section we use the methodology

described so far to model an empirical application.

3. Fitting the models to empirical data

In this section we fit the suggested parametric models to monthly log-returns from Aus-

tralian equity and bond indices.

3.1. The Data

In order to set up a comprehensive analysis of different superannuation investment strategies,

it is of great importance to identify the most important assets used to construct the different

portfolios. By having a simple portfolios of representative assets it is possible to focus on the

main factors that affect the final wealth at retirement. Because of this, for our empirical analysis

we consider a portfolio consisting of Australian stocks and bonds. We employ Australian asset

class monthly returns for the period January 1970 to December 2013. The Australian All

Ordinaries Accumulation Index (AOI) is used as the proxy for broad equity returns. The

proxy for Australian bonds is a spliced time series of three data sources, namely, the Andex

Bond Accumulation Index from January 1970 to December 1976, the CBA Australian Bonds

> 10 Year Accumulation Index from January 1977 to September 1989, and the UBS Australia

Composite Bond Index from October 1989 to December 2013. In our stylized analysis, these

two assets classes are considered as the main constituents of MySuper investment strategies.
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Series Mean Median St. Dev. Min. Max. Skew. Kurtosis
Stocks 0.009 0.013 0.054 -0.547 0.173 -2.217 24.078
Bonds 0.007 0.007 0.019 -0.109 0.136 -0.171 12.585

Table 1: Descriptive Statistics for Logarithmic Returns of Australian Stocks and Bonds from January 1970 to
December 2013

We are in particularly interested in appropriately modeling the dynamics of the individual

return series, but also the dependence structure between returns from Australian stock and

bond markets. For our analysis we consider logarithmic returns calculated from the original

price series.2 Table 1 provides descriptive statistics for the return series of the stocks and

bonds. We consider the mean, median, standard deviation, minimum, maximum, skewness

and kurtosis of the returns. The reported descriptive statistics suggest that mean returns, but

also the standard deviation as well as skewness and kurtosis of the returns are significantly

higher for the equity index in comparison to bonds. Figure 1 provides a plot of the cumulative

performance of the stock index versus the considered bond index for the entire sample period.

To make it easier to compare the performance of the two asset classes, each series is set equal

to a base value of 100 at the start of the sample period in January 1970. The figure illustrates

the significantly higher growth of the equity index in comparison to the bond index. However,

it also indicates the significant drop of the AOI in 1987 and during the GFC from 2007-2009.

We find that while the bond index yields a much lower performance in comparison to equity

when considering the entire sample period. On the other hand it does not provide periods of

extreme losses as the equity and the performance is clearly less volatile. However, the figure

also illustrates that there were periods of relatively high volatility also in the Australian bond

market and that investments into bonds cannot be considered as risk-free.

The correlation between the two assets for the entire sample period is approximately 0.25,

suggesting at least a certain level of dependence between Australian equity and bond returns.

We will investigate the dynamics of the dependence structure between the two assets classes in

more detail later on.

3.2. Modelling the Marginals

To analyse the individual monthly return series we implement a two-stage procedure. In the

first stage, we fit ARMA-GARCH models to each series and obtain the standardized residuals

for each series. These residuals are then assumed to be independent and identically distributed

2Note that in the following we will refer to the calculated logarithmic returns simply as returns.

12



and the generalised inverse distribution is then used to generate a uniformly distributed sample,

suitable for the copula analysis. Note that one could also model the dependence structure using

the original return series. However, due to the heteroscedastic behaviour of financial returns,

a conditional approach that models the dependence structure after filtering out autoregressive

and heteroscedastic behaviour seems more appropriate as suggested by e.g. Grégoire et al.

(2008), Jondeau and Rockinger (2006) and Patton (2006).

3.2.1. Estimation results for the ARMA-GARCH models

We focus on different ARMA-GARCH specifications for each of the considered series and

abstain from using additional exogenous variables. In order to avoid overfitting, the best

model is chosen based on the Akaike’s Information Criterion (AIC) and the Ljung-Box Test

(LBT) p-value. The LBT examines whether any of a group of autocorrelations of a time series

are different from zero. It is a so-called portmanteau tes, i.e.instead of testing randomness

at each distinct lag, it tests the ’overall randomness of the data based on a number of lags.

The null hypothesis of the test is that data are independently distributed versus the alternative

hypothesis that the data exhibit serial correlation. We decided to conduct LBTs for a maximum

number of lags of h = 5, h = 10 and h = 15.

The optimal models suggested by AIC are an AR(1)-GARCH(2,1) model for the considered

equity index and an ARMA(1,1)-GARCH(2,1) model for the bond index. As suggested by Table

2 conducted LBTs on the residuals after fitting the ARMA-GARCH models do not indicate

significant levels of autocorrelation for the ARMA-GARCH filtered data. I a next step, the

standardized residuals will then be used to model the dependence structure between the two

asset classes by using copulas.

Time Series Chosen model LBQ test p-value of
residuals

lags = 5 lags = 10 lags = 15
Stocks AR(1)-GARCH(2, 1) 0.933 0.780 0.646
Bonds ARMA(1, 1)-GARCH(2, 1) 0.741 0.834 0.586

Table 2: p-values of the LBQ test of residuals for different lags of the ARMA-GARCH models. The choice is
based on LBQ and AIC tests

3.3. Estimation Results for the Copula Functions

In a next stage we investigate the dependence structure between the returns from the

considered Australian equity and bond indices. We fit the Gaussian, Student t, Gumbel and
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Clayton copula to the standardised residuals and estimate the dependence parameters for these

copulas. Note that for the Student t copula also the degrees of freedom parameter needs to be

estimated.

