
The HOO Pilot Data Set:
Notes on Release 2.0

Robert Dale and George Narroway

June 21, 2011

Abstract

This document describes the first Helping Our Own (HOO) data set, to be used in the Pilot Round of the
HOO Shared Task taking place in the second half of 2011. The aims of the present document are to explain
the nature of the data that is being made available; to draw attention to various design decisions that were
made in collecting and annotating the data; and to describe the approach that is being taken to evaluation.

1 Introduction

The Helping Our Own (HOO) Shared Task aims to promote the development of automated tools and tech-
niques that can assist authors in the writing task. The task focusses specifically on writing within the natural
language processing community, on the grounds that content matter familiar to Shared Task participants will
be more engaging than content matter from another discipline. In addition, the ACL Anthology provides
us with a large and freely-available collection of material in the appropriate domain and genre that can be
used, for example, for language modelling; obtaining similar material in other disciplines is more difficult
and potentially costly. A broader discussion of the background to the HOO task can be found in (Dale and
Kilgarriff, 2010).

In this first pilot round of the task, we focus on errors and infelicities introduced into text by non-native
speakers (NNSs) of English. While there are few native speakers who would not also have something to
gain from the kinds of technologies we would like to see developed, the generally higher density of errors
in texts authored by NNSs makes annotation of this material much more cost efficient than the annotation
of native-speaker text. The focus on English texts is for purely pragmatic reasons; obviously one could in
principle pursue the goals discussed here for other languages too.

These notes describe the data we are providing for the first run of the HOO task, and outline a number
of decisions that were made in collating and preparing the data and the associated evaluation machinery.
We see this round of the task as being largely exploratory in nature. In particular, there are a number of
unresolved questions in regard to annotation and evaluation; we have taken the view that the best way to
answer these questions is to encourage as many teams as possible to work with the data we are providing, so
that we can use first-hand experiences to collectively learn what works and what doesn’t.

Section 2 describes the overall data set that we provide; Section 3 discusses the approach taken to anno-
tation, and the content of the annotations; Section 4 summarises our approach to evaluation; and Section 5
provides some concluding remarks.

The present document also contains some additional material in appendices. Appendices A and B list
the Cambridge Learner Corpus (CLC) error tags, which are used as the basis of the scheme adopted here;1

Appendix C provides some statistics on the initial data set; Appendix D describes how to use the evaluation
tools we provide; and Appendix F lists known problems with the current framework and data set.

1The Cambridge University Press Error Coding System is copyright to Cambridge University Press and may only be used with their
written permission. The coding is used to annotate the Cambridge Learner Corpus, which informs English Language Teaching materials
published by Cambridge University Press.

1

2 The Data Set

The initial HOO data set consists of 19 files, each of approximately 1000 words in length. We refer to the
content of each file as a fragment, since it contains the text corresponding to a fragment of a larger document.
In each case, the source document for the fragment is a paper that has been published in the proceedings
of a conference or a workshop of the Association for Computational Linguistics; the authors of these papers
have kindly permitted their material to be used in the Shared Task.

Each fragment was annotated with a number of edits to correct errors and infelicities, as discussed further
below, by two professional copy-editors. Collectively, the fragments contain a total of 1264 edits, or an
average of 66 per file, with a minimum of 16 and a maximum of 100. This works out at an average of one
edit every 15 words.

Each fragment is uniquely identifiable by a four-digit number used as the initial part of the names of the
files that are associated with that fragment; the contents of a given file are identified by the format of the
remainder of the file name. In what follows we use the fragment identifier ‘0001’ as an example.

The complete text of each fragment is provided in two different versions, either of which may be used as
input for processing by participating teams:

0001.txt: This contains the original text fragment as extracted from an authored document, in plain text
form. An excerpt of such a fragment is shown in Figure 1.

0001S.txt: This contains a minimally-marked-up version of the original text fragment, in which sentence
and paragraph breaks are marked using <s> and <p> tags respectively.2 The entire text is also wrapped
up within <hoo> tags. An excerpt of such a fragment is shown in Figure 2.3 See Section 3.1 below for
further comments on sentence segmentation.

