
Helping Our Own: The HOO 2011 Pilot Shared Task

Robert Dale
Centre for Language Technology

Macquarie University
Sydney, Australia

Robert.Dale@mq.edu.au

Adam Kilgarriff
Lexical Computing Ltd

Brighton
United Kingdom

adam@lexmasterclass.com

Abstract

The aim of the Helping Our Own (HOO) Shared
Task is to promote the development of automated
tools and techniques that can assist authors in the
writing task, with a specific focus on writing within
the natural language processing community. This
paper reports on the results of a pilot run of the
shared task, in which six teams participated. We de-
scribe the nature of the task and the data used, re-
port on the results achieved, and discuss some of the
things we learned that will guide future versions of
the task.

1 Introduction

The Helping Our Own (HOO) Shared Task aims to pro-
mote the development of automated tools and techniques
that can assist authors in the writing task. The task fo-
cusses specifically on writing within the natural language
processing community, on the grounds that content mat-
ter familiar to Shared Task participants will be more en-
gaging than content matter from another discipline. In
addition, the ACL Anthology (Bird et al., 2008) provides
us with a large and freely-available collection of material
in the appropriate domain and genre that can be used, for
example, for language modelling; obtaining similar ma-
terial in other disciplines is more difficult and potentially
costly. A broader discussion of the background to the
HOO task can be found in (Dale and Kilgarriff, 2010).

In this first pilot round of the task, we focussed on
errors and infelicities introduced into text by non-native
speakers (NNSs) of English. While there are few native
speakers who would not also have something to gain from
the kinds of technologies we would like to see developed,
the generally higher density of errors in texts authored
by NNSs makes annotation of this material much more
cost efficient than the annotation of native-speaker text.
The focus on English texts is for purely pragmatic rea-
sons; obviously one could in principle pursue the goals
discussed here for other languages too.

This paper is structured as follows. In Section 2 we de-
scribe the development and test data that was provided to
participants. Then, in Section 3 we describe the approach
taken to evaluation. In Section 4, we summarise the re-
sults of the submissions from each of the six participating
teams. Finally, in Section 5, we make some observations
on lessons learned and comment on plans for the future.

2 The Data
2.1 Texts and Corrections
The data used in the pilot run of the task consisted of a
set of fragments of text, averaging 940 words in length.
These fragments were extracts from a collection of 19
source documents, each being a paper that had previously
been published in the proceedings of a conference or a
workshop of the Association for Computational Linguis-
tics; the authors of these papers have kindly permitted
their material to be used in the Shared Task. From each
source document we extracted one fragment for devel-
opment and one fragment for testing; each fragment is
uniquely identifiable by a four-digit number used in all
data associated with that fragment.

Each fragment was annotated with a number of edits to
correct errors and infelicities, as discussed further below.
Each fragment in the development set was annotated by
two professional copy-editors, and each fragment in the
test set was annotated by one copy-editor and checked by
one of the organizers. Collectively, the development data
contained a total of 1264 edits, or an average of 67 per
file, with a minimum of 16 and a maximum of 100; and
the test data contained a total of 1057 edits, an average of
56 per file with a minimum of 18 and a maximum of 107.
In both data sets this works out at an average of one edit
every 15 words.

Corresponding to each fragment, there is also a file
containing, in stand-off markup format, the set of target
edits for that file. Figure 1 shows some example gold-
standard edits. The output of participating systems is
compared against these files, whose contents we refer to
as edit structures.

<edit type="MY" index="0001-0004"
start="631" end="631">

<original><empty/></original>
<corrections>

<correction/>
<correction>both </correction>

</corrections>
</edit>
<edit type="RV" index="0001-0005"

start="713" end="718">
<original>carry</original>
<corrections>

<correction/>
<correction>contain</correction>

</corrections>
</edit>
<edit type="IJ" index="0001-0006"

start="771" end="782">
<original>electronics</original>
<corrections>

<correction>electronic</correction>
</corrections>

</edit>
<edit type="RP" index="0001-0007"

start="1387" end="1388">
<original>;</original>
<corrections>

<correction>.</correction>
</corrections>

</edit>

Figure 1: Some gold-standard edit structures.

Participating systems could choose to deliver their re-
sults in either one of two forms:

1. A set of plain text files that contain corrected text
in situ; we provided a tool that extracts the changes
made to produce a set of XML edit structures for
evaluation.

