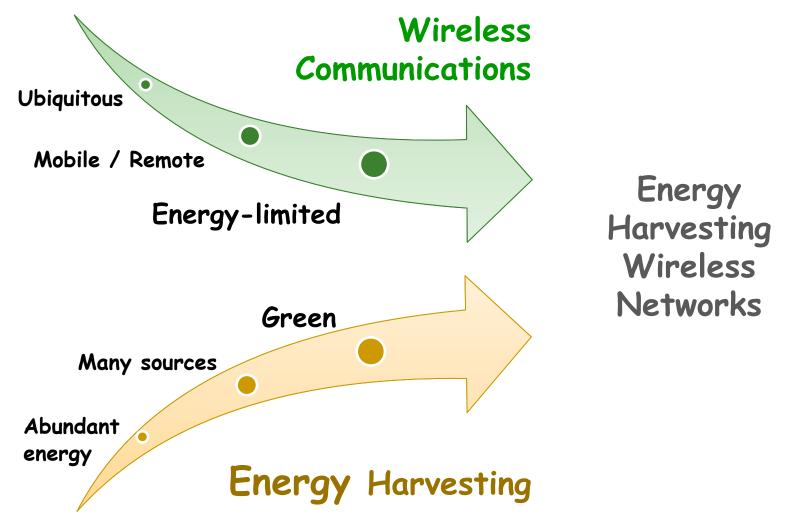
Design Principles for Energy Harvesting Wireless Communication Networks

Wireless Communications & Networking Laboratory WCAN@PSU Aylin Yener

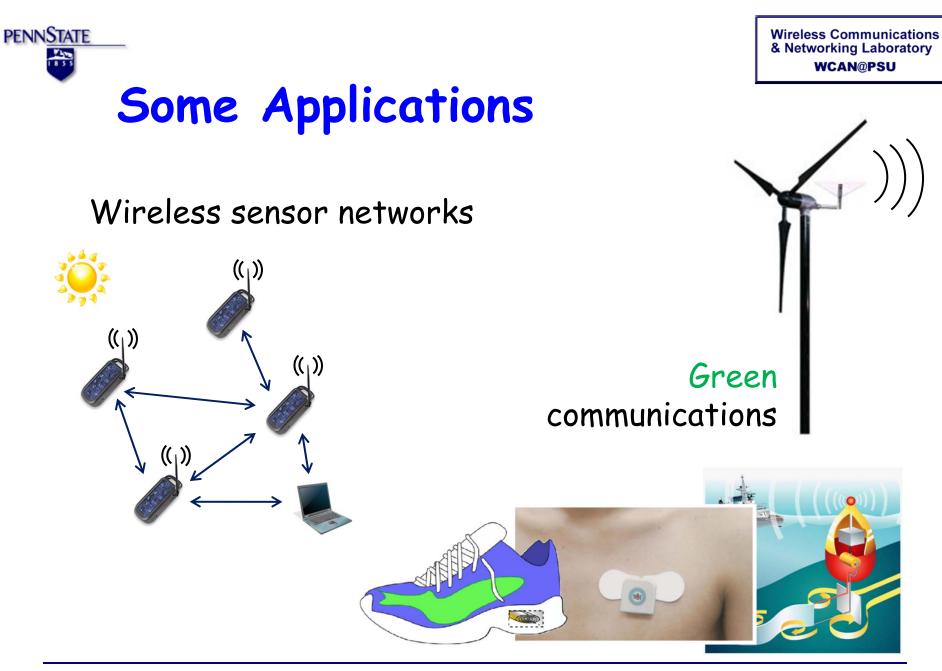
yener@ee.psu.edu

Acknowledgment: NSF 0964364



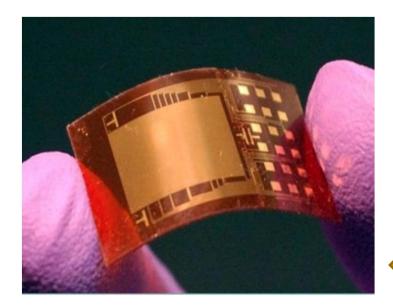
- Wireless networking with rechargeable (energy harvesting) nodes:
 - Green, self-sufficient nodes,
 - Extended network lifetime,
 - Smaller nodes with smaller batteries.

A relatively new field with increasing interest.



Wireless Communications & Networking Laboratory WCAN@PSU

 Fujitsu's hybrid device utilizing heat or light.



 Nanogenerators built at Georgia Tech, utilizing strain

Image Credits: (top) http://www.fujitsu.com/global/news/pr/archives/month/2010/20101209-01.html (bottom) http://www.zeitnews.org/nanotechnology/squeeze-power-first-practical-nanogenerator-developed.html

New Network Design Challenge

- A set of energy feasibility constraints based on energy harvests govern the communication resources.
- Main design question:

PENNSTATE

When and at what rate/power should a rechargeable (energy harvesting) node transmit?

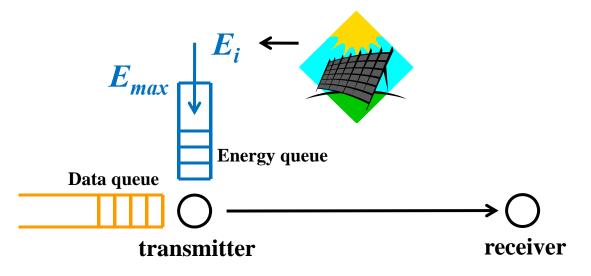
- Optimality? Throughput: Delivery Delay
- Outcome: Optimal Transmission Schedules

Throughput Maximization

[Tutuncuoglu-Y.'12]

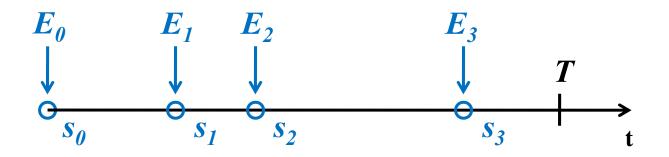
- One Energy harvesting transmitter.
- Find optimal power allocation/transmission policy that departs maximum number of bits in a given duration T.
- Energy available intermittently.
- Up to a certain amount of energy can be stored by the transmitter → BATTERY CAPACITY.

Energy harvesting transmitter:



- Energy arrives intermittently from harvester
- Transmitter has backlogged data to send within a deadline T.
- Stored in a finite battery of capacity E_{max}

• Energy arrivals of energy E_i at times s_i



- Arrivals known non-causally by transmitter,
- Design parameter: power \rightarrow rate r(p).

• Power allocation function: p(t)

• Energy consumed: $\int_0^T p(t)dt$

- Transmission with power p yields a rate of r(p)
- Short-term throughput: $\int_0^T r(p(t)) dt$

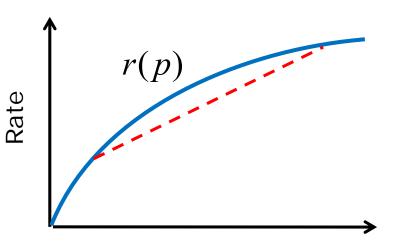
- Transmission with power p yields a rate of r(p)
- Assumptions on r(p):

i.
$$r(0)=0, r(p) \to \infty \text{ as } p \to \infty$$

ii. increases monotonically in p

iii. strictly concave

iv. r(p) continuously differentiable

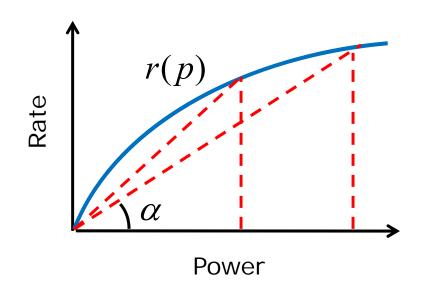


Power

Example: AWGN Channel,
$$r(p) = \frac{1}{2} \log \left(1 + \frac{p}{N}\right)$$

PENNSTATE Power-Rate Function

• r(p) strictly concave, increasing, r(0)=0 implies $\tan(\alpha) = \frac{r(p)}{p}$ is monotonically decreasing in p



 Given a fixed energy, a longer transmission with lower power departs more bits.