3.3.1. Results for Static Copula Models

One of the challenges is deciding on which copula provides the best fit to the actual depend-

ence structure of the data. The literature suggests that information criteria such as e.g. AIC

are generally not sufficient to provide enough understanding about the power of the decision

rule employed, see e.g. Genest et al. (2006, 2009). Instead, goodness-of-fit (GOF) approaches

are more powerful in deciding whether to reject or accept parametric copulas, making them the

preferred choice in empirical applications. Therefore, in our empirical analysis, for selecting

the most appropriate among a set of copulas, we decided to use goodness-of-fit tests that in-

vestigate the distance between the estimated and the so-called empirical copula (Genest et al.,

2006, 2009). The empirical copula basically represents an observed frequency and is calculated

from the empirical margins. It was originally introduced by Deheuvels (1979) under the name

of empirical dependence function and is defined as

Ce
n(u1, u2) = Fn(F←1,n(u1), F←2,n(u2)),

whiere ← denotes the generalised inverse function. Note that the empirical marginal distribu-

tion converges towards the actual distribution function for approaching infinity. The empirical

copula is a consistent estimator of the true copula and, thus, is a well-accepted benchmark for

copula goodness-of-fit tests.

The distance between the estimated and empirical copula is then evaluated using the

Cramer-Von Mises (CVM) distance, and the parametric copula closest to the empirical copula

is considered to provide the most appropriate fit to the dependence structure between the time

series. Genest et al. (2009) provide various options for such tests by conducting a large Monte

Carlo experiment and report particularly good results for the blanket tests using ranks or the

Rosenblatt transform, recommending the CvM statistic as a distance measure.

For the bivariate case, the test procedure can be summarized as follows: consider a sample

(u1,i, u2,i) for i = 1...n and a parametric copula Cθ, the statistic is defined as:

n∑
i=1

(Ce
n(u1,i, u2,i)− Cθ(u1,i, u2,i))

2
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1. Based on the empirical CDFs for the filtered marginal series, estimate the empirical

copula and the parametric copula.

2. Using the Cramer-Von Mises statistic, calculate the distance between the empirical and

the estimated copula.

In a first step we investigate the performance of static copula models, i.e. we assume that the

copula dependence parameter is constant and fit the Gaussian, Student t, Gumbel and Clayton

copula to the standardized residuals. According to Table 3, the CvM distance suggests the

best fit to the data for the static Gaussian and Gumbel copula, while the Clayton copula with

negative tail dependence provides clearly the worst fit. Surprisingly, these results suggest that

monthly returns from the AOI and the considered bond index rather exhibit tail dependence in

the upper right tail, i.e. when returns are highly positive for both asset classes. Typically the

literature rather suggests tail dependence for financial assets in the lower left tail, i.e. during

periods of market turmoils or financial crises. However, stocks and bonds are very different

asset classes and one would not necessarily expect that returns from these assets co-move or

show similar behavior under different market scenarios.

3.3.2. Results for Dynamic Copula Models

We also investigate the performance of dynamic copula models with a time-varying depend-

ence parameter as suggested in the previous section. To investigate whether a static or dynamic

copula model is more appropriate, we also compare the fit of these models. Given that we model

the dependence structure between Australian equity and bond returns over a period of more

than 40 years, one could expect to find various regimes of dependence between the two asset

classes. Table 4 provides the results for both static and dynamic models for the applied Gaus-

sian, Student t, Clayton and Gumbel copula ranked by their copula negative log-likelihood. We

find that the models allowing for time-varying copula parameters outperform all static models.

With respect to the best overall fit, the symmetric Gaussian and Student t copulas perform

best, followed by the Gumbel copula. Note, however, that based on the log-likelihood measure

the fit of the time-varying Gumbel copula is only insignificantly better than that of the Clayton

copula.

To further illustrate the nature of dependence between the considered asset classes, in the

following we examine the estimated time-varying parameters for the copula models. Let us

first consider Figures 2 and 3, where a plot of the estimated static and time-varying parameters

for the Gaussian and Gumbel copula is provided. The fixed parameter is estimated by simply
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Figure 1: Cumulative performance of the Australian All Ordinaries Accumulation Index (AOI) and the proxy
for the performance of Australian bonds for the sample period from January 1970 - December 2013. To make
it easier to compare the performance of the two asset classes, each series is set equal to a base value of 100 at
the start of the sample period in January 1970.

Copula Model Cramer Von-Mises Statistic
Gaussian 0.0358
Student t 0.0404
Clayton 0.0476
Gumbel 0.0292

Table 3: Cramer-Von Mises statistic for different copula models

Copula Model Copula Negative log-likelihood
Gaussian copula with

time-varying parameter −32.576

Student t copula with
time-varying parameter −29.045

Gumbel copula with
time-varying parameter −8.936

Clayton copula with
time-varying parameter −8.902

Student t copula with
fixed parameter −7.128

Gaussian copula with
fixed parameter −6.283

Gumbel copula with
fixed parameter −6.133

Clayton copula with
fixed parameter −4.993

Table 4: Negative log-likelihood for different copula models
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fitting the copulas to the dependence structure between the standardized residuals of the applied

ARMA-GARCH time series models. The time-varying dependence parameters are derived by

fitting model (6) and (7) to the standardized residuals. We decided to choose a window length

of 12 observations that corresponds to one year. Thus, the first twelve month period considers

returns from February, 1970 to January, 1971, while the last window uses data from January

to December, 2013.

The figures illustrate that there seems to be time-variation in the dependence structure

between returns from Australian equity and fixed income markets. Figure 2 suggests that

between 1970 and 2000 the correlation between monthly equity and bond returns was positive,

ranging roughly from 0.2 up to 0.5. However, the figure illustrates a clear structural break

in the early 2000s, and since then the dependence has decreased significantly and is typically

negative. Overall, the estimated dynamic copula model yields a relatively smooth behaviour

for the dependence parameter for the Gaussian copula. The estimated static copula correlation

parameter is 0.17. Note however, that a static estimate would clearly underestimate the actual

correlation between the returns for the period 1970-2000, while it would also not capture the

recent negative correlation between equity an bond returns in Australian markets.