2. A set of edit structures that encode the corrections
their system makes.

There were advantages to providing the latter: in partic-
ular, edit structures provide a higher degree of fidelity in
capturing the specific changes made, as discussed further
below.

2.2 The Annotation of Corrections
By an edit we mean any change that is made to a text:
from the outset, our intent has been to deal with textual
modifications that go some way beyond the correction of,
for example, grammatical errors. This decision presents
us with a significant challenge. Whereas the presence of
spelling and grammatical errors might seem to be some-
thing that competent speakers of a language would agree
on, as soon as we go beyond such phenomena to en-
compass what we will sometimes refer to as ‘stylistic

infelicities’, there is increasing scope for disagreement.
Our initially-proposed diagnostic was that the annotators
should edit anything they felt corresponded to ‘incorrect
usage’. A brief perusal of the data will reveal that, not
surprisingly, this is a very difficult notion to pin down
precisely.

2.3 Annotation Format
The general format of edits in the gold-standard edit files
is as shown in Figure 1. Each <edit> element has an
index attribute that uniquely identifies the edit; a type

attribute that indicates the type of the error found or cor-
rection made;1 a pair of offsets that specify the char-
acter positions in the source text file of the start and
end of the character sequence that is affected by the edit;
an embedded <original> element, which contains the
text span that is subject to correction; and an embedded
<corrections> element, which lists one or more possi-
ble corrections for the problematic text span that has been
identified.

There are a number of complicating circumstances we
have to deal with:

1. There may be multiple valid corrections. This is not
just a consequence of our desire to include classes of
infelicitious usage where there is no single best cor-
rection. The requirement is already present in any
attempt to handle grammatical number agreement
issues, for example, where an instance of number
disagreement might be repaired by making the af-
fected items either singular or plural. Also, it is usu-
ally not possible to consider the list of corrections
we provide as being exhaustive.

2. A correction may be considered optional. In such
cases we view the first listed correction as a null cor-
rection (in other words, one of the multiple possible
corrections is to leave things as they are). When an
edit contains an optional correction, we call the edit
an optional edit. if the edit contains no optional cor-
rections, then it is a mandatory edit. Note that dele-
tions and insertions, as well as replacements, may be
optional.

3. Sometimes edits may be interdependent: making
one change requires that another also be made. Ed-
its which are connected together in this way are in-
dicated via indexed cset attributes (for consistency
set). The most obvious case of this is where there is
requirement for consistency in the use of some form
(for example, the hyphenation of a term) across a

1The set of types is borrowed, with some very minor changes,
from the Cambridge University Press Error Coding System described
in (Nicholls, 2003), and used with permission of Cambridge University
Press.

document; each such instance will then belong to
the same cset (and consequently there can be many
members in a cset). Another situation that can be
handled using csets is that of grammatical number
agreement. In such a case, there are two possible
corrections, but the items affected may be separated
in the text, requiring two separate edits to be made,
connected in the annotations by a cset.

4. There are cases where our annotators have deter-
mined that something is wrong, but are not able to
determine what the correction should be. There are
two common circumstances where this occurs:

(a) A word or fragment of text is missing, but it is
not clear what the missing text should be.

(b) A fragment of text contains a complex error,
but it is not obvious how to repair the error.

These two cases are represented by omitting the
corrections element.

All of these phenomena complicate the process of evalu-
ation, which we turn to next.

3 Evaluation
Each team was allowed to submit up to 10 distinct ‘runs’,
so that they could provide alternative outputs. Evalua-
tion then proceeds by comparing the set of gold-standard
edit structures for a fragment with the set of edit struc-
tures corresponding to the participating team’s output for
a single run for that fragment.

3.1 Scoring
There are a number of aspects of system performance for
which we can derive scores:

• Detection: does the system determine that an edit is
required at some point in the text?

• Recognition: does the system correctly determine
the extent of the source text that requires editing?

• Correction: does the system offer a correction that
is amongst the corrections provided in the gold stan-
dard?

Detection is effectively ‘lenient recognition’, allowing for
the possibility that the system and the gold standard may
not agree on the precise extent of a correction. Systems
can be scored on a fragment-by-fragment basis, on a data
set as a whole, or on individual error types across the data
set as a whole.

