Partial Derivatives

Partial derivatives are the same as normal derivatives, just with additional variables involved that are treated as constants.

Ex: Find all the partial derivatives of:

a) \(g(x, y, z) = (z + e^{xy}, yz) \)

b) \(f(x, x) = \begin{cases} y \sin x & x \neq 0 \\ y & x = 0 \end{cases} \)

Solution: a) let \(g_1 = z + e^{xy} \) \(g_2 = yz \)

then \(\frac{dg_1}{dx} = ye^{xy} \quad \frac{dg_1}{dy} = 2yxe^{xy} \quad \frac{dg_1}{dz} = 1 \)

\(\frac{dg_2}{dx} = 0 \quad \frac{dg_2}{dy} = z \quad \frac{dg_2}{dz} = y \)

are all six partial derivatives.

The matrix given by:

\[
Df = \begin{pmatrix}
\frac{dg_1}{dx} & \frac{dg_1}{dy} & \frac{dg_1}{dz} \\
\frac{dg_2}{dx} & \frac{dg_2}{dy} & \frac{dg_2}{dz}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
ye^{xy} & 2yxe^{xy} & 1 \\
0 & z & y
\end{pmatrix}
\]

is called the total derivative.

b) For this question, we must separate the \(x \neq 0 \) and the \(x = 0 \) cases.

For \(x \neq 0 \): \(\frac{df}{dx} = \frac{y \cos x - y \sin x}{x^2} \) by the quotient rule

For \(x = 0 \): \(\frac{df}{dx} = \lim_{h \to 0} \frac{f(0 + h, y) - f(0, y)}{h} \)

\(= \lim_{h \to 0} \frac{y \sin h - y}{h} \)

\(= \lim_{h \to 0} y \left(\frac{\sin h}{h} - 1 \right) \)

\(= y \lim_{h \to 0} \frac{\sin h - 1}{2h} \) by \(\ell \) 'Hopital's rule.

\(= y \lim_{h \to 0} \frac{\sin h}{h} \) by \(\ell \) 'Hopital's rule again.

\(= y \cdot 0 \)

\(= 0 \)

and \(\frac{df}{dy} = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 1 & x = 0 \end{cases} \)
Chain Rule

\[\frac{D(g(f))}{Df} = Dg(f) \cdot Df. \]

Example: Let \(f(x, y, z) = (x^2y + z, \sin(xy)) \) and \(g(a, b) = (e^a, ab, 1) \). Find \(D(f(g)) \) at \((0, 0)\).

Solution:

\[
\begin{pmatrix}
\frac{df}{dx} & \frac{df}{dy} & \frac{df}{dz} \\
\frac{df}{dx} & \frac{df}{dy} & \frac{df}{dz}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
x^2y & x^2 & 1 \\
y \cos(xy) & x \cos(xy) & 0
\end{pmatrix}
\]

Sub in \((x, y, z) = g(0, 0) = (1, 0, 1)\):

\[
Df(g(0, 0)) = \begin{pmatrix}
0 & 1 & 1 \\
0 & 1 & 0
\end{pmatrix}
\]

Next use \(g(a, b) = (e^a, ab, 1) \):

\[
\begin{pmatrix}
\frac{dg}{da} & \frac{dg}{db} \\
\frac{dg}{da} & \frac{dg}{db} \\
\frac{dg}{da} & \frac{dg}{db}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
e^a & 0 \\
0 & b \\
0 & 0
\end{pmatrix}
\]

At \((a, b) = (0, 0)\):

\[
Dg(0, 0) = \begin{pmatrix}
1 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}
\]

\[\circ D(f(g(0, 0))) = Df(g(0, 0)) \cdot Dg(0, 0)\]

\[
= \begin{pmatrix}
0 & 1 & 1 \\
0 & 1 & 0
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 \\
0 & b \\
0 & 0
\end{pmatrix}
\]

\[
= \begin{pmatrix}
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}
\]

Note that these chain rule questions are often asked in a way that makes it difficult to tell what your two functions \(f \) and \(g \) are.

You can also be asked to compare your chain rule answer to what you get when you just substitute \(g \) into \(f \) (or vice versa) and differentiate directly. Both methods will always give the same answer.
Chain Rule #2

When you only need 1 derivative in your answer, a quicker version of the chain rule is:

\[
\frac{dz}{dt} = \frac{dz}{dx} \frac{dx}{dt} + \frac{dz}{dy} \frac{dy}{dt} \quad \text{+ extra if more variables.}
\]

Ex: Let \(z = e^{x^2} \cdot \tan y \) and \(x = t^2 \) and \(y = \sin(\pi t) \). Find \(\frac{dz}{dt} \) at \(t = 0 \).

Solution: At \(t = 0 \) we have \(x = 0^2 = 0 \) and \(y = \sin(\pi \cdot 0) = 0 \), then,

\[
\frac{dz}{dt} = \frac{dz}{dx} \frac{dx}{dt} + \frac{dz}{dy} \frac{dy}{dt} \quad \text{where} \quad \begin{align*}
\frac{dz}{dx} &= ye^{x^2} + 1 \quad \Rightarrow \quad \frac{dz}{dx} \bigg|_{(0,0)} = 1 \\
\frac{dz}{dy} &= xe^{x^2} \quad \Rightarrow \quad \frac{dz}{dy} \bigg|_{(0,0)} = 0 \\
\frac{dx}{dt} &= 2t \quad \Rightarrow \quad \frac{dx}{dt} \bigg|_{(0)} = 0 \\
\frac{dy}{dt} &= \pi \cos(\pi t) \quad \Rightarrow \quad \frac{dy}{dt} \bigg|_{(0)} = -\pi
\end{align*}
\]

A common mistake in the above question is to sub in the wrong point.
You will notice at the start of the question I found the point \((x,y)=(0,0)\)
which I needed, but was not given.

If you are not given a point you still need to make sure your final
answer has no \(x \) or \(y \) variables (or the equivalent in your case).
For example, if \(t = 0 \) was not given \(t = 0 \) in the above question,
then my answer would be:

\[
\frac{dz}{dt} = \frac{dz}{dx} \frac{dx}{dt} + \frac{dz}{dy} \frac{dy}{dt} \quad \text{where} \quad \begin{align*}
\frac{dz}{dx} &= ye^{x^2} + 1 \quad \Rightarrow \quad \sin(\pi t) e^{t^2 \sin(\pi t)} + 1 \\
\frac{dz}{dy} &= xe^{x^2} \quad \Rightarrow \quad t^2 e^{t^2 \sin(\pi t)} \\
\frac{dx}{dt} &= 2t \\
\frac{dy}{dt} &= \pi \cos(\pi t)
\end{align*}
\]

MT 235 Wk7 Page 3