These files contain one paragraph of text per line; line endings are Unix-style, i.e. a single linefeed character.
The character encoding used is plain ASCII.4

Corresponding to each fragment, there is also a file containing, in stand-off markup format, the set of
target edits for that file. For fragment 0001, the corresponding gold-standard edits file is 0001GE.xml; an
excerpt of this file is shown in Figure 3.5 The output of participating systems will be compared against these
files, whose contents we will refer to as edit structures.

Participating systems may choose to deliver their results in either one of two forms:

1. A set of plain text files that contain corrected text in situ; we provide a tool that extracts the changes
made to produce a set of XML edit structures for evaluation.

2. A set of edit structures that encode the corrections their system makes.

There are advantages to providing the latter: in particular, edit structures provide a higher degree of fidelity
in capturing the specific changes made, as discussed in Section 4.2. However, there may be a higher overhead
incurred in constructing these, so some teams may prefer to provide plain corrected text.

Participating systems will then be evaluated by comparing the edits they make against the sets of gold-
standard edits, as described in Section 4. The format of the gold-standard edits is described in detail in
Section 3 below.

For reference only, we also provide for each fragment a gold-standard annotated version of the text
built on top of the sentence-segmented fragment, with corrections marked in-line; for fragment 0001, the
corresponding in-line annotated file is named 0001G.xml. A CSS style sheet is provided that allows these
versions of the data to be conveniently viewed in a web browser; Figure 4 shows an example, and Figure 5
shows what this looks like in an appropriately enabled browser.6

2Each <s> tag is paired with a </s> tag, and each <p> tag is paired with a </p> tag; we take this as a given in what follows, and refer
to tag pairs simply via the name of the corresponding opening tag.

3The <hoo> tags are not shown here since this paragraph is neither at the beginning nor at the end of the document.
4Earlier versions of the released data contained some ISO-LATIN-1 characters. These have been replaced in the current release by

their closest ASCII equivalents.
5The top-level element in each such file, not shown in this example, is <edits>.
6We are very grateful to Guy Lapalme at Université de Montréal for providing the various XSLT and CSS components to make this

possible. Note that the pop-ups shown here work in Firefox but not in Internet Explorer; other browsers have not been tested.

2

Let us consider two cases where the pairs of multilingual inputs in English and Korean have

identical and different subjectivity meanings (Figure 1). The first pair of texts carry a negative

sentiment about how the release of a new electronics device might affect an emerging business

market. When a multilanguage-comparable system is inputted with such a pair, its output should

appropriately reflect the negative sentiment, and be identical for both texts. The second pair

of texts share a similar positive sentiment about a mobile device’s battery capacity but with

different strengths. A good multilingual system must be able to identify the positive sentiments

and distinguish the differences in their intensities.

Figure 1: Part of an original text fragment.

<p><s>Let us consider two cases where the pairs of multilingual inputs in English and Korean have

identical and different subjectivity meanings (Figure 1).</s> <s>The first pair of texts carry

a negative sentiment about how the release of a new electronics device might affect an emerging

business market.</s> <s>When a multilanguage-comparable system is inputted with such a pair, its

output should appropriately reflect the negative sentiment, and be identical for both texts.</s>

<s>The second pair of texts share a similar positive sentiment about a mobile device’s battery

capacity but with different strengths.</s> <s>A good multilingual system must be able to identify

the positive sentiments and distinguish the differences in their intensities.</s></p>

Figure 2: The sentence-segmented version of the text in Figure 1.

<edit type="MY" index="0001-0004" start="631" end="631">

<original><empty/></original>

<corrections>

<correction/>

<correction>both </correction>

</corrections>

</edit>

<edit type="RV" index="0001-0005" start="713" end="718">

<original>carry</original>

<corrections>

<correction/>

<correction>contain</correction>

</corrections>

</edit>

<edit type="IJ" index="0001-0006" start="771" end="782">

<original>electronics</original>

<corrections>

<correction>electronic</correction>

</corrections>

</edit>

<edit type="RP" index="0001-0007" start="1387" end="1388">

<original>;</original>

<corrections>

<correction>.</correction>

</corrections>

</edit>

Figure 3: Some gold-standard edits for the text in Figure 1.