For each pairing of gold standard data and system out-
put associated with a given fragment, we compute two
alignment sets: these are structures that indicate the cor-
respondences between the edits in the two edit sets. The

strict alignment set contains those alignments whose ex-
tents match perfectly; the lenient alignment set contains
those alignments that involve some overlap. We also have
what we call unaligned edits: these are edits which do not
appear in the lenient alignment set. An unaligned system
edit corresponds to a spurious edit; an unaligned gold-
standard edit corresponds to a missing edit. It is impor-
tant to note that missing edits are of two types, depending
on whether the gold-standard edit corresponds to an op-
tional edit or a mandatory edit. A system should not be
penalised for failing to provide a correction for a mark-
able where the gold standard considers the edit to be op-
tional. To manage the impact of this on scoring, we need
to keep track of the number of missing optional edits.

3.1.1 Detection
For a given 〈G,S〉 pair of edit sets, a gold standard edit
gi is considered detected if there is at least one alignment
in the lenient alignment set that contains gi. Under con-
ventional circumstances we would calculate Precision as
the proportion of edits found by the system that were cor-
rect:2

(1) P =
detected edits

spurious edits + # detected edits

Similarly, Recall would be conventionally calculated as:

(2) R =
detected edits

gold edits

However, under this regime, if all the gold edits are op-
tional and none are detected by the system, then the sys-
tem’s Precison and Recall will both be zero. This is ar-
guably unfair, since doing nothing in the face of an op-
tional edit is perfectly acceptable; so, to accommodate
this, we also compute scores ‘with bonus’, where a sys-
tem also receives reward for optional edits where it does
nothing:

(3) P =
detected + # missing optional

spurious + # detected + # missing optional

(4) R =
detected + # missing optional

gold edits

This has a more obvious impact when we score on a
fragment-by-fragment basis, since the chances of a sys-
tem proposing no edits for a single fragment are greater
than the chances of the system proposing no edits for all
fragments.

The detection score for a given 〈G,S〉 pair is then the
harmonic mean (F-score):

(5) DetectionScore = 2× Precision× Recall
Precision + Recall

2Note that in all computations of Precision (P) and Recall (R) we
take the result of dividing zero by zero to equal 1, but for the computa-
tion of F-scores we take the result of dividing zero by zero to be zero.

3.1.2 Recognition
The detection score described above can be considered a
form of ‘lenient’ recognition. We also want to measure
‘strict’ recognition, i.e. the degree to which a participat-
ing system is able to determine the correct start and end
locations of text to be corrected. We consider a gold-
standard edit gj to be recognized if it appears in the strict
alignment set. RecognitionScore is defined to be 0 if there
are no recognized edits for a given document; otherwise,
we have:3

(6) P =
recognized edits

system edits

(7) R =
recognized edits

gold edits

The recognition score for a given 〈G,S〉 pair is again the
harmonic mean.

Note that there is a deficiency in the scoring scheme
here: it is quite possible that the system has decomposed
what the gold-standard sees as a single edit into two con-
stituent edits, or vice versa. Both analyses may be plau-
sible; however, the scoring scheme gives no recognition
credit in such cases.

3.1.3 Correction
Recall that for any given gold-standard edit gj , there may
be multiple possible corrections. A system edit si is con-
sidered a valid correction if it is strictly aligned, and the
correction string that it contains is identical to one of the
corrections provided in the gold standard edit. Correc-
tionScore is defined to be 0 if there are no recognized
edits for a given document; otherwise, we have:4

(8) P =
valid corrections

system edits

(9) R =
valid corrections

gold edits

The correction score for a given 〈G,S〉 pair is, as before,
the harmonic mean.

Just as in the case of recognition, correction scoring
also suffers from the deficiency that if adjacent errors are
composed or aggregated differently by the system than
they are in the gold standard, no credit is assigned.

3.2 The Participating Teams
Submissions were received from six teams, as listed in
Table 1. Some teams submitted only one run, while oth-
ers submitted 10 (and in one case, nine); some teams
submitted corrected texts, while others provided standoff
XML edits.

3Again, we also compute a ‘with bonus’ variant of this that gives
credit for missed optional edits.

4Once more, we also compute a ‘with bonus’ variant.

4 Results
In this section, we provide some comparative results
across all six teams. Each team has also provided a sepa-
rate report that provides more detail on their methods and
results, also published in the present volume.