Lazy Scheduling, El Gamal 2001

 Also, r⁻¹(p) exists and is strictly convex

(Energy arrivals of E_i at times s_i)

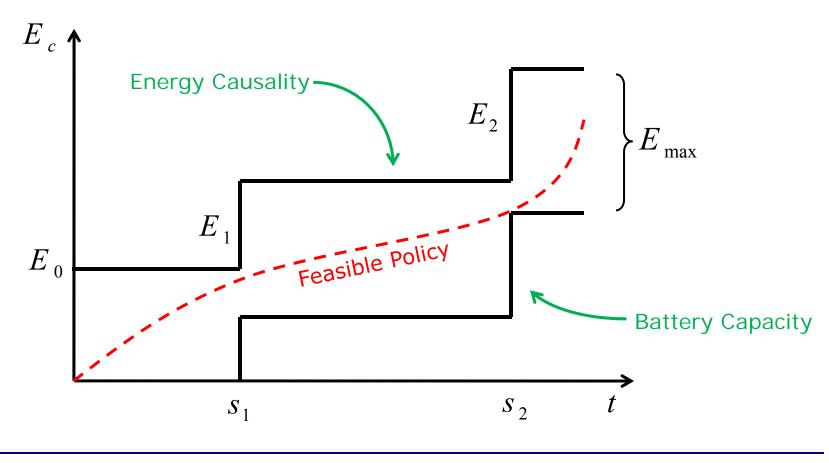
• Energy Causality:
$$\sum_{i=0}^{n-1} E_i - \int_0^{t'} p(t) dt \ge 0$$
 $s_{n-1} \le t' \le s_n$

• Battery Capacity:
$$\sum_{i=0}^{n-1} E_i - \int_0^{t'} p(t) dt \le E_{\max}$$
 $S_{n-1} \le t' \le S_n$

Set of energy-feasible power allocations

$$\mathfrak{P} = \left\{ p(t) \mid 0 \le \sum_{i=0}^{n-1} E_i - \int_0^{t'} p(t) dt \le E_{\max}, \forall n > 0, s_{n-1} \le t' \le s_n \right\}$$

Wireless Communications & Networking Laboratory WCAN@PSU



Maximize total number of transmitted bits by deadline T

$$\max_{p(t)} \int_0^T r(p(t)) dt, \quad s.t. \quad p(t) \in \mathfrak{P}$$
$$\mathfrak{P} = \left\{ p(t) \mid 0 \le \sum_{i=0}^{n-1} E_i - \int_0^{t'} p(t) dt \le E_{\max}, \forall n > 0, s_{n-1} \le t' \le s_n \right\}$$

Convex constraint set, concave maximization problem

Necessary conditions for optimality of a transmission policy

Property 1: Transmission power remains constant

between energy arrivals.

Proof: By contradiction

PENNSTATE

Let $p(t_1) > p(t_2)$ for some $t_1, t_2 \in [0, \Gamma]$ with given total energy Define $p^*(t) = \begin{cases} p(t_1) - \varepsilon & [t_1 - \delta, t_1 + \delta] \\ p(t_2) + \varepsilon & [t_2 - \delta, t_2 + \delta] \\ p(t) & else \end{cases}$ Then $\int_{0}^{\Gamma} r(p^*(t)) dt > \int_{0}^{\Gamma} r(p(t)) dt$ due to strict concavity of r(p)

Necessary conditions for optimality

Let the total consumed energy in epoch $[s_i, s_{i+1}]$ be E_{total}

which is available in energy queue at $t = s_i$

Then a constant power transmission

PENNSTATE

$$p' = \frac{E_{total}}{s_{i+1} - s_i}, \qquad t \in [s_i, s_{i+1}]$$

is feasible and strictly better than a non-constant transmission.

Transmission power can change only at S_i

Property 2: Battery never overflows.

Proof:

Assume an energy of Δ overflows at time τ

Define
$$p'(t) = \begin{cases} p(t) + \frac{\Delta}{\delta} & [\tau - \delta, \tau] \\ p(t) & else \end{cases}$$

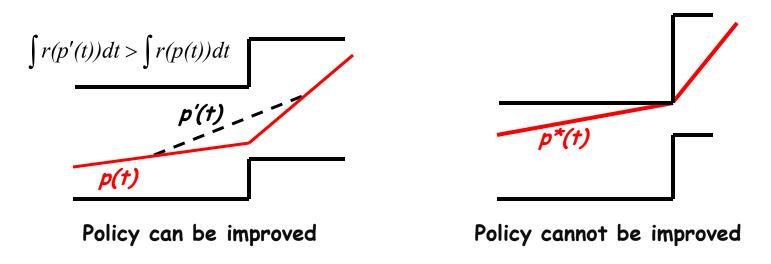
Then $\int_{0}^{T} r(p'(t))dt > \int_{0}^{T} r(p(t))dt$ since $r(p)$ is increasing in p

WCAN@PSU

PENN<u>STATE</u>

Necessary conditions for optimality of a transmission policy

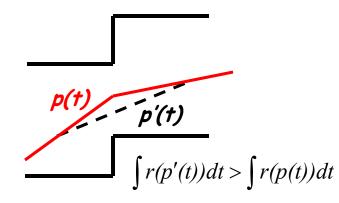
 Property 3: <u>Power level increases at an energy arrival instant</u> only if battery is depleted. Conversely, power level decreases at an energy arrival instant only if battery is full.



PENN<u>STATE</u>

Necessary conditions for optimality of a transmission policy

 Property 3: Power level increases at an energy arrival instant only if battery is depleted. <u>Conversely, power level decreases</u> <u>at an energy arrival instant only if battery is full.</u>



Policy can be improved

p*(†)

Policy cannot be improved

PENN<u>STATE</u>

Necessary conditions for optimality of a transmission policy

• Property 4: Battery is depleted at the end of transmission.

Proof: Assume an energy of Δ remains after p(t)

Define
$$p'(t) = \begin{cases} p(t) + \frac{\Delta}{\delta} & [T - \delta, T] \\ p(t) & else \end{cases}$$

Then $\int_{0}^{T} r(p'(t)) dt > \int_{0}^{T} r(p(t)) dt$ since $r(p)$ is increasing

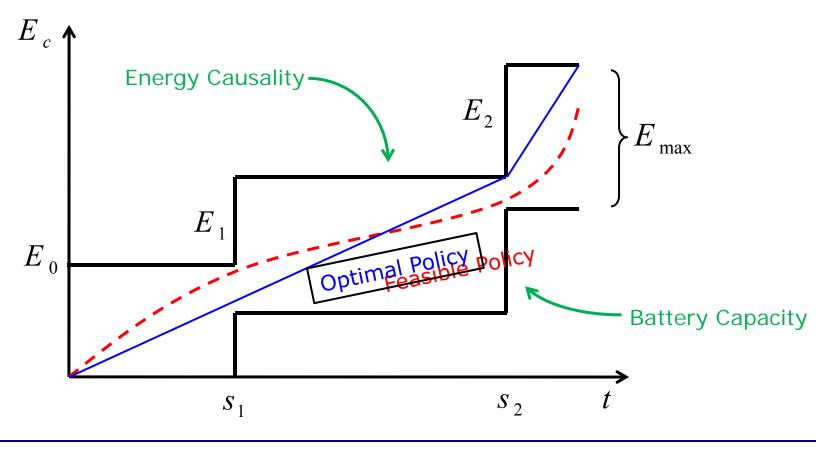
Implications of Properties 1-4:

Structure of optimal policy: (Property 1)

$$p(t) = \begin{cases} p_n & i_{n-1} < t < i_n \\ 0 & t > T \end{cases}, \quad i_n \in \{s_n\}, \quad p_n \text{ constant} \end{cases}$$

- For power to increase or decrease, policy must meet the upper or lower boundary of the tunnel respectively (Property 3)
- At termination step, battery is depleted (Property 4).
- An algorithmic solution can be found recursively, see [Tutuncuoglu-Y.12]

Wireless Communications & Networking Laboratory WCAN@PSU



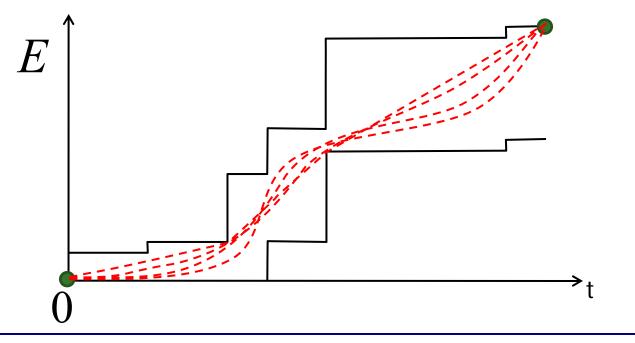
- Optimal policy is identical for any concave power-rate function!
- Let $r(p) = -\sqrt{p^2 + 1}$, then the problem solved becomes:

 $\max_{p(t)} \int_0^T -\sqrt{p^2(t) + 1} dt \qquad s.t. \ p(t) \in \mathfrak{P}$ $= \min_{p(t)} \int_0^T \sqrt{p^2(t) + 1} dt \qquad s.t. \ p(t) \in \mathfrak{P}$

length of policy path in energy tunnel

 \Rightarrow The **throughput maximizing policy** yields the **shortest path** through the energy tunnel for any concave power-rate function.

- Property 1: Constant power is better than any other alternative <</p>
- Shortest path between two points is a line (constant slope)



Alternative Solution (Using Property 1)

PENNSTATE

1855

Transmission power is constant within each epoch:

$$p(t) = \{p_i, t \in epoch \ i, \ i = 1, ..., N\}$$
(N: Number of arrivals within [0, T])

$$\max_{p_i} \sum_{i=1}^{N} L_i . r(p_i) \qquad (L_i: length of epoch i)$$

s.t. $0 \le \sum_{i=1}^{n} E_i - L_i p_i \le E_{\max} \quad n = 1, ..., N$

• KKT conditions \rightarrow optimum power policy.

