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Introduction The big picture

Big picture

Frequency reuse 1: A single friend, many foes
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Introduction The big picture

A walk through a single-tier cellular network
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Introduction The big picture

Coverage at 0 dB
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Introduction The big picture

SIR distribution
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For ergodic models, the fraction of the curve that is above the threshold θ
is the ccdf of the SIR at θ:

ps(θ) , F̄SIR(θ) , P(SIR > θ)

It is the fraction of the users with SIR > θ if users are uniformly distributed.
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HIP model Definition

The HIP baseline model for HetNets

The HIP (homogeneous independent Poisson) model
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Start with a homogeneous Poisson point process (PPP). Here λ = 6.
Then randomly color them to assign them to the different tiers.
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HIP model Definition

The HIP (homogeneous independent Poisson) model
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Randomly assign BS to each tier according to the relative densities. Here
λi = 1, 2, 3. Assign power levels Pi to each tier.
This model is doubly independent and thus highly tractable.
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HIP model Basic result

Basic result for downlink

Assumptions:

A user connects to the BS that is strongest on average, while all
others interfere.

Homogeneous path loss law ℓ(r) = r−α and Rayleigh fading.

Result for α = 4:

ps(θ) = P(SIR > θ) = F̄SIR(θ) =
1

1 +
√
θ arctan

√
θ
.

Remarkably, this is independent of the number of tiers, their densities, and
their power levels.
So as far as the SIR is concerned, we can replace the multi-tier HIP model
by an equivalent single-tier model.
(For bounded path loss laws, this does not hold.)
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HIP model Basic result

Properties of the HIP model

For the unbounded path loss law:

E(S) = ∞ and E(SIR) = ∞ due to the proximity of the strongest BS.

E(I ) = ∞ for α ≥ 4 due to the proximity of the strongest interferer.

The first two properties are not restricted to the Poisson model.

Remarks

Per-user capacity improves with smaller cells, but coverage does not.
(Unless the interference benefit from inactive BSs kicks in.)

Question: How to boost coverage?
⇒ Non-Poisson deployment
⇒ BS silencing
⇒ BS cooperation

How to quantify the improvement in the SIR distribution?
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Comparing SIR Distributions

Comparing SIR distributions

Two distributions
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How to quantify the improvement?
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Comparing SIR Distributions Vertical comparison

The standard comparison: vertical
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At -10 dB, the gap is 0.058. Or 6.4%.

At 0 dB, the gap is 0.22. Or 39%.

At 10 dB, the gap is 0.15. Or 73%.

At 20 dB, the gap is 0.05. Or 78%.

Or use the gain in P(SIR ≤ θ)?
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Comparing SIR Distributions Horizontal comparison

A better choice: horizontal
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Use the horizontal gap instead.

This SIR gain is nearly constant
over θ in many cases.

If the improvement is due to better
BS deployment, it is the deployment
gain.

ps = P(SIR > θ) ⇒ ps = P(SIR > θ/G ).

Can we quantify this gain?
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Comparing SIR Distributions The horizontal gap

Horizontal gap at probability p

The horizontal gap between two SIR ccdfs is

G (p) ,
F̄−1

SIR2
(p)

F̄−1
SIR1

(p)
, p ∈ (0, 1),

where F̄−1
SIR is the inverse of the ccdf of the SIR, and p is the target success

probability.
We also define the asymptotic gain (whenever the limit exists) as

G , G (1) = lim
p→1

G (p).

Relevance

We will show that

G is relatively easy to determine.

G (p) ≈ G for all practical p.
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Comparing SIR Distributions ISR

The ISR

Definition (ISR)

The interference-to-average-signal ratio is

ISR ,
I

Eh(S)
,

where Eh(S) is the desired signal power averaged over the fading.

Comments

The ISR is a random variable due to the random positions of BSs and
users. Its mean MISR is a function of the network geometry only.

If the desired signal comes from a single BS at distance R , ISR = IRα.

If the interferers are located at distances Rk ,

MISR , E(ISR) = E

(

Rα
∑

hkR
−α
k

)

=
∑

E

(

R

Rk

)α

.
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Comparing SIR Distributions ISR

Relevance of the ISR
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pout = P(hR−α < θI ) = P(h < θ ISR)

For exponential h and θ → 0,

P(h < θ ISR | ISR) ∼ θ ISR,

thus P(h < θ ISR) ∼ θE(ISR).

So the asymptotic gain is

G , E(ISR1)/E(ISR2) .