Considering Figure 3, we find a higher degree of time-variation for the parameter of the

Gumbel copula. We observe several lapses of peaks and troughs around 1.15, while the behavior

of the estimated parameter is not nearly as smooth as for the Gaussian copula. Our results

indicate that joint upward movements of the two return series occur quite often during the

considered sample period. Periods where the parameter of the Gumbel copula is approximately

one indicate that the dependence is very weak. Similar to the behavior for the Gaussian copula,

overall, the dependence in the upper tail also seems to be reduced from 2000 onwards, however,

there is still a short period of an increase in upper tail dependence between the returns in the

early 2000s. Note that conclusions as to whether there is a structural break or a significant

change in the dependence structure during the considered period require further statistical tests

as suggested by Patton (2006), that are beyond the objectives of this paper.

Figure 4 provides a plot of the stock index against the corresponding estimated volatility in

Australian equity markets obtained by using the ARMA-GARCH models, and the correlation

of the time-varying copula model for the considered sample period. The figure illustrates the

significant changes in equity volatility throughout the sample period as well as the time-varying

nature of dependence between the two asset classes. An appropriate parametric model needs
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Figure 2: Moving parameter of Gaussian copula using Patton’s model
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Figure 3: Moving parameter of Gumbel copula using Patton’s model

to take these two features into account in order to realistically replicate the behavior of the

individual asset classes as well as the co-movement of equity and bond returns. Therefore, the

applied ARMA-GARCH models for the marginal return series in combination with a dynamic

copula model for the dependence structure is clearly superior to a simple multivariate normal

distribution. The latter would ignore both the heteroscedastic behaviour of the returns and the
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time-varying nature of the dependence.
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Figure 4: Performance of the considered Australian equity index (upper panel), estimated volatility in the
Australian equity market (middle panel) and estimated time-varying copula correlation between equity and
bond returns (lower panel).

4. MySuper Strategies and Performance Measures

In this section we review the MySuper investment strategies that will be examined in the

empirical analysis. We also illustrate the applied performance evaluation measures, including

retirement wealth ratios as well as risk-adjusted measures such as exceedance probabilities for

wealth outcome thresholds. Finally, we illustrate the applied simulation procedure to generate

distributions for the terminal values of superannuation portfolios.

4.1. Target Risk and Target Date Funds

There are a myriad of asset allocation approaches currently implemented in approved MySu-

per products. As discussed in previous sections, our analysis mainly focuses on the performance

of superannuation portfolios during the last 10 years prior to retirement. Balanced or target risk

funds (TRFs) maintain the same level of risk through time by holding a constant proportion of

growth and defensive assets. TRFs are commonly employed in MySuper products at varying

proportions of growth and defensive assets. TRFs strategies can range from 100% stocks to

100% bonds, while typically a balanced MySuper product has invested approximately 70% in

growth and 30% in defensive assets, see, e.g., Chant et al (2014).
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Further to TRFs we consider lifecycle or target date funds (TDFs), which recently have

gained popularity in the MySuper universe. Typically, TDFs switch from growth to defensive

assets according to a pre-determined glide-path as a worker approaches retirement. TDFs

change the proportion of growth assets in the retirement portfolio as the worker approaches

a retirement date using deterministic switching rules. TDFs have become a core product for

investors saving for retirement, particularly in the U.S.

Overall, we analyse three examples of asset allocation for MySuper products. Two different

TRFs and a TDF with a deterministic glide path from a balanced to a more conservative

exposure.

1) A portfolio of 70% growth assets (equity) and 30% conservative assets (bonds) as an

example for a typical Mysuper balanced product.

2) A portfolio of 30% growth assets (equity) and 70% conservative assets (bonds) as an

example for a typical Mysuper conservative investment product.

3) A portfolio that linearly switches from 59% investment in equities to 37% investment in

equities, while the remaining fraction is invested in bonds.

Note that for replicating a typical TDF strategy, we use data provided by Chant et al (2014)

on glide paths of 23 MySuper lifecycle funds. Based on these results, a superannuation portfolio

that linearly switches from 59% to 37% investment in equities over the last 10 years prior to

retirement, provides a good approximation of the average glide path of Australian MySuper

lifecycle products.

In the following we will analyze the performance of these three exemplary MySuper products

across various performance criteria.

4.2. The Retirement Wealth Ratio for MySuper Portfolios

To evaluate asset allocation strategies and assess their appropriateness as default investment

options in MySuper strategies, we need to make plausible assumptions about the rationale that

may guide the selection of a specific asset allocation strategy as a default option from many

competing candidates. The basic motivation behind instituting retirement savings plans is to

generate adequate income for the participating employees after retirement. In that case, the

performance of MySuper strategies should be measured in terms of their ability to generate

sufficient retirement income (Baker et al., 2005). Therefore, the principal investment objective
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of such plans will be to maximize the terminal value of the portfolio at the point of retirement.

The terminal value will directly determine the amount of annuity the retiring employees are

able to purchase for sustenance during post-retirement life. Past studies have often focused on

the absolute value of the participant’s accumulated assets at retirement. Instead we employ

a ratio which compares the terminal wealth of the participant’s retirement account to their

terminal income. The rationale for such an analysis is that a participant’s post-retirement

income expectations are closely linked to their immediate income before retirement, see, e.g

Basu and Drew (2009). Therefore, the so-called retirement wealth ratio (RWR) that is defined

as the wealth at retirement divided by the final yearly income might provide a more reasonable

measure to examine the performance instead of considering the absolute terminal value of the

portfolio only.