3

<p><s>Let us consider two cases where the pairs of multilingual inputs in English

and Korean have <edit type="MY"><empty/><corrections><correction/><correction>both

</correction></corrections></edit> identical and different subjectivity meanings (Figure 1).</s>

<s>The first pair of texts <edit type="RV">carry<corrections><correction/><correction>contain

</correction></corrections></edit> a negative sentiment about how the release of a new <edit

type="IJ">electronics<corrections><correction>electronic</correction></corrections></edit>

device might affect an emerging business market.</s> <s>When a multilanguage-comparable system

is inputted with such a pair, its output should appropriately reflect the negative sentiment, and

be identical for both texts.</s> <s>The second pair of texts share a similar positive sentiment

about a mobile device’s battery capacity but with different strengths.</s> <s>A good multilingual

system must be able to identify the positive sentiments and distinguish the differences in their

intensities.</s></p>

Figure 4: The gold-standard version of the text in Figure 1 with inline annotations.

Figure 5: A browser view of the file in Figure 4.

4

3 Annotations

3.1 Sentence Segmentation

We expect that many participants will apply processing that works on a sentence-by-sentence basis, and so
we have provided a version of the fragments which contain a gold-standard sentence segmentation. This
segmentation was produced by first running a simple script to add <s> and </s> tags at likely places in
the text, and then hand-correcting these annotations to deal with both (a) incorrectly inserted tags where
a full stop has a function other than sentence termination, and (b) cases where it is fairly clear that the
author intended a sentence break but failed to indicate this by the use of a full stop. It is not uncommon, for
example, to find a comma being used in a location where all the other contextual evidence suggests that this
should have been a full stop, as in the following example:

(1) ... said yesterday, Meanwhile ...

Similarly, there are cases where the sentence-terminating puncuation mark has simply been omitted from the
original text.

Of course, there are situations where our segmentation decisions can be called into question. In many
cases, for example—and the instance above might be one such—it is plausible that what was really intended
by the author was a semi-colon break. In the present example this would also require correcting the casing
of Meanwhile, so here we are reasonably confident that the comma preceding Meanwhile really should have
been a full stop, but it is hard to be 100% certain.

When sentence segmentation annotations are added to the data, we retain the inter-sentential spacing
that was present in the original text. So, for the example above, the corresponding segmented text looks like
the following:

(2) ... said yesterday,</s> <s>Meanwhile ...

The point to note here is that the space between the closing </s> tag and the subsequent opening <s> tag
is retained. This means that we can reconstruct the unsegmented original version of the text from the seg-
mented version, and that character offsets across all versions of the fragment can be computed consistently.

Note that, in the current version of the data, headings and bullet list items are tagged as sentences.

3.2 The Annotation of Corrections

3.2.1 What Counts as a Markable?

We will refer to a span of source text for which an edit is proposed as a markable. By an edit we mean any
change that is made to a text: from the outset, our intent has been to deal with textual modifications that go
some way beyond the correction of, for example, grammatical errors. This decision presents us with a signif-
icant challenge. Whereas the presence of spelling and grammatical errors might seem to be something that
competent speakers of a language would agree on, as soon as we go beyond such phenomena to encompass
what we will sometimes refer to as ‘stylistic infelicities’, there is increasing scope for disagreement.7

As noted above, our data has been annotated by two professional copy-editors. They each annotated
the texts for edits independently, and then they discussed disagreements between their annotations with the
aim of reaching a consensus. In terms of deciding what should be marked for editing, the initially-proposed
diagnostic was that the annotators should edit anything they felt corresponded to ‘incorrect usage’. A brief
perusal of the data will reveal that, not surprisingly, this is a very difficult notion to pin down precisely.

There are a reasonable number of cases where our annotators disagreed on whether an edit was necessary,
and when they did agree that an edit should be made, there were also a reasonable number of cases where
they proposed different corrections, even after discussion. Our annotation scheme thus allows for multiple
possible corrections, and for optional corrections (i.e, where the text may also be left as is); clearly the
presence of both these phenomena raises issues for evaluation, as discussed in Section 4 below.