So the gain is the ratio of the two MISRs.

How accurate is the asymptotic gain for non-vanishing θ?
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Comparing SIR Distributions ISR

The ISR for the HIP model

For the (single-tier) HIP model, we need to calculate the MISR

E(ISR) = E

(

Rα
1

∞
∑

k=2

R−α
k

)

=

∞
∑

k=2

E

(

R1

Rk

)α

,

where Rk is the distance to the k-th nearest BS.
The distribution of νk = R1/Rk is

Fνk (x) = 1 − (1 − x2)k−1, x ∈ [0, 1].

Summing up the α-th moments E(ναk ), we obtain (remarkably)

E(ISR) =
2

α− 2
.

This is the baseline E(ISR) relative to which we measure the gain.
For α = 4, it is 1. Hence pout(θ) = FSIR(θ) ∼ θ, θ → 0.
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Gains due to Deployment and Cooperation Deployment gain

Deployment gain
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For the square lattice, the gap (deployment gain) is quite exactly 3
dB—irrespective of α! For α = 4, psq

s = (1 +
√

θ/2 arctan
√

θ/2)−1.

For the triangular lattice, it is 3.4 dB. This is the maximum achievable.
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Gains due to Deployment and Cooperation BS silencing

BS silencing: neutralize nearby foes
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Gains due to Deployment and Cooperation BS silencing

Gain due to BS silencing (or interference cancellation) for HIP model

Let ISR
(!n)

be the ISR obtained when the n strongest (on average)
interferers are silenced.
For HIP,

E(ISR
(!n)

) =
2Γ(1 + α/2)

α− 2

Γ(n + 2)

Γ(n + 1 + α/2)
.

For α = 4, in particular,

E(ISR
(!n)

) =
2

n + 2
.

So the gain from silencing n BSs is simply

Gsilence = 1 +
n

2
.
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Gains due to Deployment and Cooperation Interference cancellation

Remarks on interference cancellation

The gain from successive canceling interferers is highest if transmitters
are clustered.

For a non-homogeneous Poisson model with intensity function
λ(x) = a‖x‖b , b ∈ (−2, α− 2), the closer b to −2, the better.

If small-cell BSs are clustered due to high user density or if
closed-access femtocells exist, SIC is promising.

Probability of decoding k-th strongest transmitter if k − 1 have
already been decoded, for arbitrary fading:

For θ ≥ 1 : Pk =
1

θkβΓ(1 + kβ)(Γ(1 − β))k
,

where β = (2 + b)/α ∈ (0, 1).
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Gains due to Deployment and Cooperation BS cooperation

BS cooperation: turn nearby foes into friends
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Gains due to Deployment and Cooperation BS cooperation

Cooperation for worst-case users

SIR at Voronoi vertices with cooperation
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At these locations (×), the user is
far away from any BS, and there
are two interfering BS at the
same distance.

In the Poisson model,

F̄×

SIR(θ) =
F̄ 2

SIR(θ)

(1 + θ)2
.

With BS cooperation from the 3
equidistant BSs, for α = 4,

F̄
×,coop

SIR (θ) = F̄ 2
SIR(θ/3) =

(

1 +
√

θ/3 arctan(
√

θ/3)
)

−2

.
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Gains due to Deployment and Cooperation BS cooperation

SIR at Voronoi vertices with cooperation
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Without cooperation,
E(ISR) = 4 (for α = 4).

With 3-BS cooperation, the
SIR performance is slightly
better for the worst-case users
than the general users, and
E(ISR) = 2/3.

So the gain from 3-BS
cooperation is 6, or 7.8 dB.

Can we approximate the SIR distribution using the ratio of the two MISRs?
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Gains due to Deployment and Cooperation BS cooperation

Using the ISR approximation
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For worst-case users with
n ∈ {1, 2, 3} BSs cooperating,

E(ISR) =
4 + (3 − n)(α− 2)

n(α− 2)
.

So for n = 3, the ratio of the two
MISRs is

Gcoop =
MISR

MISRcoop

= 3 +
3

2
(α− 2).
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Diversity Definition

DUI: Diversity under interference

Decreasing the variability in the SIR

The shift along the θ axis preserves the variability in the SIR.
The variability can be decreased by increasing the diversity.

Definition (DUI)

The diversity under interference is defined as

d , lim
θ→0

log pout(θ)

log θ
.