4.1 Total Scores
As a way of assessing the performance of a participating
system overall, we compute each team’s scores across the
complete set of fragments for each run. Tables 2, 3 and 4
present the best scores achieved by each system under the
‘no bonus’ condition; and Tables 5, 6 and 7 present the
best scores achieved by each system under the ‘bonus’
condition, where credit is given for missed optional edits.
In each case, we show the results for the system run that
produced the best F-score for that system; the overall best
F-score is shown in bold.

4.2 Type-Based Scores
The numbers provided above, although they provide a
means of characterising the overall performance of the
participating systems, do not take account of the fact that
some teams chose to attack specific types of error while
ignoring other types of errors. Table 8 shows the num-
ber of edits of each type in the test data. Note that these
are not the raw types from the CLC tagset that are used
in the annotations, but are aggregations of these based on
the part-of-speech of the affected words in the text; thus,
for example, the Article type includes the CLC error tags
FD (Form of determiner), RD (Replace determiner), MD
(Missing determiner), UD (Unnecessary determiner), DD
(Derivation of determiner), AGD (Determiner agreement
error), CD (Countability of determiner), and DI (Inflec-
tion of determiner). ‘Compound Change’ corresponds to
the tag CC, which is a new tag we added to the tagset to
handle cases where there were multiple issues with a span
of text that could not be easily separated; and ‘Other’ in-
corporates CL (collocation or tautology error), L (inap-
propriate register), X (incorrect negative formation), CE
(complex error), ID (idiom wrong), AS (argument struc-
ture error), W (word order error), AG (agreement error),
M (missing error), R (replace error), and U (unnecessary
error).

The particular approaches each team took are dis-
cussed in the individual team reports; Tables 9 through
21 show the comparative performance by all teams for
each of the error categories in Table 8. In each case,
the we show each team’s best results, indicating the run
which provided them; and the best overall score for each
error category is shown in bold. Note that the numbers
shown here are the percentages of instances in each cate-
gory that were detected, recognized and corrected; since
we did not require teams to assign types to the edits they
proposed, it is only possible to compute Recall, and not

Team Country ID Submission Format Number of Runs
Natural Language Processing Lab, Jadavpur University India JU Text 1
LIMSI France LI Text 10
National University of Singapore Singapore NU Edits 1
Universität Darmstadt Germany UD Edits 9
Cognitive Computation Group, University of Illinois USA UI Text 10
Universität Tübingen Germany UT Text 10

Table 1: Participating Teams

Team Run Precision Recall F-Score
JU 0 0.178 0.064 0.094
LI 8 0.409 0.063 0.110
NU 0 0.447 0.111 0.177
UD 5 0.050 0.137 0.073
UI 6 0.529 0.187 0.277
UT 2 0.134 0.119 0.126

Table 2: Best run scores for Detection, ‘No Bonus’ condition

Team Run Precision Recall F-Score
JU 0 0.125 0.045 0.067
LI 8 0.307 0.047 0.082
NU 0 0.399 0.101 0.162
UD 5 0.028 0.077 0.041
UI 1 0.583 0.153 0.243
UT 8 0.088 0.076 0.081

Table 3: Best run scores for Recognition, ‘No Bonus’ condition

Team Run Precision Recall F-Score
JU 0 0.104 0.038 0.055
LI 8 0.209 0.032 0.056
NU 0 0.291 0.074 0.118
UD 8 0.050 0.020 0.028
UI 1 0.507 0.133 0.211
UT 1 0.050 0.041 0.045

Table 4: Best run scores for Correction, ‘No Bonus’ condition

Team Run Precision Recall F-Score
JU 0 0.331 0.148 0.204
LI 8 0.606 0.141 0.229
NU 0 0.578 0.188 0.284
UD 3 0.388 0.113 0.174
UI 1 0.736 0.243 0.366
UT 2 0.200 0.193 0.197

Table 5: Best run scores for Detection, ‘Bonus’ condition

Team Run Precision Recall F-Score
JU 0 0.288 0.129 0.178
LI 8 0.539 0.125 0.203
NU 0 0.540 0.179 0.269
UD 6 0.913 0.090 0.164
UI 8 0.713 0.220 0.337
UT 5 0.334 0.104 0.159