7The notions of spelling error and grammatical error are not necessarily so clear cut either. For example, what counts as a spelling
error in British English might be considered a correct spelling in US English. With respect to grammar, there can be reasonable dis-
agreements as to whether, for example, the use of a particular preposition in some verb frame is a grammatical error or a collocational
error.

5

3.2.2 The Extent of Markables

Conceptually, a correction to a text involves replacing a sequence of characters at some location with another
sequence of characters. The extent of a piece of text to be edited is therefore defined by its start and end
positions in the original text file; these are counted in integer values from the beginning of the file, starting at
0. Each printable character, including spaces and linefeeds, contributes to the calculation of offsets; however,
any XML tags in the text do not contribute to these counts. Character positions can be thought of as index
values that lie between pairs of characters. So, in the following text, the underlined extent has start position
0 and end position 3:

(3) <s>The good life never ever ends.</s>

As a shorthand, we write this extent as [0:3]. Because the replacement sequence of characters may not be
the same length as the original sequence of characters, we always indicate extents by means of offsets into
the original source file, not into a version of the file that has been changed to accommodate corrections. So,
suppose in the fragment above the word The is replaced by the word A, and then the word good is replaced
by the word bad; the extent that the second correction refers to is [4:8], since this is the span of text in the
original file that it corrects.

In the limiting case of an insertion, a character sequence is inserted at an extent with zero length. Suppose
we now want to change the text to read as follows:

(4) <s>A very bad life never ever ends.</s>

Then the extent of the insertion is [4:4]. Note that the insertion here includes a space, so that the resulting
text maintains conventional interword separation.

There are some constraints on markables that we impose for a variety of technical reasons:

1. Markables may not cross sentence boundaries in the source text.

2. Markables may not overlap in their extents, which means in particular that two markables cannot begin
at the same point, and a markable cannot be contained within another markable.

Generally, extents will consist of an integral number of tokens; so, for example, removing a hyphen from a
word like data-base is not indicated by just deleting the hyphen, but by replacing the hyphenated word by its
unhyphenated equivalent, database. Note, however, that the notion of tokenhood in play here is an intuitive
one as exercised by the annotators; this may not alway agree with a given machine tokenisation algorithm,
particularly where punctuation characters placed adjacent to words are concerned.

In general, only those tokens which are actually affected by a change—and not any surrounding context—
are included in the markable extent. However, when there are multiple possible corrections at some point
in a text, it is possible that one may require more tokens to change than another; in such a case, it is the
sequence of source tokens affected by the longest correction that determines the markable extent, and each
of the corrections listed will provide a replacement for the entire extent. Consider the following example:

(5) Original Text: . . . the ambiguity of the person name . . .
Correction #1: . . . the ambiguity of the personal name . . .
Correction #2: . . . the ambiguity of the person’s name . . .
Correction #3: . . . the ambiguity of personal names . . .

The first two corrections require only one word to be changed, but the third correction requires that three
words in the original text be replaced by two words. Consequently, the edit structure for this correction takes
the three words the person name as the corresponding markable for all three corrections:

(6) <edit type="R" start="17" end="34">

<original>the person name</original>

<corrections>

<correction>the personal name</correction>

<correction>the person’s name</correction>

<correction>personal names</correction>

</corrections>

</edit>

Note that each correction provides a replacement for all three words in the original text.

6

3.2.3 The Basic Format of Annotations

The general format of edits in the gold-standard edit files is exemplified by the following:

(7) <edit index="0001-0006" type="IJ" start="771" end="782">

<original>electronics</original>

<corrections>

<correction>electronic</correction>

</corrections>

</edit>

To elaborate on each aspect of this representation:

1. The information concerning each markable is contained within an <edit> element.

2. Each <edit> element has an index attribute that uniquely identifies the edit; this index consists of a
four-digit number corresponding to the identify of the fragment that the edit occurs in (here, 0001),
and a four-digit number corresponding to the ordinal position of this edit in the sequence of edits in
that fragment (here, 0006, indicating that it is the sixth edit in this text fragment). Index values will
generally be omitted in subsequent examples in this document.

3. Each <edit> element has a type attribute that indicates the type of the error found or correction made.
The full set of types used to annotate corrections is provided in Appendix A; in the present example,
the tag IJ means Incorrect Adjectival Inflection.