Complementary Slackness

Conditions:

$$\lambda_n \left(\sum_{i=1}^n L_i p_i - E_i \right) = 0 \qquad \forall n$$
$$\mu_n \left(\sum_{i=1}^n E_i - L_i p_i - E_{\max} \right) = 0 \qquad \forall n$$

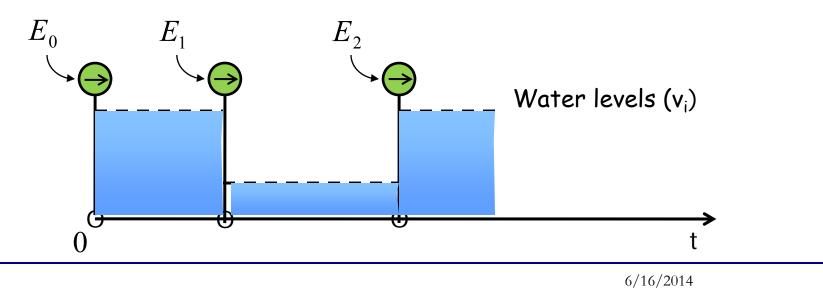
 λ_n 's are positive only when battery is empty $\left(\sum_{i=1}^n L_i p_i - E_i\right) = 0$ μ_n 's only positive only when battery is full $\left(\sum_{i=1}^n E_i - L_i p_i - E_{\max}\right) = 0$

$$p_n^* = \frac{1}{\sum_{j=n}^N (\lambda_j - \mu_j)} - 1$$

increases at a positive λ_n decreases at a positive μ_n

(Water Filling-Goldsmith 1994)

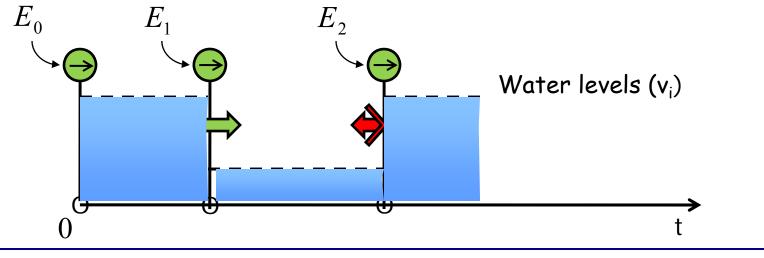
- [Ozel, Tutuncuoglu, Ulukus, Y., 2011]
- Harvested energies filled into epochs individually



Wireless Communications & Networking Laboratory

WCAN@PSU

- Harvested energies filled into epochs individually
- Constraints:

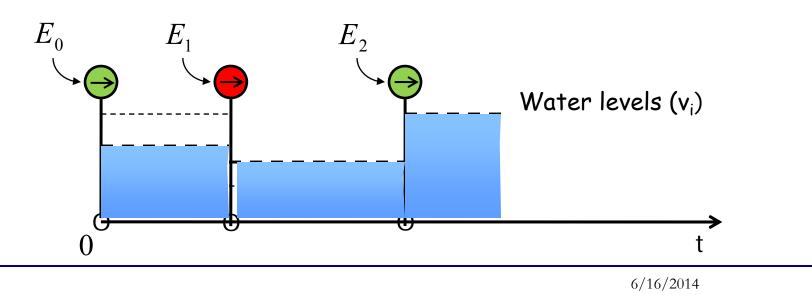


6/16/2014

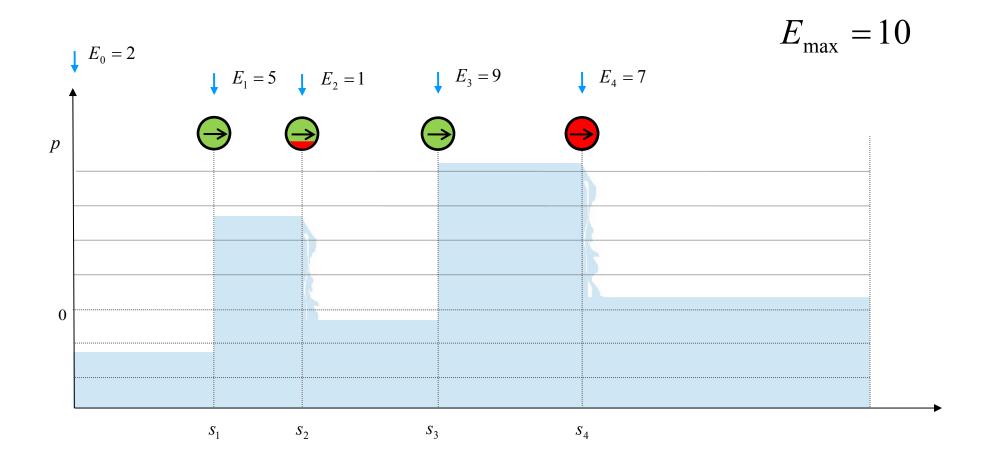
Wireless Communications & Networking Laboratory

WCAN@PSU

- Harvested energies filled into epochs individually
- Constraints:
 - Energy Causality: water-flow only forward in time
 - Battery Capacity: water-flow limited to E_{max} by taps \bigcirc



Wireless Communications & Networking Laboratory WCAN@PSU

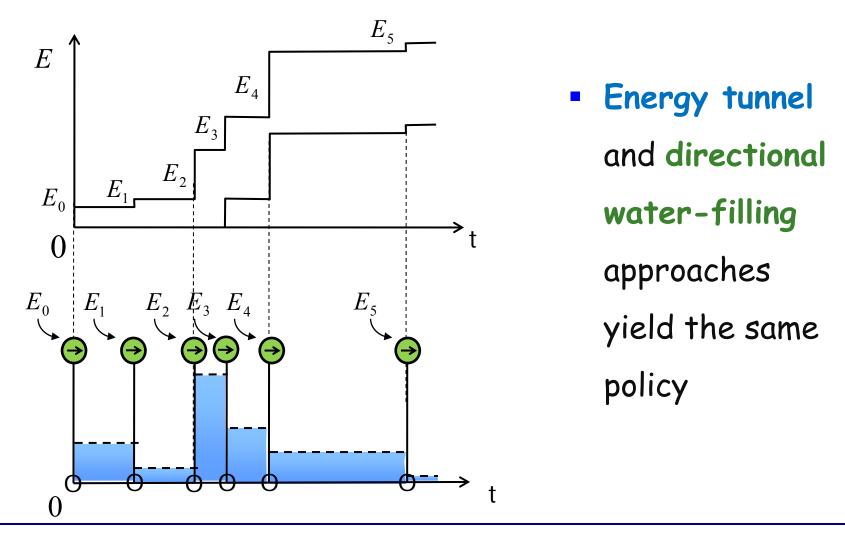


Wireless Communications & Networking Laboratory WCAN@PSU

Directional Water-Filling

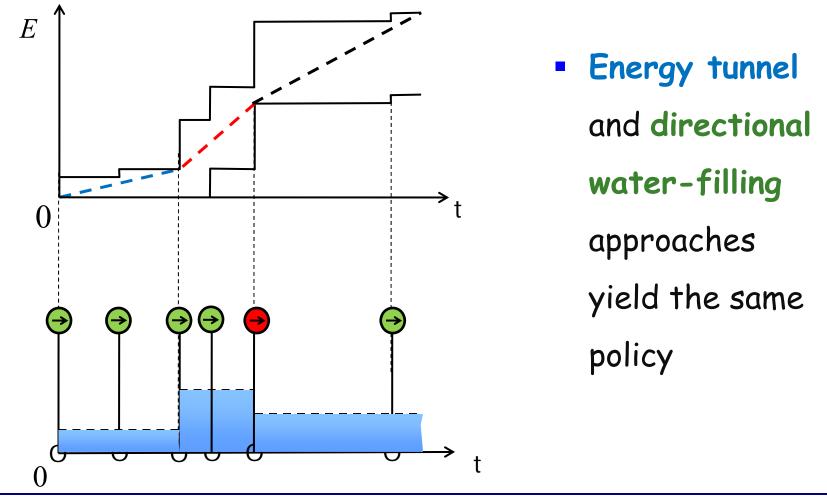
PENNSTATE

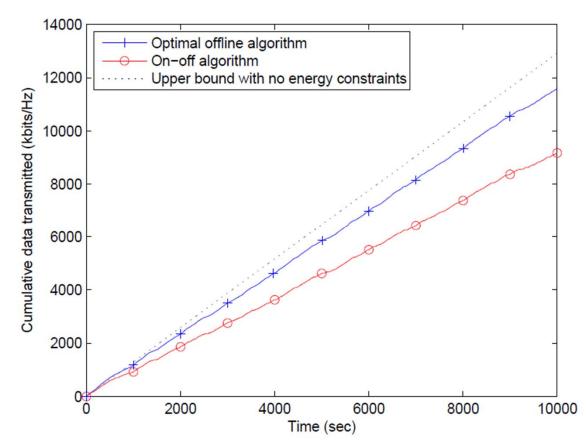
1 8 5 5



PENNSTATE 1 8 5 5

Directional Water-Filling



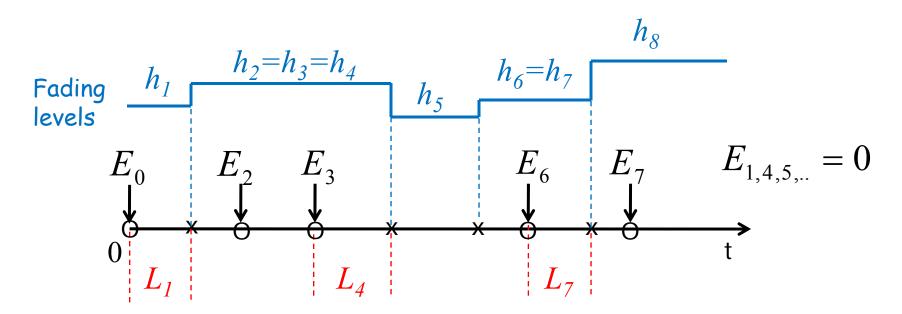


 Improvement of optimal algorithm over an *on-off transmitter* in a simulation with truncated Gaussian arrivals.

