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- . Seven Ways that HetNets are a Cellular Paradigm Shift, by
O Iva IO n J. Andrews, IEEE Communications Magazine, March 2013

e oo g an . < o
o E ) _ PR < P

Aspect Traditional Cellular ‘.'eNe"t' |

Performance  Outage/coverage probability distribution (in terms of SINR) ‘; Outage/coverage probability distribution (in terms of
Metric or spectral efficiency (bps/Hz) ¥ rate) or area spectral efficiency (bps/Hz/m?)

BSs spaced out, have distinct coverage areas. Hexagonal ‘_{ Nestedcells (pico/femto) inside macrocells. BSs are

Topology grid is an ubiquitous model for BS locations. placed opportunistically and their locations are better
{ modeled as a random process.

Cell Usually connect to strongest BS, or perhaps two strongest "'_' Connect to BS(s) able to provide the highest data rate,

Association during soft handover % rather than signal strength. Use biasing for small BSs.

Downlink vs. Downlink and uplink to a given BS have approximately the 4 Downlink and uplink can have very different SINRs; ,
Uplink same SINR. The best DL BS is usually the best in UL too. ' should not necessarily use the same BS in each dlrectlon

Mobility Handoff to a stronger BS when entering its coverage area, '. Handoffs and dropped calls may be too frequent if use
involves signaling over wired core network ¢ small cells when highly mobile, overhead a major concern.

BSs have heavy-duty wired backhaul, are connected into 4 BSs often will not have high speed wired connections.

Backhaul the core network. BS to MS connection is the bottleneck. -. BS to'core network (backhaul) link is often the bottle-
& neck in terms of performance and cost.
. . Manage closed access interference through resource
Employ (fractional) frequency reuse and/or simply tolerate & . - : . .3
Interference 7" = cell edae rates. All BSs are available for connec-  F 2llocation; users may be “in” one cell while communicats
Management vy P g ; " ing with a different BS; interference management hard %

tion, i.e. “open access” : .
(e oP {due to irregular backhaul and sheer number of BSs
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Outline

« Part |: MWBM

MWBM is a special LP for which efficient polynomial-time
algorithms exist, for example, the Hungarian algorithm.

Useful to approximate at high-SNR “MIMO terms”.

Ex: gDoF of Gaussian broadcast networks with relays and user
scheduling decisions [arXiv:1304.5790, M. Cardone et al]

» Part ll: Mixin + TIN

To reduce control-plane overhead, design PHY robust to
asynchronism and lack of user coordination.

Ex: “Mixed inputs"” and “treat interference as noise”: optimal to
within a log(log(SNR)) gap [arXiv:1401.5536 A. Dytso et al]
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Definitions o JIT° 4]

A matching, or independent edge set, in a graph
G=(V,E) is a set of edges without common vertices.

* In a weighted bipartite graph, each edge has an
associated value. A maximum weighted bipartite
matching (MWBM), or assignment problem, is a
matching where the sum of the values of the edges
In the matching have a maximal value.

* The Hungarian algorithm solves the assignment
problem in O(VA2 E); it uses a modified shortest
path search in the augmenting path algorithm.
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Example

Each link (from a Tx antenna to a Rx
antenna) has a weight’ given by its
power expressed in dB

1 4 5 )
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MIMO-type Setting

Y =HX +Z c C"?*!  H e C"r*"T,
Z ~ N(0,1,,) independent of X,

Cp:X e C"™1 E[|X;*] €1, i € [1:ny], independent,
Cp: X eC'™ R X2 <1, i €[1:ny],
Cy:X eC'™: Y E[Xi|*] < nr,

i€[l:inr]

I(X;Y):=logl|L,, + HY,HY

e = E[XX"] > 0,,
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MIMO-type Setting

Oy = log InR+HHH|
< (C; <(Cs

I, +HHY nT‘

< log

C3 — C1 < rank[H] log(nr)

< min(ny,ng)log(nr)

Up to a constant, Tx power
constraint does not matter

3x2 MIMO
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Example: SIMO (or SISO BC)

[H]U =V SNRB” exp(j@ij)

H:=[h,....,h,, ]} «—=B:=[B1,...,8.,]"

Rx

i
ainin

log (1 n SNRmaXi{ﬁi})

< log (1 n SNRmaXi{BZ’}) + log(ng).

Up to a constant, Rx
processing does not matter
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Example: SIMO (or SISO BC)

[H]U =V SNRB” exp(j@ij)

H:=[h,....,h,, ]} «—=B:=[B1,...,8.,]"

[

- Rx log (1 4+ SNRmaX¢{5¢}>

< log (1 n SNRmaXi{BZ’}) + log(ng).

Up to a constant, Rx
processing does not matter
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log ‘I + HHH‘ ~ MWBM(B) log (1 + SNR)

d1 = Ba1 + Bs2 ds = Bs1 + Ba3
do = Ba1 + Bs3 ds = Ba2 + Bs3
d3 = Bs1 + Ba2 de = Bs2 + Pa3

d = max {d;,d2,d3,ds,ds,ds }
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log ‘I + HHH‘ ~ MWBM(B) log (1 + SNR)

Bs3

ds = Bs1 + Ba3
do = Ba1 + Bs3 ds = Ba2 + Bs3
d3 = Bs1 + Ba2 de = Bs2 + Pa3

d = max {d;,d2,d3,ds,ds,ds }
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log ‘I + HHH‘ ~ MWBM(B) log (1 + SNR)