Note, however, that higher mean or median values of RWR outcomes for an investment

strategy do not necessarily imply that the strategy is superior. The trustees also need to

consider the risk associated with an investment strategy, since participants would want a better

exploitation of trade-off between risk and reward. Therefore, in our analysis we examine the

entire distribution of RWR outcomes and also focus on lower or higher percentiles of the RWR

distribution as well as on the probability of exceeding thresholds of RWR outcomes. Hereby,

we assume that the ultimate goal of a MySuper strategy is to attain a specific amount of wealth

relative to their terminal income. The investment risk most relevant to participants might be

the failure to generate a minimum terminal retirement wealth ratio (TRWR). The literature

does not provide clear guidance on an adequate TRWR, such that we decide to examine the

probabilities of exceeding TRWRs of 5, 8 and 10. These thresholds correspond to a terminal

wealth in a superannuation account that is equal to five times, respectively eight or ten times,

the final annual salary of an investor.

Finally, to complement this analysis we also consider a fixed amount for the wealth at

retirement which is not dependent on the person’s income. In order to do this, we use the

amount that is required for a comfortable standard of living proposed by the Association of

Superannuation Funds of Australia (ASFA, 2014). This amount is $430,000 and we use an

annual average weekly earnings (AWE) growth rate of 3.75% as a deflator. 3

3Note that ASFA also considers an amount that is sufficient for a modest standard of living, given the pension
supplements. However, we decided to focus on the comfortable standard of living amount only in our analysis.
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4.3. Simulation procedure

In order to assess the effectiveness of the examined MySuper strategies in achieving TRWRs,

we follow a simulation procedure considering four parametric models as well as four bootstrap

approaches based on historical simulations that have been described in Section 2. For the para-

metric techniques, we decided to apply the estimated ARMA-GARCH models in combination

with either the Gumbel or the Gaussian copula for the dependence structure between equity

and bond returns. Recall that the Gumbel copula yielded the best results for the static case,

assuming a constant parameter for the dependence structure over the sample period, while the

Gaussian copula model with a time-varying dependence parameter yielded the overall best fit

to the data. While the application of nonparametric approaches for the simulation of equity

and bond returns is relatively straightforward and has been described in Section 2, for the

parametric models the following algorithm is applied to generate time series of returns for the

considered equity and bond index:

1) Model Estimation

Using monthly logarithmic returns of the considered equity and bond index for the sample

period from January 1970-December 2013, we fit ARMA-GARCH models (Table 2) to

the marginal return series. We then fit the static and dynamic Gaussian and Gumbel

copula models to the standardised residuals.

2) Simulation of Standardized Residuals

2a) Static Copula Models: Assuming a fixed copula dependence parameter θ, we generate

10,000 bivariate samples of size 120 for the standardized residuals, corresponding to 10

years of monthly observations.

2b) Dynamic Copula Models: In the case of dynamic copula models, we initialize the

simulation process by generating the first element of the bivariate standardized residuals

for time t = 1, using the most recent estimate of the time-varying copula dependence

parameter θ0. Then we use equation (6), (7) respectively, to update the copula dependence

parameter estimate θ1. Based on the updated copula dependence parameter the next pair

of standardized residuals is created, and so on. Overall, we simulate 10,000 bivariate series

of size 120.4

4Note that the simulation from the dynamic copula model with time-varying copula parameters is far more
computationally intensive than for the static version of the model.
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3) We filter the corresponding samples through the ARMA-GARCH models to generate

10,000 random samples for the time-series of 120 logarithmic returns which we then

convert to discrete returns to use them for the conducted analysis.

5. Empirical Results

As mentioned earlier in this section the main interest in our analysis is to determine what

factors affect whether or not the retiree has an adequate wealth at retirement. For this purpose

we mainly focus on the suggested RWR, however, we will also include results for the analysis

on exceeding the comfortable standard of living proposed by ASFA (2014). Using samples of

10,000 different wealth outcomes for each simulation method, we are able to obtain several

results involving the RWR for different models and factors. In particular, we estimate the

probability of achieving or exceeding different TRWRs for the MySuper strategies as well as

their different quantiles. We first consider a base scenario that is meant to represent the average

income and contribution of a MySuper investor. After this we consider different models and

the impact of a range of factors that affect terminal wealth outcomes for an investor. Among

other factors, we consider different market regimes of volatility and return for the asset classes,

sequencing risk, different types of the investor’s contributions as well as the weight that is given

to more recent observations in the simulation procedure, .

5.1. Base scenario

In order to conduct the empirical analysis, in a first step we consider a representative

investor 10 years before retirement. We assume that the investor has an annual income of

approximately $63,150, a superannuation contribution of 9.5% what corresponds to a monthly

contribution of $500. We further assume that the income increases by 4% annually and that

the current balance of the superannuation investor is $250,000. Considering these values, the

terminal yearly income is $93,489. This means that, for example, to exceed a TRWR of 5,

the terminal wealth of the portfolio at retirement must be at least $467,445, while to exceed a

TRWR of 8 the value of the portfolio is required to be greater than $747,912. Note that the

ASFA comfortable standard of living corresponds to a balance of at least $621,369 in 10 years

time, corresponding approximately to a RWR of 6.65 for the considered investor.