Hence
pout(θ) = FSIR(θ) = Θ(θd).
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Diversity Diversity for HIP model

Diversity for HIP model
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For a PPP with Nagakami-m fading, d = m.
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Diversity SIR gain

SIR gain with diversity

If the fading distribution satisfies Fh(x) ∼ axm, x → 0, (Nakagami fading)

pout(θ) ∼ aθmE(ISR
m
).

The diversity order is m—if the m-th moment of the ISR is finite.

The asymptotic gain is

G (m) =

(

E(ISR
m

1 )

E(ISR
m

2 )

)1/m

≈ G (1).

For the PPP, all moments of the ISR
m

are finite.

For a large class of mixing motion-invariant point process models, the
moments E(ISR

m
) exist, and all outage curves have the same slope. The

exact necessary conditions have not been established.
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Diversity SIR gain

Deployment gain for Nakagami fading
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General BS sharing

General BS sharing

Fluid sharing of BS resources

Take a non-increasing function f : R+ 7→ R
+.

Let (r1, r2, r3) be the triplet of distances to the 3 nearest BSs.

s = f (r1) + f (r2) + f (r3)

Allocate resources according to f (ri )/s from BS i .

Example:
• f (r) = r−α. For α → ∞, this is the non-sharing (hard) scheme.
• f (r) ≡ 1: BS sharing with equal powers.
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Amorphous networks

Towards amorphous networks
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BS sharing with α = 4
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Amorphous networks

"SIR walk"
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BS sharing with α = 4
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This BS sharing framework can be reversed for the uplink in a natural way.
There is hope that such a fluid BS sharing model is tractable.
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Cellular network modeling

Back to modeling

Introducing dependencies

BS of one tier are not placed completely independently (intra-tier
dependence).

BS of different tiers are not placed independently, either (inter-tier
dependence).

Intra-tier dependence

The HIP model is conservative since it places BSs arbitrarily close to each
other.
In actual deployments, it is unlikely to have two BSs very close, so the BSs
form a soft-core or hard-core process. In other words, the BSs process is
repulsive.
Repulsion can be quantified using the pair correlation function g(r). For
the PPP, g(r) ≡ 1. For a repulsive process, g(r) < 1.
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Cellular network modeling

Adjusting to population density
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A single tier with density adjusted according to the population density to
keep the average number of (active) users per cell constant.
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Cellular network modeling

Two-tier models
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Either way, there is intra- and inter-tier dependence.
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Cellular network modeling The Ginibre point process

The Ginibre model

Realizations of PPP and the Ginibre point process (GPP) on b(o, 8)
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The GPP exhibits repulsion—just as BSs in a cellular network.
Its pair correlation function is g(r) = 1 − e−r2 .
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Cellular network modeling The Ginibre point process

The Ginibre point process

The GPP is a motion-invariant determinantal point process.

Remarkable property: If Φ = {x1, x2, . . .} ⊂ R
2 is a GPP, then

{‖x1‖2, ‖x2‖2, . . .} d
= {y1, y2, . . .}

where (yk) are independent gamma distributed random variables with pdf

fyk (x) =
xk−1e−x

Γ(k)
; E(yk) = k .

Removing y1 from the process yields the Palm measure.

The intensity is 1/π but can be adjusted by scaling.

The GPP can be made less repulsive by independently deleting points
with probability 1 − β and re-scaling. This β-GPP approaches the
PPP in the limit as β → 0.
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Cellular network modeling The Ginibre point process

The Ginibre point process in action

We would like to model these two deployments:
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Cellular network modeling The Ginibre point process

The Ginibre point process in action

SIR distributions for different path loss exponents:
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For the rural region, β = 0.2. For the urban region, β = 0.9.
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Conclusions

Conclusions

The gain of a deployment/architecture/scheme is best measured as
the horizontal gap relatively to a baseline (e.g., the HIP) model.

The MISR E(ISR) is easy to obtain by simulation, since it does not
depend on the fading. The ISR-based approximation is very accurate
for ps > 3/4, and the gains are quite insensitive to the path loss
exponent and the fading statistics.

The DUI "compresses" the SIR distribution. Care is needed due to the
correlation in the interference across time and space. The existence of
a diversity gain is coupled with the moments of the ISR.

General BS sharing is a promising framework to analyze amorphous
networks.

Future work should also include models with intra- and inter-tier
dependence. The Ginibre point process is promising as a repulsive
model due to its tractability.
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Conclusions

Key Take-away: What matters is the

WAIST-HIP Ratio

MISRHIP

MISRWAIST

WAIST: Wireless Advanced Interference
Suppression Technique
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