41
Bs3
d1 = Ba1 + Bs2
do = Ba1 + Bs3 ds = Ba2 + Bs3
d3 = Bs1 + Ba2 de = Bs2 + Pa3

d = max {d;,d2,d3,ds,ds,ds }
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log ‘I + HHH‘ ~ MWBM(B) log (1 + SNR)
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Example: FD SISO BC+relay
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Example: FD SISO BC+relay

Ry + Ry < I (Xo;YR,Y1,Y2|X1)

+— max {510, £20,0}
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Example: FD SISO BC+relay

X

(W17 W2

e
Y
T1 \/_91

w0

Ry + Ry < I (Xo;YR,Y1,Y2|X1)

+— max {10, $20,0}

N4

Ri+ Ry <1 (Xo,X1;Y1,Y2)
<— max {B10 + B21, 811 + P20}
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Example: FD SISO BC+relay

min { max {510, 520,90} , max {810 + B21, Bi2 + B2} } ;

0 <9 < max {010,820} : serve ‘best’ user without relay

max {510, B20} < § < max {511,521} : serve ‘best’ user with relay

max {511, 821} < 6 < max{P1o + P21, P12 + P20} : serve both users
max {819 + P21, B12 + B20} < 0 : serve both users == MISO BC
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HetNets: BCIC + relays
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Recipe

“erisiees and Computer Engineering

» Take your favorite outer or lower bound,
possibly further upper or lower bound so
as to only have channel gains

* Pre-log == gDoF == MWBM

* The overall channel matrix must be full
rank (i.e., approximation too “crude” to
capture small variations in channel gains,
example ;_ [(1+oVSs VS

ple g [ Vs vl )
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Disclaimer

« SISO compound MAC + relays: NNC
achieves 0.63 x 2 x N bits of cut-set bound

» SISO private msgs BC + relays: can
achieve O(N log(N)) bits of cut-set bound

 |C (+ relays): open, and cut-set bound
known to be insufficient ....
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Mixed Inputs and

Treat Interference as Noise:
mixed input refers to a random variable that is a
mixture of a continuous and a discrete part,
l.e., a Gaussian and a uniform PAM
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Oblivious Processing
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Oblivious Processing

Wi---»| Encoder f-----
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Past Work

»| Relay
x| & h
W—s[Encoder > i Decoder [ 1y
A & Yy -¥o A
! 2 Relay .
c C

O. Simeone, E. Erkip, and S. Shamai, “On codebook
information for interference relay channels with out-of-band
relaying,” IT May 2011.

1. Primitive relay channel: capacity with compress forward
2. IC+R+O0blivious receivers: capacity with compress
forward and TIN

3. Gaussian noise: optimizing input unknown
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A. Sanderovich, S. Shamai, Y. Steinberg, and G.
Kramer, “Communication via decentralized
processing,” IT July 2008.

1. Upper and lower bounds, which coincide for
deterministic channels
2. Gaussian noise: optimizing input unknown
3. Gaussian noise: example where BPSK
outperforms Gaussian inputs

PY1,Y2,Y3|X1,X2,X3 (y17 y27 y3|‘r17 :627 x3)
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Past Work (discrete inputs)

* Y. Wu and S. Verdu, “The impact of constellation
cardinality on Gaussian channel capacity,”
Allerton 2010 (point to point)

« E.Calvo et al “On the totally asynchronous
interference channel with SU receivers,” ISIT 2009

 E.Abbe and L.Zheng, “A coordinate system for
Gaussian networks,” IT Feb. 2012

* Achievable for any (i-stable) IC Rr < I(Xi;Yi), k€ [1: K]

» Continuous inputs are “bad interferers” --
especially if one treats them as noise
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Main Tool
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Za ~ N(0,1) independent of Xp ~ discrete :
1
ly (N, dfnin(XD)) < I(Xpi Xp + Zg) < 5 log (min (N2, 1+ 5XD))

€

lg(n, x) = [log(n) — %log (§> — log (1 + (n — 1)6—49[;)] +

2 —4d? .«
N =1+€&x,, Ne mirXp) < constant

1
I(Xp; Xp+ Zg) = 5 log (1 + £x,) — constant

Lower bound holds for any
constellation but may be
arbitrary lose for a specific

Sydney June 2014




Example: AWGN

T T
city of PTP
chievable with finite N _
Achievable with N=f(SNR)
N=128 B

A |

A ] ]

yaun.
[ ]/

V/
7)) ) )

T T
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=VSNR X + 7 :
Z ~ N(0,1), X ~PAM (N),

12
d? . e
min(X) N2 _ 1’

—~ {\/1 + SNRHJ

 [Alog (LIn(SNR))]"
; 110g(SNR)

1
gap = glog(SN R) + 5 log (8e)
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Main Result

» Choice of inputs

X; =+/1-0; Xip + /6 Xig, 6; €[0,1],
Xq;D ~ PAM (N,L) ) X/L'G ~ N(O, 1),
where X;; are independent for ¢ € [1:2],5 € {D,G}.

» Discrete part = N =|Vi+al=]
‘common message’  [ilog(Ln(x)]”
“~ " Tlog(SNR)

1
R = §log(1 + x) — gap

€ 1
UIC Department of Electrical gap = o log(SNR) + 5 log (8e)
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How about TDMA?

1
R= ZT 5 log (1+SNR;)

~ log (H \/SNRiTi>

vV SNR; +—— N;

No need to time-share /
- coordinate: the same effect
N = HN%' (up to a gap) can be

¢ obtained by varying the
number of points of the
discrete part
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Recipe

 Common message <--> discrete input

* Private message <--> Gaussian input

* TIN is optimal to within log(log(SNR))

* No need of joint decoding

* No need of synchronous communication

 TDMA by appropriately varying number of
points in the discrete part of the input
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Thank you
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