Extension to Fading Channels

- [Ozel-Tutuncuoglu-Ulukus-Y.'11]
- Find the short-term throughput maximizing and transmission completion time minimizing power allocations in a fading channel with known channel states.
- Finite battery capacity

PENNSTATE



- AWGN Channel with fading $h: r(p,h) = \frac{1}{2}\log(1+hp)$
- Each "epoch" defined as the interval between two "events".

Transmission power constant within each epoch:

$$p(t) = \{p_i, t \in epoch \ i, \ i = 1, \dots, M\}$$

• Maximize total number of transmitted bits by deadline $T \max_{p_i} \sum_{i=1}^{M} \frac{L_i}{2} \log(1 + h_i p_i)$

s.t.
$$0 \le \sum_{i=1}^{n} E_i - L_i p_i \le E_{\max}$$
 $n = 1, ..., M$

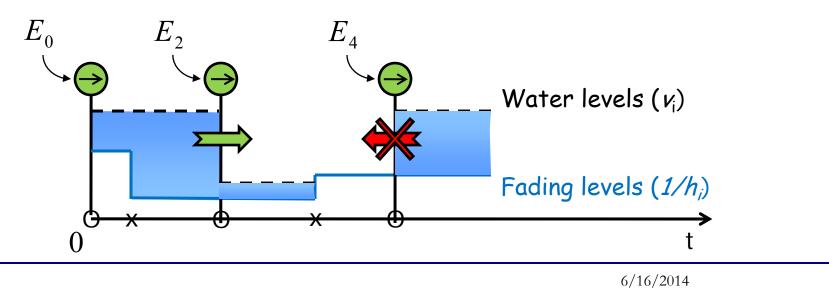
Solution once again¹ is directional waterfilling.

$$p_n^* = \left[\frac{1}{\sum_{i=n}^M \lambda_i - \mu_i} - \frac{1}{h_n}\right]^+$$

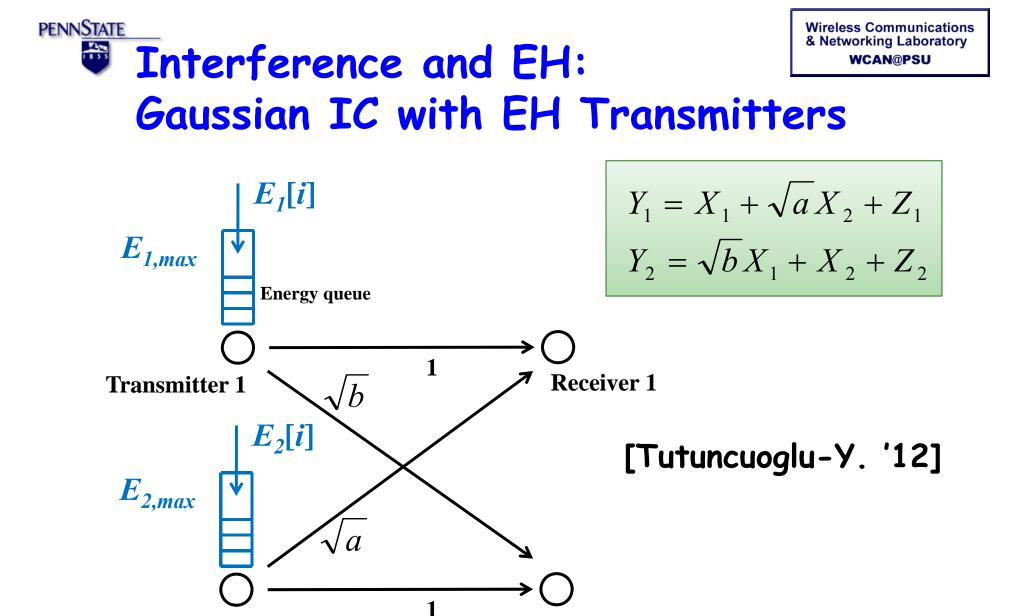
6/16/2014

Wireless Communications & Networking Laboratory WCAN@PSU

- Same directional water filling model with added fading levels.
 - Directional water flow (Energy causality)
 - Limited water flow (Battery capacity)



- How to allocate power when there are more than one energy harvesting transmitters sharing the same medium?
- How do the network parameters affect the optimal policy?
- Many recent multi-node models, e.g., MAC (and BC) [Ozel,Yang,Ulukus'11,'12], Relay [Cui, Zhang,'12], [Oner, Erkip'13], [Varan, Y.'13], ..., Two-way Relay [Tutuncuoglu, Varan, Y.'13],...



Transmitter 2

Receiver 2

Sum-Throughput Maximization Problem:

Find optimal transmission power/rate policies that maximize the total amount of data transmitted to both receivers by a deadline $T=N\tau$.

$$\max_{\mathbf{p}_1 \ge 0, \mathbf{p}_2 \ge 0} \sum_{i=1}^N \tau \cdot r(p_1[i], p_2[i])$$

s.t.
$$0 \le \sum_{i=1}^n E_j[i] - \tau \cdot p_j[i] \le E_{j,\max}$$
$$j = 1, 2 \quad n = 1, \dots, N$$

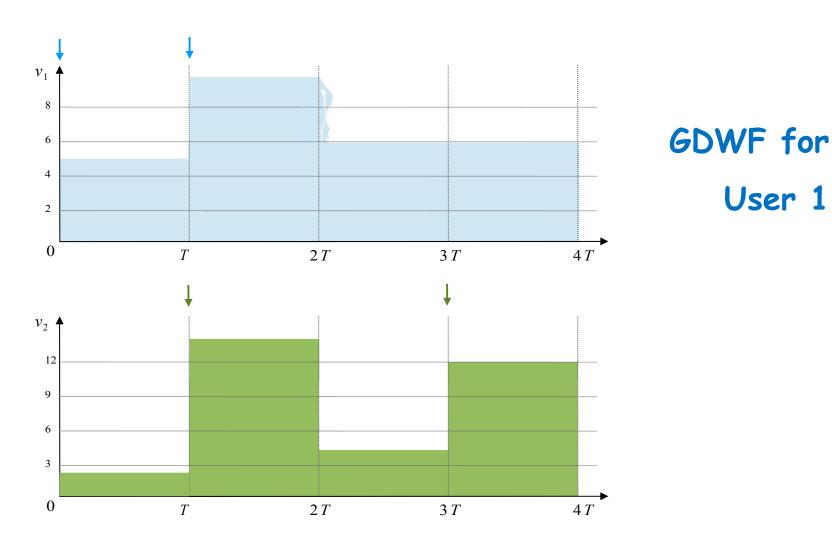
• Claim: $r(p_1, p_2)$ is jointly concave in p_1 and p_2

Given any transmission scheme achieving a sum-rate $r(p_1,p_2)$, one can utilize time-sharing to construct concave sum-rate:

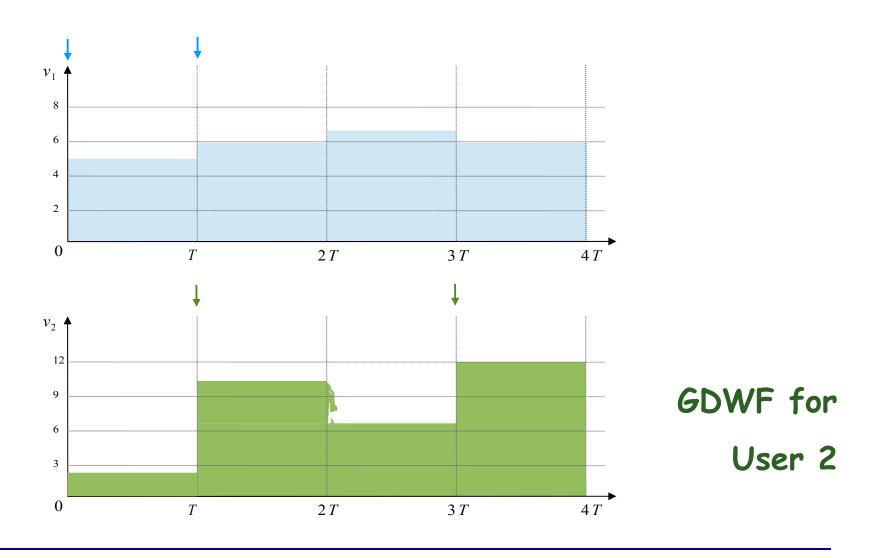
$$r^{*}(p_{1}, p_{2}) = \max \begin{cases} r(p_{1}, p_{2}), \\ \{\lambda \cdot r(p_{1}', p_{2}') + (1 - \lambda) \cdot r(p_{1}'', p_{2}'') \\ s.t. \ \lambda \cdot p_{j}' + (1 - \lambda) \cdot p_{j}'' = p_{j}, 0 \le \lambda \le 1, p_{j}', p_{2}'' \ge 0 \end{cases} \end{cases}$$

Convex problem allows the solution to be found using coordinate descent between $p_1[i]$ and $p_2[i]$