In Table 5 we present the mean as well as different quantiles of the RWR for the different

strategies considering three representative models that include one parametric and two non-

parametric approaches. In particular we present results for the Gaussian copula model with
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a time-varying copula dependence parameter, historical simulation using a block bootstrap

approach with block size n = 6, and, the same block bootstrap approach with assigned weights

according to formula 2.1 such that more recent return observations get a higher weight in the

simulation procedure. We find that for all three simulation methods, the highest average RWR

is obtained for the balanced strategy with the highest weight in equity in comparison to the two

other strategies. The second highest average RWR is obtained for the lifecycle (TDF) strategy,

while the conservative investment strategy with 70% in defensive assets clearly yields the lowest

expected outcome for the RWR in all three cases. We also find that in terms of the mean

outcomes for the different strategies, there is only a minor difference between the parametric

Gaussian copula model and the standard block bootstrap with n = 6. The parametric approach

and block bootstrap method suggest a mean RWR of approximately 9.84, respectively 9.63 for

the balanced MySuper strategy, while they also yield very similar results for the conservative

strategy (RWR = 8.24 for the parametric and RWR = 8.30 for the block bootstrap) and

the lifecycle strategy (RWR = 8.98, respectively, RWR = 8.85). Interestingly, the expected

outcomes for the RWRs are significantly lower when a block bootstrap with declining weights

for earlier observations is applied. Conducting the simulation procedure with assigned higher

weights to more recent observations yields RWR = 8.73 for the balanced MySuper strategy,

RWR = 7.67 for the conservative, and RWR = 8.11 for the lifecycle strategy. This makes sense

given that in recent times returns have shown lower values with respect to previous times. This

is an important result, as it indicates that if stock and bond returns behave more like they have

done in recent times, lower RWR outcomes will be achieved. It implies that investors need to

adjust their expectations, as this is fundamental for the planning of retirement outcomes.

Table 5 also provides information on higher and lower quantiles of the simulated RWR

distribution. Such an analysis is also in particular useful for examining possible worst case

scenarios for investors, which correspond to the 1%, 5% and 10% quantiles of the distribution.

We find that for the lower tail of the distribution, the conservative strategy with a higher share

in defensive assets provides the best results: for example, based on a block bootstrap with equal

weights, the 1% quantile for the conservative strategy yields RWR = 4.72, while comparable

values for the lifecycle and balanced strategy are RWR = 4.19, respectively RWR = 3.39.

Independent of the chosen simulation technique, the conservative strategy always yields the best

outcome for the 1%, 5% and 10% quantile of the distribution. However, the differences between

the suggested strategies in the lower tail of the distribution are not that substantial. Even for the
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10% quantile we see that the three strategies typically provide very similar results, while for the

median it is always the balanced MySuper portfolio with the highest share in equity that yields

the best results. With respect to higher quantiles of the RWR distribution, we find a clearly

superior performance of the balanced portfolio over the two other strategies. For example,

when considering the 95% quantile of the simulated distribution (parametric approach), we

find that the balanced strategy offers a 5% chance of exceeding RWR = 17.58, while the

corresponding figures are significantly lower, with RWR = 12.55, respectively RWR = 14.36

for the conservative and lifecycle strategy. This confirms that strategies with a higher share

in growth assets can provide much higher upside potential in comparison to more conservative

strategies also over the last 10 years. It also points towards the fact that, depending on how

risk averse an investor is, she may or may not want to switch to more conservative strategies

with limited upside potential and only slightly reduced tail risks.

Finally, we make an observation regarding the simulated distributions: it seems like the

parametric approach yields a distribution with a significantly wider range in comparison to

the non-parametric techniques. For example, for the balanced MySuper strategy, the spread

between the 1% and 99% quantile of the distribution is approximately 24.70 for the parametric

approach, while comparable figures are 19.30 for the block bootstrap with equal weights and

15.86 for the block bootstrap with declining weights. This emphasizes the difference between

parametric and non-parametric simulation approaches: the former also allow for even more

extreme outcomes that may have not been observed historically, while the latter is entirely

based on historical return observations for the asset classes.

Table 6 presents the probabilities of exceeding the specific TRWR of 5, 6.65, 8 and 10

for the three simulation techniques. Clearly, the results are in line with our previous findings

for the simulated distributions of RWRs. We find that for the lowest threshold RWR =

5, it is typically the conservative strategy that provides the highest exceedance probability.

For the block bootstrap technique we obtain a probability of approximately 97.9% to exceed

this threshold for the conservative strategy, while lower probabilities of 91.9% and 95.6% are

obtained for the balanced and lifecyle (TDF) strategy. For RWR = 6.65, corresponding to the

suggested ASFA comfortable standard of living, our results depend on the chosen simulation

method: while for a parametric approach both the balanced and the lifecycle strategy yield

higher probabilities for exceeding this threshold, for the non-parametric approach it is still

the conservative strategy that yields the highest probability. As expected, for RWR = 8 and
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RWR = 10, it is the balanced MySuper portfolio with the highest share in growth assets that

yields the highest probability. For example, usig a parametric approach, the probability for a

portfolio with RWR of 10 or higher is still approximately 40% for the balanced strategy, while

it is 28.8% for the lifecycle and only 17.9% for the conservative strategy.

Similar to the results in Table 5, we find that the probabilities to achieve the specified

TRWRs are generally lower, when the block bootstrap with declining weights is applied. The

differences become more pronounced for higher thresholds such as e.g. RWR = 8 orRWR = 10.

This emphaseizes the weaker performance of financial markets with lower upside potential in

more recent years, in comparison to the entire 40 year period. These results are valid for across

all implemented strategies and reinforces the fact that superannuation investors might have to

expect lower outcomes for their portfolio if financial markets continue to provide returns that

are similar towhat could be observed over the last decade.

Overall, as expected the probabilities of achieving or exceeding TRWRs are decreasing as the

threshold gets higher. A fact that stands out from our analysis is also that the chosen investment

strategy becomes increasingly important for high values of the TRWR. We find that investing

in growth assets as we approach retirement highly increases the probabilitly of achieving high

RWR. These results may not entirely be in line with general recommendations for lifecycle

investment where switching to defensive assets is recommended for members that approach

the age of retirement. Our results also indicate that for the chosen benchmark investor, it is

relatively easy to reach the ASFA comfortable lifestyle.