Table 6: Best run scores for Recognition ‘Bonus’ condition

Team Run Precision Recall F-Score
JU 0 0.271 0.121 0.167
LI 8 0.473 0.110 0.178
NU 0 0.457 0.151 0.227
UD 6 0.894 0.088 0.160
UI 8 0.648 0.201 0.306
UT 7 0.898 0.083 0.152

Table 7: Best run scores for Correction, ‘Bonus’ condition

Type Count
Article 260
Punctuation 206
Preposition 121
Noun 113
Verb 108
Compound Change 66
Adjective 34
Adverb 28
Conjunction 20
Anaphor 14
Spelling 9
Quantifier 7
Other 80

Table 8: Edits by Type

possible to calculate Precision or F-score. In the separate
team reports, however, some teams have carried out these
calculations based on the error types their systems were
targettting.

5 Conclusions and Outstanding Issues
The task we set participating teams was an immensely
challenging one. Much work in automated writing assis-
tance targets only very specific error types such as article
or preposition misuse; it is rare for systems to have to
contend with the variety and complexity of errors found
in the texts we used here.

We were very pleased at the level of participation
achieved in this pilot run of the task, and we intend to run
subsequent shared tasks based on the experience of the
present exercise. We have learned a great deal that will
hopefully lead to significant improvements in subsequent
runs:

1. We are aware of minor tweaks that can be made to
our annotation format to make it more useful and
flexible.

2. There are various regards in which our evaluation
tools can be improved to avoid artefacts that arise
from the current scheme (where, for example, sys-
tems can be penalised because they decompose one
gold-standard edit into a sequence of edits, or aggre-
gate a sequence of gold-standard edits into a single
edit).

3. We intend to provide better support to allow teams
to target specific types of errors; we are also consid-
ering revisions to the tagset used.

Overall, the biggest challenge we face is the cost of data
annotation. Identifying errors and proposing corrections

across such a wide range of error types is a very labour
intensive process that is not easily automated, and is not
amenable to being carried out by unskilled labour.

6 Acknowledgements
Diane Nicholls and Kate Wild diligently annotated the
data for the pilot phase. George Narroway spent many
hours processing data and developing the evaluation
tools. Guy Lapalme provided useful input on XML,
XSLT and CSS; various members of our Google Groups
mailing list provided immensely useful input at various
stages of the project. We are especially grateful to all
six participating teams for their patience in accommodat-
ing various delays that arose from unforeseen problems
in creating and evaluating the data and results.

References
Steven Bird, Robert Dale, Bonnie Dorr, Bryan Gibson,

Mark Joseph, Min-Yen Kan, Dongwon Lee, Brett Powley,
Dragomir Radev, and Yee Fan Tan. 2008. The acl anthol-
ogy reference corpus: A reference dataset for bibliographic
research in computational linguistics. In Proceedings of
the Language Resources and Evaluation Conference (LREC
2008).

R. Dale and A. Kilgarriff. 2010. Helping Our Own: Text mas-
saging for computational linguistics as a new shared task. In
Proceedings of the 6th International Natural Language Gen-
eration Conference, pages 261–266, 7th-9th July 2010.

D. Nicholls. 2003. The Cambridge Learner Corpus—error cod-
ing and analysis for lexicography and ELT. In D. Archer,
P. Rayson, A. Wilson, and T. McEnery, editors, Proceedings
of the Corpus Linguistics 2003 Conference, pages 572–581,
29th March–2nd April 2001.

Team Detection Run Recognition Run Correction Run
JU 1.54 0 1.54 0 1.54 0
LI 3.46 1 3.46 1 2.31 1
NU 31.92 0 31.54 0 23.85 0
UD 1.92 5 0.77 1 0.00 0
UI 41.54 6 39.62 3 35.38 3
UT 8.46 0 3.85 0 3.08 1

Table 9: Best run scores for Article errors

Team Detection Run Recognition Run Correction Run
JU 14.08 0 11.65 0 9.71 0
LI 8.74 8 7.77 8 5.83 8
NU 0.00 0 0.00 0 0.00 0
UD 16.99 5 3.88 1 0.49 1
UI 15.53 4 12.14 4 11.65 0
UT 1.46 3 0.00 0 0.00 0

Table 10: Best run scores for Punctuation errors

Team Detection Run Recognition Run Correction Run
JU 4.13 0 2.48 0 2.48 0
LI 2.48 1 1.65 1 1.65 1
NU 15.70 0 15.70 0 9.92 0
UD 4.13 5 3.31 5 0.00 0
UI 32.23 1 32.23 3 23.97 3
UT 60.33 0 52.89 8 28.10 1