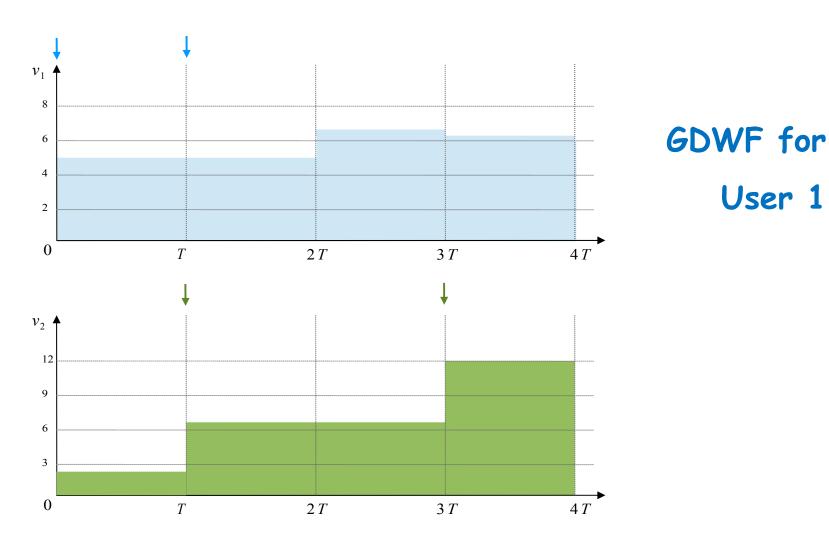
Iterative Generalized Directional Water-filling(IGDWF): constrained water-filling with generalized water levels: $v_n = \frac{\partial}{\partial p} r(p) \bigg|_{p_n} = \sum_{i=n}^{N} (\lambda_i - \mu_i) - \eta_n$

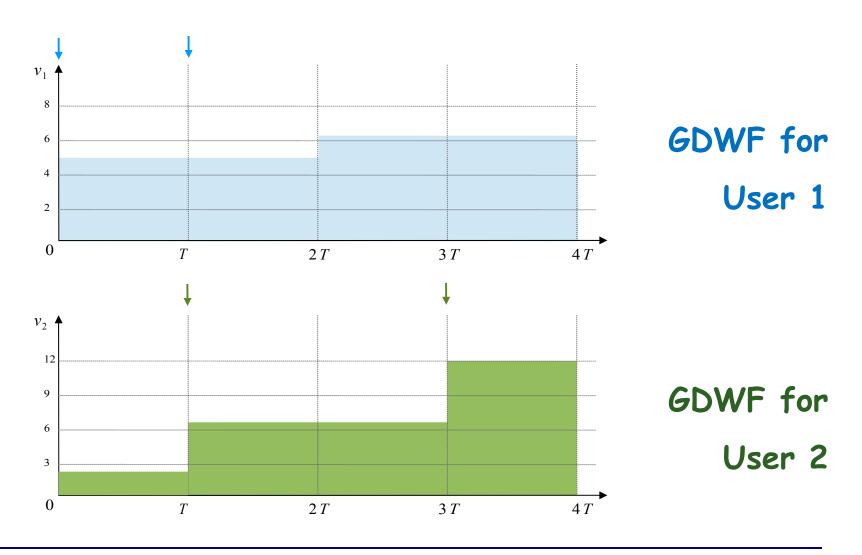


Wireless Communications & Networking Laboratory WCAN@PSU



User 1

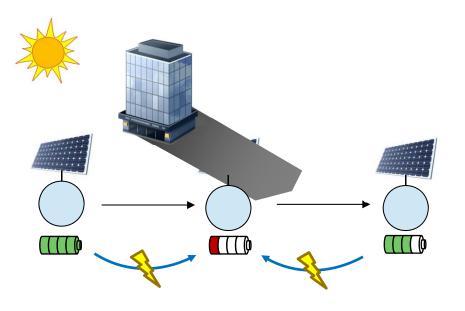




- Multiple energy harvesting transmitters sharing the same medium: transmit policy of one depends on the others.
- Care need to be exercised in iteratively finding the water-filling solutions.
- Policies do depend heavily on the channels, some instances converge in one iteration and/or result in simplified algorithms, e.g., strong interference.

Multiple EH Transmitters: The concept of Energy Cooperation [Gurakan-Ozel-Yang-Ulukus '12]

• Intermittent energy \Rightarrow nodes may be energy deprived!



- Relay can "receive" the energy to forward the data.
- Energy cooperation between nodes can be very useful!

PENNSTATE Wireless Energy Transfer

Tag-it"

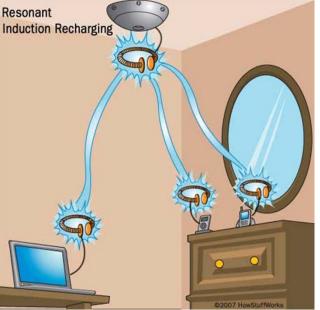
1855

- Already present in RFID systems
- New technologies like strongly coupled magnetic resonance reported to achieve
 - high efficiency in

mid-range

Transfer energy to a 60-watt bulb with 50 percent efficiency from 6-feet & 90 percent efficiency from 3-feet (MIT). 75 percent efficiency from two to three feet away (Intel).

Image Credits: (top) http://www.siongboon.com/projects/2012-03-03_rfid/image/inlay.jpg 6/16/2014 (middle) http://www.witricity.com



Wireless Communications & Networking Laboratory WCAN@PSU

In-body (in-vein) wireless devices

Image Credits: (top)

http://www.extremetech.com/extreme/119477-stanfordcreates-wireless-implantable-innerspace-medical-device (bottom) http://www.imedicalapps.com/2012/03/roboticmedical-devices-controlled-wireless-technologynanotechnology/ Poon, 2012

52

Wireless Communications & Networking Laboratory WCAN@PSU

1

Energy Harvesting and Cooperating Models (EH-EC)

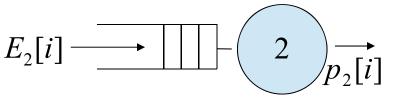
Time slotted model, N slots
 with length T, indexed by i

PENNSTATE

- K transmitters receive energy packets of size E_j[i] at the
 beginning of the ith time slot
- Received energy stored in an infinite size battery

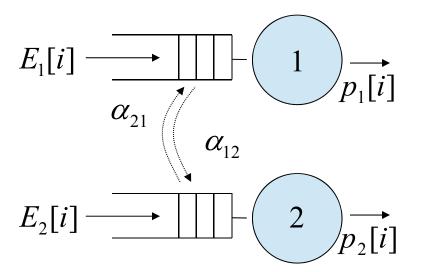
 $E_1[i]$

• In slot *i*, node *k* transmits with power $p_k[i]$



- In time slot *i* ,transmitter*k* sends transmitter *j* an energy of $\delta_{k,j}[i]$ with efficiency α_{kj}
- Uni-directional energy transfer is a special case with

$$\alpha_{k,j} = 0, \ \alpha_{j,k} > 0, \quad j,k = 1,...,K$$



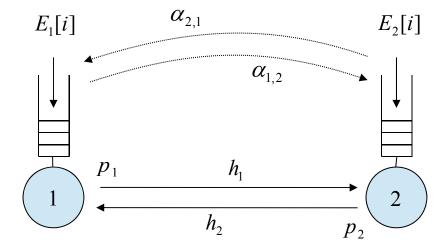
• Energy in node k's battery at the end of the *i*th time slot:

$$E_{k}^{bat}[n] = \sum_{i=1}^{n} \left(E_{k}[i] + \sum_{j=1}^{K} \left(\alpha_{j,k} \delta_{j,k}[i] - \delta_{k,j}[i] \right) - p_{k}[i]T \right)$$

Harvested energy
Harvested energy
Received and sent energy
Energy used for transmission

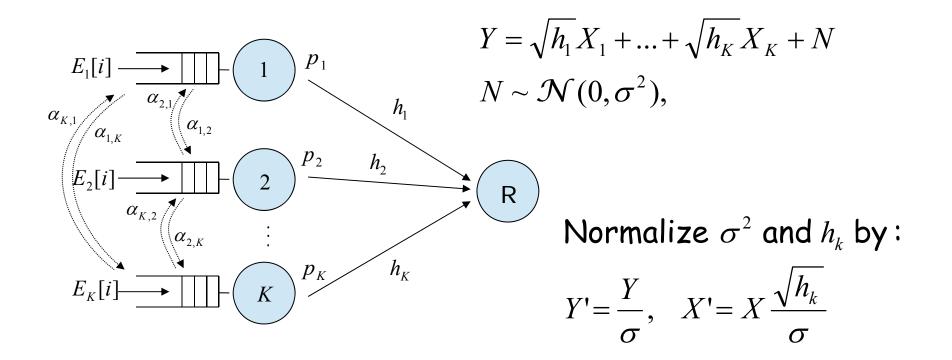
Energy Constraints:

- Non-negativity of transmit power and transferred energy: $p_k[n] \ge 0$, $\delta_{i,k}[n] \ge 0$, j,k = 1,...,K, n = 1,...,N
- Energy Causality: Energy required by transmission or transfer is available, i.e., harvested: $E_k^{bat}[n] = \sum_{i=1}^n \left(E_k[i] + \sum_{i=1}^K \left(\alpha_{j,k} \delta_{j,k}[i] - \delta_{k,j}[i] \right) - p_k[i]T \right) \ge 0$
- What is the sum-capacity of EC-EH-MAC and EC-EH-T(wo)-W(ay)-C?