5.2. Robustness check

We now focus on considering the impact of other factors in our analysis. We first consider

the impact of the chosen simulation technique: for the parametric models we investigate impacts

on the RWR with regards to the choice of the copula and whether a static or dynamic copula

model is applied in the simulation procedure. For the non-parametric approaches, we examine

the impact of the chosen block size as well as the weights that are given to more recent return

observations in comparison to observations from earlier periods.

5.2.1. Parametric models

We first test the impact of the chosen copula model on the results by considering various

parametric models. The additional models include the Gumbel copula with a fixed dependence

parameter as well as the Student t and the Clayton copula with time-varying parameters. In
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Table 7 we compare results for exceeding the specified TRWR = 5, 6.65, 8, 10 for the additional

models to the parametric benchmark model reported earlier, i.e., the Gaussian copula with a

time-varying dependence parameter. Interestingly, we find that all parametric models provide

rather similar results with respect to the simulated exceedance probabilities for the defined

thresholds. These findings also suggest that the choice of the parametric copula does not have

a significant impact on the RWR outcomes for a superannuation investor.

5.2.2. Nonparametric models

For the nonparametric approaches, we compare the benchmark block bootstrap methods

with block size n = 6 to an alternative stationary bootstrap method method with average

block size of n = 6 and methods with alternative values for the blocksize of n = 3, n = 12 and

n = 24. For each of these methods we also apply the scheme allowing for declining weights as

outlined in equation (2.1). Table 8 presents the results for the different nonparametric models.

We find that neither the applied block size nor whether a standard or a stationary bootstrap is

applied seems to have very significant impacts on the results. Among the methods with equal

weights for each observation, the stationary bootstrap seems to yield the lowest probabilites

for exceeding the defined TRWRs, while the probabilities are the highest for a block bootstrap

with n = 24. However, all five methods yield rather similar results.

On the other hand, all bootstrap methods with declining weights for more distant ob-

servations yield lower exceedance probabilities. While the effect is less pronounced for lower

thresholds such as RWR = 5 and RWR = 6.65, it becomes more and more significant for higher

thresholds. For example, a block bootstrap with block size n = 24 yields a probability of 32.5%

to achieve or exceed an outcome of RWR = 10 when all observations are equally likely to enter

the simulation, while the corresponding probability is only 16.4% for exponentially declining

weights. This provides further evidence for our previous results pointing towards lower expect-

ations of the terminal wealth outcomes, if higher weights are given to more recent observations.

We will further investigate this in the following section.

5.3. Impacts of the considered historical time period

In the following we examine the impact of various factors on the terminal wealth outcomes

for superannuation investors. The first part of our analysis aims to determine the impact of the

considered historical time period. Given that the original period included 43 years of monthly

observations for equity and bond returns, in the following we examine the results for shorter
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Period Series Mean Median St. Dev. Min. Max. Skew. Kurtosis
Complete Stocks 0.009 0.013 0.054 -0.547 0.173 -2.217 24.078

data Bonds 0.007 0.007 0.019 -0.109 0.136 -0.171 12.585
Last 20 Stocks 0.007 0.014 0.038 -0.150 0.077 -0.947 4.287
years Bonds 0.005 0.005 0.010 -0.026 0.041 0.223 3.998

Last 10 Stocks 0.008 0.019 0.041 -0.150 0.077 -1.178 4.727
years Bonds 0.005 0.005 0.008 -0.012 0.030 0.506 3.430

Table 9: Descriptive statistics for logarithmic returns of the considered Australian stock and bond indices for
different time periods of January 1970 - December 2013 (complete data), January 1994 - December 2013 (last
20 years) and January 2004 - December 2013 (last 10 years).

historical time periods, i.e. the last 10 and 20 years, respectively. Table 9 provides descriptive

statistics for the considered monthly equity and bond returns for the entire sample period from

January 1970 - December 2013 as well as sample periods covering the last 20 and the last

10 years. We find that average monthly equity and bond returns are higher for the entire 43

year sample in comparison to sample periods that cover the last 10 or 20 years only. However,

we also observe a higher standard deviation of equity and bond returns for the entire sample

period.

In Tables 10 and 11 we present the mean RWR outcome as well quantiles for the simulated

RWR distribution based on using the last 20 years, respectively, 10 years of historical returns

observations. The results confirm earlier findings on the impact of how recent and more distant

returns are treated in the simualtion period. In comparison to simulation results that were

based on the entire sample period, see Table 5, we obtain significantly lower outcomes for the

RWR. For example, the parametric approach yields an average RWR = 9.84 for the balanced

MySuper strategy, while we obtain RWR = 8.90 and RWR = 9.47 when the simulation

is based on historical return observation spanning the last 20 years, respectively, the last 10

years. For the conservative MySuper strategy we obtain RWR = 8.07 (for 20 years of historical

data) and RWR = 7.89 (for 10 years of historical data) in comparison to RWR = 8.24 for the

entire sample period. Finally, the lifecycle TDF strategy yields RWR = 8.42 (20 years) and

RWR = 8.53 (10 years), what i also significantly lower than the average RWR = 8.98 when

the simulation is based on the last 43 years of data.

Overall, we find that the chosen historical sample period has significant impacts on the

simulation results. This emphasizes that return expectations for superannuation investors will

highly depend on the assumptions being made about the behaviour of future equity and bond

returns. If returns are more likely to behave like in more recent times, expectations about the

terminal wealth of superannuation investors need to be reduced.
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5.4. Impact of different market regimes

We now use the estimated parametric Gaussian copula model to analyse different market

regimes of volatility and correlation. We study four different regimes at the beginning of the 10

year simulation period: (i) a low volatility regime for the equity market, (ii) a high volatility

regime for equity markets, (iii) a regime with low correlation between equity and bond returns,

(iv) a high correlation regime.