Table 11: Best run scores for Preposition errors

Team Detection Run Recognition Run Correction Run
JU 3.54 0 0.00 0 0.00 0
LI 6.19 7 5.31 7 2.65 7
NU 4.42 0 0.88 0 0.00 0
UD 22.12 1 21.24 1 8.85 1
UI 0.88 0 0.00 0 0.00 0
UT 0.00 0 0.00 0 0.00 0

Table 12: Best run scores for Noun errors

Team Detection Run Recognition Run Correction Run
JU 8.33 0 7.41 0 7.41 0
LI 1.85 1 0.93 0 0.00 0
NU 0.00 0 0.00 0 0.00 0
UD 18.52 5 17.59 5 2.78 8
UI 0.93 4 0.93 4 0.93 4
UT 3.70 2 0.00 0 0.00 0

Table 13: Best run scores for Verb errors

Team Detection Run Recognition Run Correction Run
JU 6.06 0 3.03 0 0.00 0
LI 15.15 7 1.52 6 0.00 0
NU 6.06 0 0.00 0 0.00 0
UD 24.24 5 6.06 1 1.52 1
UI 15.15 5 3.03 0 0.00 0
UT 18.18 3 0.00 0 0.00 0

Table 14: Best run scores for Compound Change errors

Team Detection Run Recognition Run Correction Run
JU 0.00 0 0.00 0 0.00 0
LI 14.71 6 14.71 6 5.88 6
NU 2.94 0 2.94 0 0.00 0
UD 23.53 5 23.53 5 8.82 3
UI 0.00 0 0.00 0 0.00 0
UT 5.88 0 5.88 0 0.00 0

Table 15: Best run scores for Adjective errors

Team Detection Run Recognition Run Correction Run
JU 7.14 0 0.00 0 0.00 0
LI 7.14 7 3.57 6 0.00 0
NU 3.57 0 0.00 0 0.00 0
UD 28.57 5 14.29 1 0.00 0
UI 0.00 0 0.00 0 0.00 0
UT 17.86 3 0.00 0 0.00 0

Table 16: Best run scores for Adverb errors

Team Detection Run Recognition Run Correction Run
JU 0.00 0 0.00 0 0.00 0
LI 5.00 0 5.00 0 5.00 0
NU 0.00 0 0.00 0 0.00 0
UD 0.00 0 0.00 0 0.00 0
UI 0.00 0 0.00 0 0.00 0
UT 10.00 0 10.00 0 10.00 0

Table 17: Best run scores for Conjunction errors

Team Detection Run Recognition Run Correction Run
JU 0.00 0 0.00 0 0.00 0
LI 0.00 0 0.00 0 0.00 0
NU 0.00 0 0.00 0 0.00 0
UD 7.14 2 7.14 2 0.00 0
UI 0.00 0 0.00 0 0.00 0
UT 0.00 0 0.00 0 0.00 0

Table 18: Best run scores for Anaphor errors

Team Detection Run Recognition Run Correction Run
JU 66.67 0 66.67 0 55.56 0
LI 77.78 6 77.78 6 77.78 6
NU 44.44 0 44.44 0 44.44 0
UD 55.56 2 55.56 2 44.44 3
UI 44.44 4 33.33 4 11.11 2
UT 0.00 0 0.00 0 0.00 0

Table 19: Best run scores for Spelling errors

Team Detection Run Recognition Run Correction Run
JU 0.00 0 0.00 0 0.00 0
LI 0.00 0 0.00 0 0.00 0
NU 0.00 0 0.00 0 0.00 0
UD 14.29 2 14.29 2 0.00 0
UI 0.00 0 0.00 0 0.00 0
UT 57.14 3 57.14 3 14.29 2

Table 20: Best run scores for Quantifier errors

Team Detection Run Recognition Run Correction Run
JU 7.04 0 1.41 0 0.00 0
LI 4.23 1 1.41 1 1.41 1
NU 0.00 0 0.00 0 0.00 0
UD 22.54 5 1.41 1 0.00 0
UI 4.23 3 0.00 0 0.00 0
UT 21.13 3 4.23 0 0.00 0

Table 21: Best run scores for Other errors