$$\begin{split} Y_{1} &= X_{1} + \sqrt{h_{2}} X_{2} + N_{1} \\ Y_{2} &= X_{2} + \sqrt{h_{1}} X_{1} + N_{2} \\ N_{k} &\sim \mathcal{N}(0, \sigma_{k}^{2}), \end{split}$$

• Sum-Capacity:
$$C_{S}^{TWC} = \frac{1}{2}\log(1+p_1) + \frac{1}{2}\log(1+p_2)$$



• Sum-Capacity: $C_S^{MAC} = \frac{1}{2} \log \left(1 + \sum_{k=1}^{K} p_k \right)$

Problem Statement [Tutuncuoglu-Y. '13]

 Find maximum achievable sum-rate by optimizing the energy transfer and energy expended for tx.

$$\max_{p_{k}[n], \delta_{k,j}[n]} \frac{1}{N} \sum_{i=1}^{N} C_{S}(p_{1}[i], p_{2}[i], ..., p_{K}[i])$$

s.t. $\delta_{k,j}[n] \ge 0, \quad p_{k}[n] \ge 0,$
$$\sum_{i=1}^{n} \left(E_{k}[i] + \sum_{j=1}^{K} \left(\alpha_{j,k} \delta_{j,k}[i] - \delta_{k,j}[i] \right) - p_{k}[i]T \right) \ge 0$$

 $j, k = 1, ..., K, \quad n = 1, ..., N$

1) Optimal Routing of Energy Transfers:

Use equivalent transfer efficiency values that reflect the optimal routing of energy transfers.

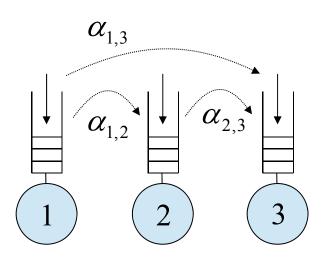
2) Procrastinating Policies:

Restrict to a subset of policies that delay energy transfer unless transferred energy is used immediately

3) Decomposition:

Solve energy transfer and power allocation separately

Routing Energy Transfers



- Energy can be transferred through multiple paths.
- Optimal policy chooses the highest efficiency path.
- Transferring and receiving energy simultaneously is suboptimal.
- Redefine effective efficiency values as

$$\overline{\alpha}_{k,j} = \max_{(e_1,\dots,e_m)} \alpha_{k,e_1} \alpha_{e_1,e_2} \dots \alpha_{e_m,j}$$

where $(k, e_1, e_2, ..., e_m, j)$ is any feasible energy transfer path

PENN<u>STATE</u> Procrastinating Policies

Definition: A procrastinating policy satisfies

$$p_{j}[i]T \geq \sum_{k=1}^{K} \alpha_{k,j} \delta_{k,j}[i]$$

i.e., the energy received by a node is not greater than the energy required for transmission within that time slot.

- In a procrastinating policy, a node does not transfer energy unless the receiving node intends to use it immediately.
- <u>Lemma</u>: There exists at least one procrastinating policy that solves the sum-capacity problem.
- → Restrict search space to such policies

Sum-Capacity Problem

Wireless Communications & Networking Laboratory WCAN@PSU

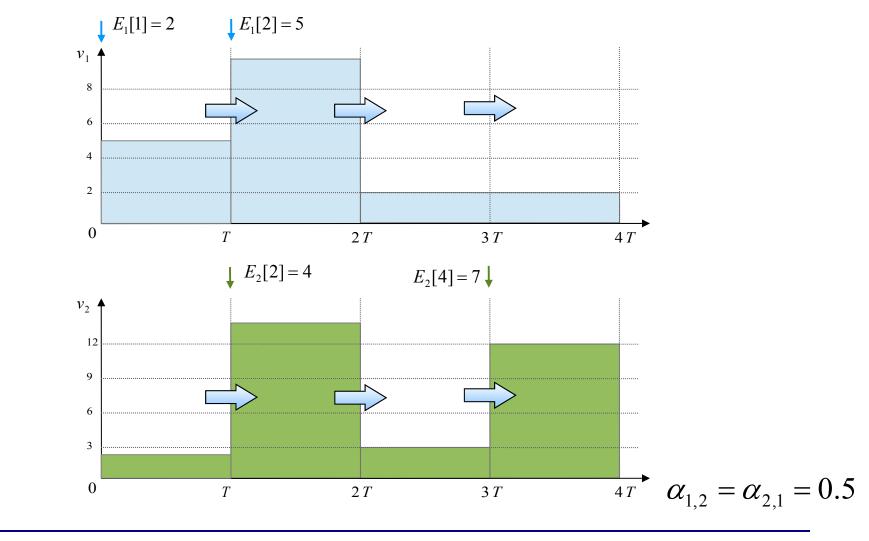
- Define consumed powers $\overline{p}_{k}[i] = p_{k}[i] + \frac{1}{T} \sum_{i=1}^{K} \delta_{k,j}[i] \alpha_{j,k} \delta_{j,k}[i]$
- Sum-Capacity problem can be decomposed as

$$\max_{\bar{p}_{k}[n]} \frac{1}{N} \sum_{i=1}^{N} C_{s}^{*}(\bar{p}_{1}[i],...,\bar{p}_{K}[i]) \\ s.t. \quad \bar{p}_{k}[n] \ge 0, \\ \sum_{i=1}^{n} \left(E_{k}[i] - \bar{p}_{k}[i]T \right) \ge 0 \\ k = 1,...,K, \quad n = 1,...,N$$

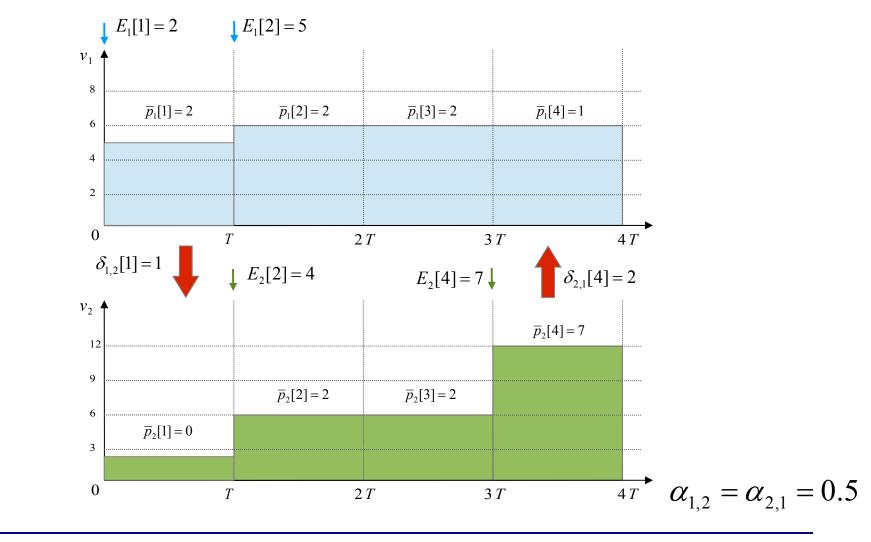
$$C_{s}^{*} = \max_{\delta_{k,j}[i]} C_{s} \left(\bar{p}_{k}[i] - \frac{1}{T} \sum_{j=1}^{K} (\delta_{k,j}[i] - \alpha_{j,k} \delta_{j,k}[i]) \right) \\ s.t. \quad \delta_{k,j}[i] \ge 0, \quad \bar{p}_{k}[i]T \ge \sum_{j=1}^{K} \delta_{k,j}[i] \\ j,k = 1,...,K$$

Power AllocationEnergy TransferSolved via IGDWFSolved directly (single slot)

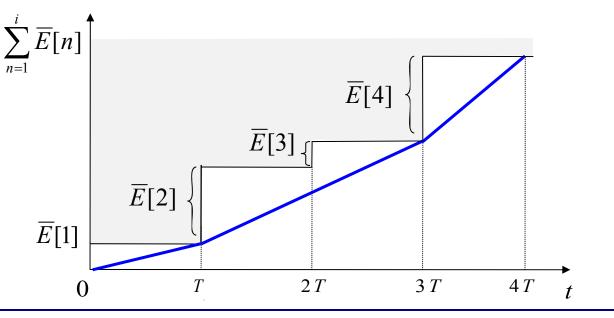
Wireless Communications & Networking Laboratory WCAN@PSU