The procedure for creating starting values for the low and high volatility regimes is the

following: we sort the monthly observations based on estimated volatility according to the

parametric model. Then we determine the 0.01 quantile (for the low volatility regime) and

0.99 quantile (for the high volatility regime) of the volatility distribution as starting values. To

find the corresponding value of correlation between equity and bond returns for these regimes,

we take the median correlation of the 10 months with volatility closest to the 0.01 quantile,

respectively 0.99 quantile. These volatility-correlation combinations are then the starting values

for the simulation from the parametric model

A similar procedure is conducted to determine the low and high correlation regimes: we sort

the monthly observations based on the estimated time-varying copula correlation parameter.

Then we determine the 0.01 quantile (for the low correlation regime) and 0.99 quantile (for

the high correlation regime) of the correlation distribution as starting values. To create the

corresponding value for volatility in these regimes, we take the median volatility of the 10

months with correlation closest to the 0.01 quantile or 0.99 quantile, respectively,.

Interestingly, as indicated by Table 12, the impact of the different regime during the first

month of the simulated 10 year period is rather limited. The highest RWR outcomes are

obtained in the case of a high volatility regime followed by a high correlation regime. The

lowest RWR outcomes are achieved when an initially low volatility regime is assumed. As

mentioned earlier the differences between the outcomes are not really significant. The lack of

difference between them might be due to a typically rather quick adjustment of the market

after a specific regime. Although autocorrelation between the returns is assumed, a specific

volatility or correlation regime at the beginning of the simulation period does not seem to last

for a very long time and has no significant impact over a 10 year simulation period.

5.5. The Impact of a market crash and sequencing risk

As we have seen in the previous subsection, the effect of regimes of volatilty and correlation

on wealth outcomes at retirement age is rather limited. We now would like to examine the
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effect of the occurrence of a crisis during the last 10 years of an investor’s contribution on the

terminal wealth. This analysis is related to what is generally known as sequencing risk and

has provided valuable insights in retirement funds analysis, see e.g. Doran et al. (2012). We

assume that a market crash or significant drop in equity prices occurs at some point over the

last 10 years of contributions. In We consider three different scenarios: (i) we assume that the

crisis happens at the beginning (i.e. in year one) of the 10 year period, (ii) we assume that the

crisis happens in the middle (i.e. in year five or six) of the 10 year period, and, (iii) we assume

that the crisis year happens at the end (i.e. in year 10) of the contribution period. In our

simulation procedure, we set the returns for the market crash period equal to actually observed

returns during the 2007-2008 global financial crisis.

In Table 13 we present the results. As expected, the presence of a market crash over the last

10 year of superannuation contributions does have a significant impact on the terminal wealth.

Our results indicate that a crisis at the beginning of the 10 year period has the most negative

effect on the terminal RWR. When a crisis occurs in the middle or the end there is an impact on

the accumulated value to that point but the final wealth is still higher. Interestingly, although

we only consider the last 10 years of contribution, the TDF strategy is only more suitable than

the others if the crisis occurs in the final year. If the crisis occurs at the beginning of the 10

year period the defensive strategy is more suitable and if it occurs in the middle the balanced

MySuper strategy with the highest share in growth assets yields the highest wealth outcomes.

It has been argued in the literature that having a crisis as an investor approaches the age

of retirement can have catastrophic consequences. Although we do not argue the opposite,

such a recommendation may be based mainly on the amount of money that is lost during

the occurrence of a crisis. However, one should not ignore the potentially significantly higher

performance of equity markets in comparison to more defensive assets over the period before

the crisis. Also, since markets often recover quickly after a crisis period, a higher investment

in growth assets also has the potential to achieve significant capital gains during such periods

of recovery. Given our results, further research is required on the optimal timing of a possible

switch from growth to more defensive assets. However, our results do not clearly indicate a

superior performance of lifecycle or conservative strategies over the last 10 years, even when a

substantial market crash takes place during this period.
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5.6. The impact of the endowment, income and contribution levels

Other very important factors impacting on the terminal wealth of a superannuation investor,

we have not discussed so far, are the amount accumulated up to ten years before retirement

as well as salary and the contribution levels. We finalize our analysis by considering different

representative examples.

5.6.1. Initial balances

In Table 14, we consider the impact of an initial balance of $200,000 and $300,000 in

comparison to an initial balance of $250,00 for the exemplary superannuation investor. Note

that here we only provide results for the block bootstrap simulation with equal weights and

block size n = 6, however, results for other simulation techniques were quite similar and led to

the same conclusion. We find that the effect of the initial balance on the terminal wealth seems

to be almost linear: the quantiles and means presented for an initial endowment of $250,00

are very close to the average of the RWR outcomes for an initial balance of of $200,000 and

$300,000.