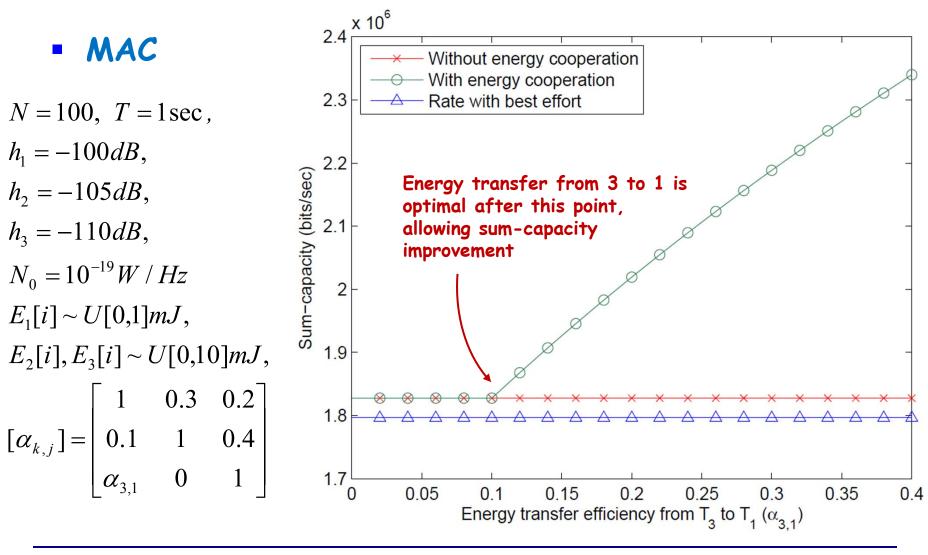


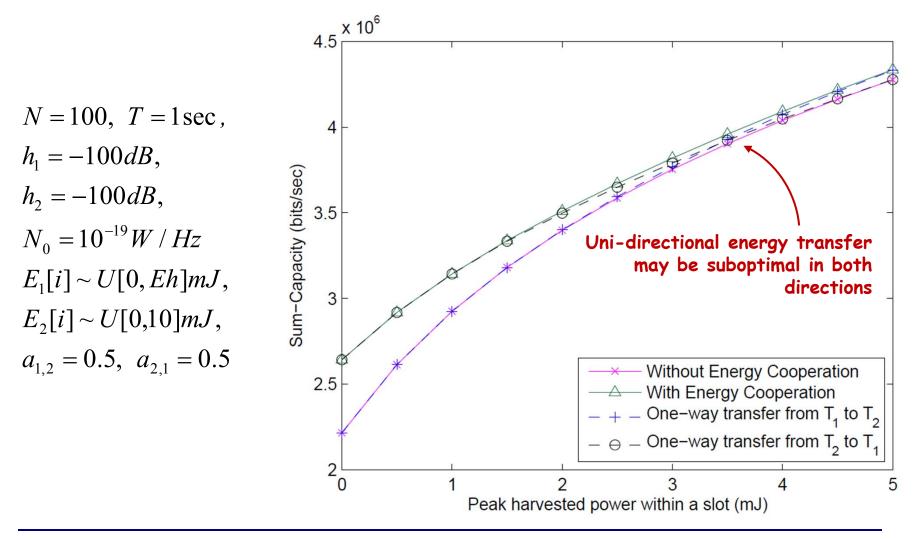
Wireless Communications & Networking Laboratory WCAN@PSU



- Energy transfer direction is determined by $a_k = \max_i \alpha_{k,j}$
- Power allocation problem is solved as if a single transmitter with energy arrivals $\overline{E}[i] = \sum_{k=1}^{K} a_k E_k[i]$



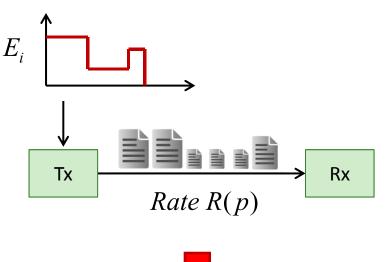


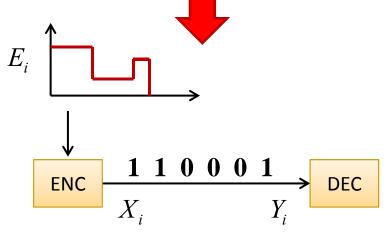


66

- So far, we have assumed sufficiently long time slots and utilized the known rate expressions.
- What if energy harvesting is

 at the channel use level, i.e.,
 each input symbol is individually
 limited by EH constraints?

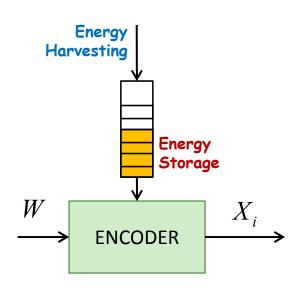




Energy Harvesting (EH) Channel:

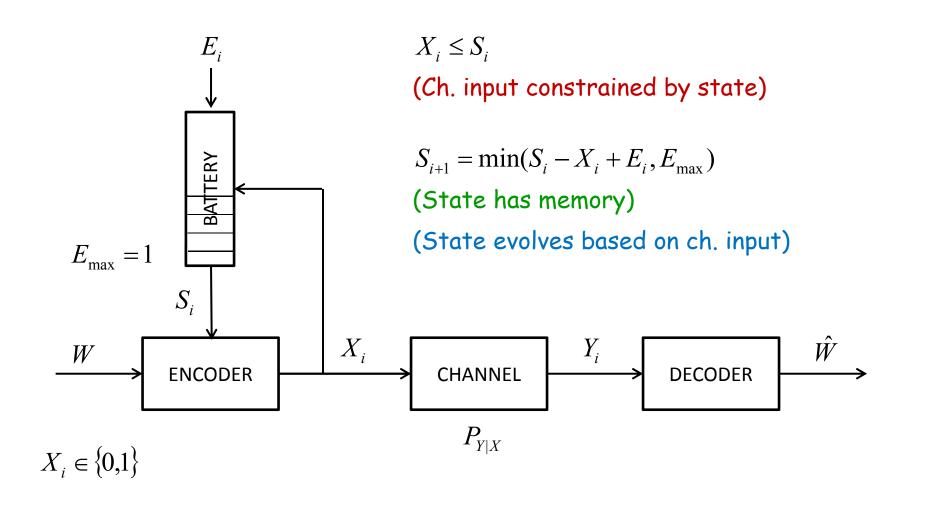
[Tutuncuoglu-Ozel-Ulukus-Y.'13]

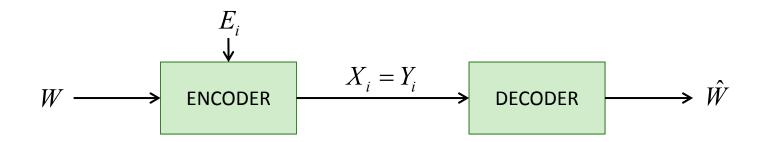
- The channel input is restricted by an external energy harvesting process.
- State: available energy
 - Has memory (due to energy storage)
 - Depends on channel input
 - Causally known to Tx (causal CSIT)



EH Channel

Wireless Communications & Networking Laboratory WCAN@PSU



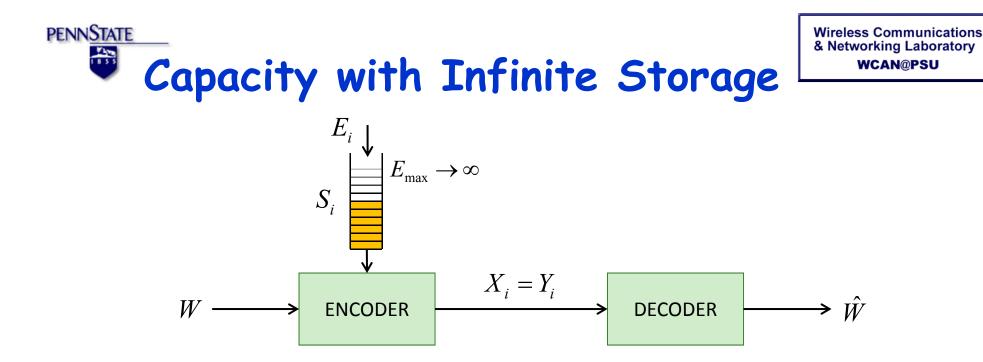


• Let $E_{\text{max}} = 0$, and encoder can use arriving energy, i.e.,

if
$$E_i = 0$$
, *then* $X_i = 0$,
if $E_i = 1$, *then* $X_i \in \{0,1\}$.

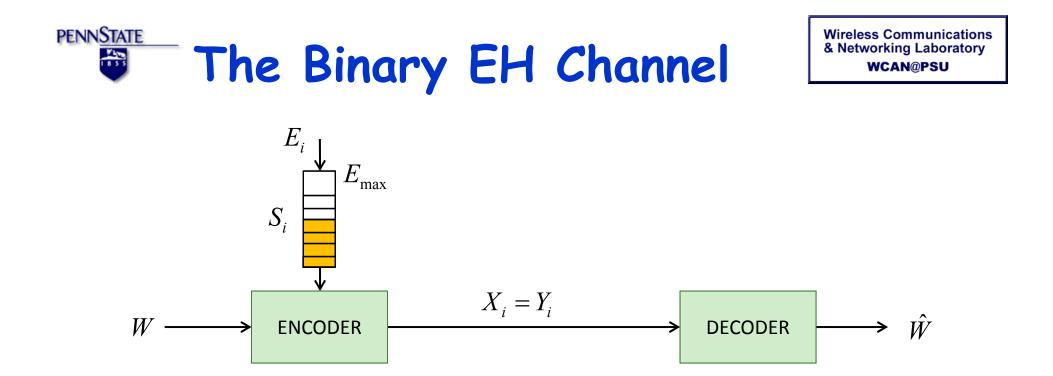
Memoryless channel with causal state, [Shannon 1958]

$$C_{ZS} = \max_{p} H(pq) - pH(q)$$



- As $E_{\max} \rightarrow \infty$, a save-and-transmit scheme proposed for the AWGN ch [Ozel, Ulukus, 12] is optimal.
- Any codeword with $E[X] \le p$ can be conveyed without error

$$C_{IS} = \begin{cases} H(q), & q \leq \frac{1}{2} \\ 1, & q > \frac{1}{2} \end{cases}$$

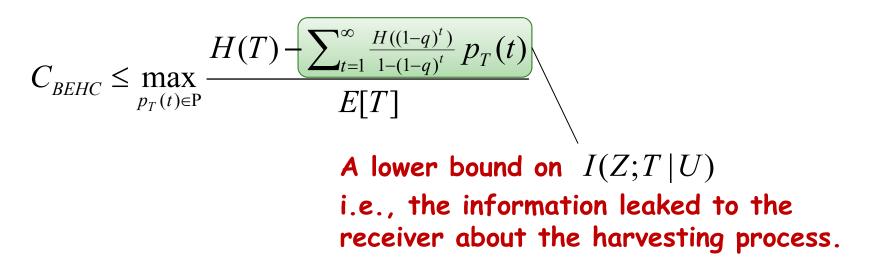


[Tutuncuoglu-Ozel-Y.-Ulukus'13]

- Unit battery, $E_{\text{max}} = 1$
- Binary noiseless channel, $X_i = Y_i$
- Timing channel equivalent: encoding strategy; upper bound by providing state info at the decoder.

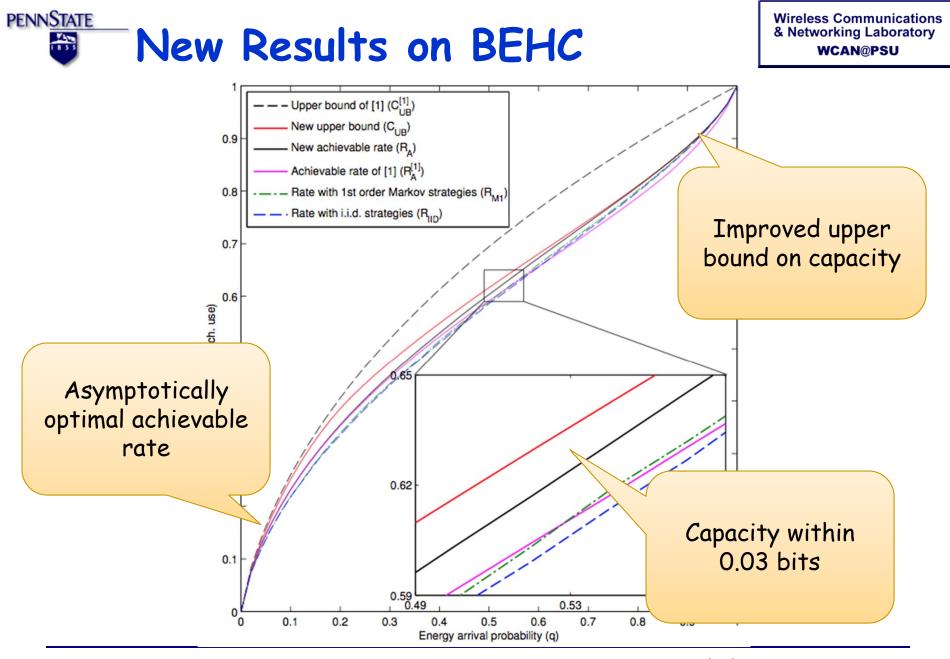
PENNSTATE New Results on BEHC [Tutuncuoglu-Ozel-Y.-Ulukus'14] (will be presented at ISIT 2014)

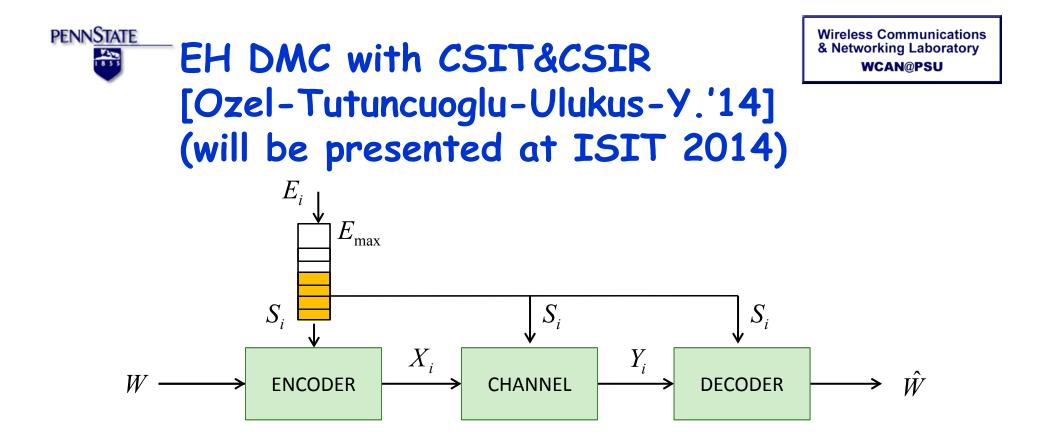
• A tighter upper bound than [Tutuncuoglu-Ozel-Y.-Ulukus'13]:



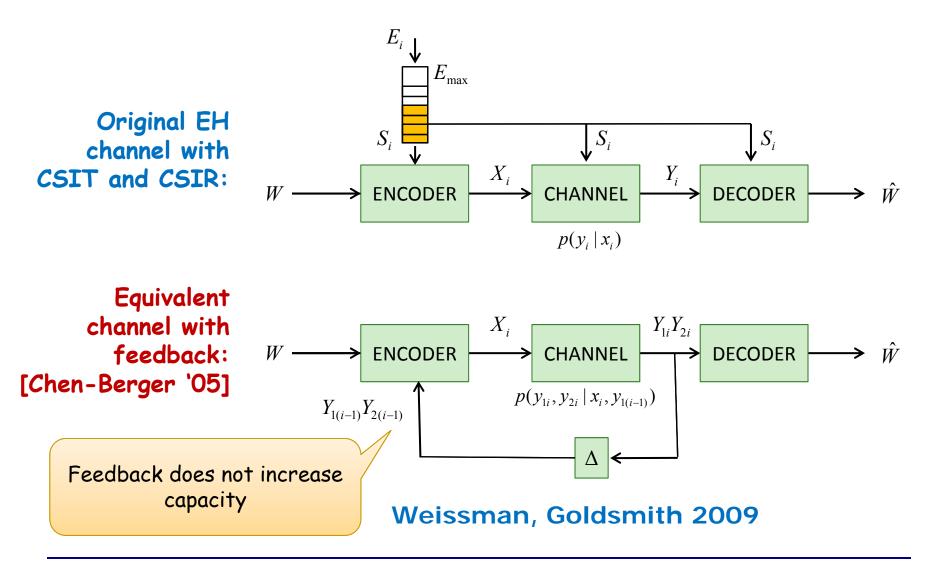
Improved encoding scheme as well:

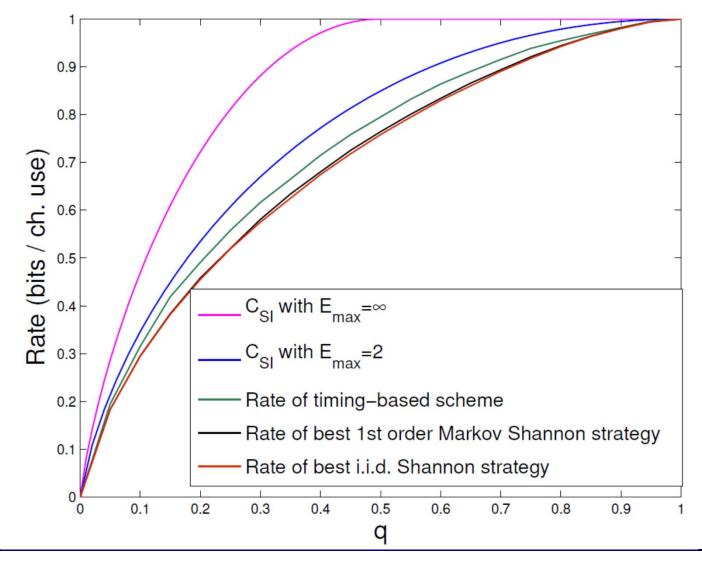
$$V = \begin{cases} U - Z + 1 & U \ge Z \\ (U - Z \mod N) + 1 & U < Z \end{cases}$$





- The battery state S_i is available causally at both Tx and Rx
- Input symbol $X_i \in \{0, 1, ..., K\}$, with $X_i \in k$ consuming k units of energy.
- Information flows both through the physical channel and the battery state. (e.g., communication is possible without channel)





- New networking paradigm: energy harvesting nodes
- New design insights arise from new energy constraints!
- Realistic concerns, e.g. storage capacity, storage efficiency impact transmission policies.
- Multi-terminal scenarios need to be handled with care.
- Cooperation with an energy harvesting relay or energy cooperation brings additional insights and possibilities.
- Information theoretic formulations are challenging but promising to yield new insights.

- Information theoretic limits, optimal coding schemes for energy harvesters
- Operational principles of energy harvesting receivers
- Impact of EH on signal processing PHY algorithms
- Impact on network protocols
- Efficient online schedules, simple practical implementations
- Papers: http://wcan.ee.psu.edu/