5.6.2. Salaries and contribution levels

In Table 15 we present the probability of reaching the ASFA comfortable lifestyle according

to three different incomes and two contribution levels. Hereby, we assume an initial balance of

the investor of $250,000 and consider the three quartiles, i.e. the 25th, 50th and 75th percentile

of the Australian income distribution. We examine results for a base scenario contribution level

of 9.5% and also an increased contribution level of 12%. Our results indicate that contributing

12% instead of 9.5% has a very signifiacnt impact on the probability of achieving or exceeding

the AFAS threshold. OUr findings illustrate that an increase in contributions from 9.5% to 12%

almost has the same effect as going from one quartile of the income distribution to the next

higher quartile. Thus, one recommendation from this exercise is that in order to increase the

chances of reaching a terminal wealth equal or greater than the AFAS comfortable standard of

living, investors with lower income and a standard contribution level should prefer the balanced

MySuper strategy. For investors with higher income the strategy is not that relevant in order to

get to this level, since the probability of achieving at least the AFAS threshold of comfortable

lifestyle is greater than 90% for all strategies.
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Level of income/ Strategy
contribution Model Bal Cons TDF

Low income/9.5% 0.575 0.406 0.493
Low income/12% 0.771 0.727 0.760
Median income/9.5% Gaussian with time- 0.805 0.776 0.804
Median income/12% varying parameter 0.913 0.931 0.927
High income/9.5% 0.941 0.955 0.955
High income/12% 0.969 0.976 0.978

Table 15: Probability of reaching or exceeding the ASFA comfortable standard of living threshold for differ-
ent levels of salary and contribution according to the Gaussian copula model with time-varying dependence
parameter.

6. Conclusions

The aim of this paper was to deepen the understanding of different factors impacting on

the wealth of a superannuation investor at retirement. In order to simulate retirement wealth

outcomes, this is one of the first studies to apply both parametric and non-parametric models

for the performance of different superannuation strategies in the Australian context.

For the parametric approach, we examine different copula models in order to model the

dependence structure between Australian equity and bond returns. Copulas offer great flexibil-

ity for modeling the relationship between different financial variables and also provides insights

with respect to nonlinear dependence between the asset classes. Thus, we first investigate which

copulas are most appropriate to model the dependence structure. Second, we deal with the

question whether or not the dependence structure exhibits time-varying properties. The latter

allows us to examine whether the relationship between the considered variables has changed

over time and whether or not financial crises have had an influence on the dependence between

these two assets.

For the non-parametric approach we apply different block and stationary bootstrap methods.

These techniques also allow us to capture the possible dependence between the returns of the

considered asset classes as well as the existing autocorrelation structure of the returns. We

also implement a bootstrap approach that allows us to allocate higher weights to more recent

observations.

Based on the conducted simulation study, we then examine different MySuper portfolio

strategies allocating different weights to investments in equity and bonds. We consider two

different Target Risk Funds (TRFs) and one Target Date Fund (TDF) with a deterministic

glide path from a balanced to a more conservative exposure. IN particular we consider a
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portfolio with 70% growth assets (equity) and 30% conservative assets (bonds) as an example

for a typical Mysuper balanced product ; a portfolio with 30% growth assets (equity) and 70%

conservative assets as an example for a typical Mysuper conservative investment product and a

portfolio that linearly switches from 59% investment in equities to 37% investment in equities,

while the remaining fraction is invested in bonds.

The following insights emerge from our analysis. First, for the considered time series, we

apply the Clayton, Gumbel, Gaussian and Student t copula to investigate the dependence

structure between Australian stocks and bonds for superannuation portfolios. To our best

knowledge this is one of the first studies to apply this technique in superannuation portfolios.

The Gaussian and Gumbel copulas are most appropriate, significantly outperforming both the

Clayton and Student t copula with respect to a goodness-of-fit test for the distance between the

estimated and empirical copula. Second, a significant change in the nature of the dependence

structure is found between the two assets. This is detected by the correlation parameter of

the Gaussian copula, with a steep decline since the year 2000. The parameter for the Gumbel

copula is more volatile but also detects a high variation in the dependence. This confirms general

results on asset returns from financial markets exhibiting different regimes of dependence during

periods of different market conditions.

We also provide a risk adjusted analysis for wealth outcomes of superannuation investors

by using the retirement wealth ratio (RWR). Our analysis not only allows us to report average

expected terminal wealth outcomes for investors, but also illustrates how likely it is to achieve

or exceed defined threshold levels such as e.g. the lump sum required to support a comfortable

lifestyle as suggested by the Association of Superannuation Funds of Australia (ASFA, 2014).

In a nutshell, we find that the use of different strategies only becomes very relevant when

dealing with high RWRs, that is with high expectations of wealth. Interestingly, considering the

last 10 years only, a balanced investment strategy with a higher share in equities than defensive

assets, only provides a marginally lower risk to end up with very bad terminal wealth outcomes

at retirement in comparison to a conservative or lifecycle strategy. On the other hand, the

balanced strategy provides significantly higher upside potential, such that an investor who is

mainly interested in maximizing the probability of having a relatively high RWR should prefer

growth assets. On the other hand, very risk averse investors might still prefer a conservative or

lifecycle strategy in order to increase the probability of exceeding at least a minimum retirement

wealth ratio of 5.
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We also find that if returns of stocks and bonds will behave similar to what could be

observed over the last two decades, there is a clear need to lower expectations for terminal

wealth outcomes at retirement. Thus, simulations using a historical sample period with return

observations dating back to the 1970s where, for example, bond returns were substantially

higher than in recent periods, might overestimate actual wealth outcomes for superannuation

investors.

Interestingly, the effect of starting the last 10 years with a market regime of extreme volatility

or correlation has only minor effects on the wealth outcome at retirement. On the other hand,

a market crash similar to the one of the 2007-2008 GFC has a very significant impact on the

outcome for all three strategies. This impact is higher when the crisis occurs in the beginning

of the 10 year period, as we need to consider not only the money lost but its future profits.

Interestingly, our results illustrate that even assuming that there will be a crash in equity

markets during the last 10 years, it is not necessarily the optiml decision to choose a conservative

or lifecycle strategy over a balanced MySuper strategy.

The effect of the initial accumulated wealth is close to linear on the terminal wealth. We

also find that increasing the level of contribution has a huge impact on the terminal wealth,

particularly for investors with low to medium income. We recommend that investors with low

income who want to have a reasonable chance of achieving a comfortable standard of living

should rather invest in balanced or growth strategies with higher investments in equity.
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