4. Each <edit> element has a pair of offsets that specify the character positions in the source text file of the
start and end of the character sequence that is affected by the edit (here, 771 and 782 respectively).
These offsets will generally be omitted in subsequent examples in this document.

5. Each <edit> element contains an embedded <original> element, which contains the text span that is
subject to correction.

6. Each <edit> element may contain an embedded <corrections> element, which lists one or more
possible corrections for the problematic text span that has been identified. Each possible correction in
this list is surrounded by <correction> tags.

There are a number of respects in which an edit annotation may be more complex than the example above;
we now discuss these in turn.

3.2.4 Handling Multiple Possible Corrections

As indicated earlier, we need to allow for the possibility that there may be multiple valid corrections. This
is not just a consequence of our desire to include classes of infelicitious usage where there is no single best
correction. The requirement is already present in any attempt to handle grammatical number agreement
issues, for example, where an instance of number disagreement might be repaired by making the affected
items either singular or plural.

Example (8) provides a simple example of multiple corrections:8

(8) <edit type="CC">

<original>provides a relatively balanced corpus</original>

<corrections>

<correction>is a relatively balanced corpus,</correction>

<correction>is relatively balanced,</correction>

</corrections>

</edit>

8The CC error type used here means Compound Change; this is not an error type that exists in the CLC tagset we use, but is a tag
we have added to deal with cases where the annotators felt either that a number of tags would be required to indicate the nature of the
problem, or that the problem simply defied categorisation.

7

As this example might suggest, it is usually not possible to consider the list of corrections we provide as being
exhaustive, which raises questions for evaluation. We will discuss this point further in Section 4.

An additional twist here is that, for some of the edits in our data, a correction may be considered optional.
In such cases we view the first listed correction as a null correction (in other words, one of the multiple
possible corrections is to leave things as they are), and so optional corrections are indicated as in the following
example:

(9) <edit type="RP">

<original>; the</original>

<corrections>

<correction/>

<correction>. The</correction>

</corrections>

</edit>

In this case, the first ‘correction’ suggests leaving the text as is, whereas the second suggests turning what
was one sentence into two sentences. The first case is represented by an empty <correction> element.

When an edit contains an optional correction, we call the edit an optional edit. if the edit contains no
optional corrections, then it is a mandatory edit.

3.2.5 Deletion and Insertion of Material

Two special circumstances we have to accommodate are as follows:

1. The original text may contain material that our annotators consider should be deleted, without any
replacement text being provided.

2. The original text may be absent material that our annotators consider should be present, in which case
there is no existing text that is being replaced.

These two cases are handled by edits like those in Examples (10) and (11) respectively:9

(10) <edit type="UD">

<original>the </original>

<corrections>

<correction><empty/></correction>

</corrections>

</edit>

(11) <edit type="MD">

<original><empty/></original>

<corrections>

<correction>the </correction>

</corrections>

</edit>

Each of these could be represented more simply, but we use the <empty/> tag in the first case for the sake
of explicitness, and in the second case for the sake of consistency with a more complex situation, which we
now describe.

It is possible that deletions and insertions may be optional, in which case we have the following represen-
tations corresponding to the two cases above:

(12) <edit type="UD">

<original>the </original>

<corrections>

9Note that in the case of deletion, the space following the word(s) to be removed must also be deleted; and in the case of insertion,
the inserted material also needs to include a space. These spaces are indicated here by the ‘ ’ character.

8

<correction/>

<correction><empty/></correction>

</corrections>

</edit>

(13) <edit type="MD">

<original><empty/></original>

<corrections>

<correction/>

<correction>the </correction>

</corrections>

</edit>

In each of these examples, the first correction is a null correction, meaning ‘leave as is’; the second correction
either deletes the identified text, or inserts text at the identified location.

3.2.6 Consistency Sets

Sometimes edits may be interdependent: making one change requires that another also be made. Edits which
are connected together in this way are indicated via indexed cset attributes (for Consistency Set). The most
obvious case of this is where there is requirement for consistency in the use of some form (for example,
the hyphenation of a term) across a document; each such instance will then belong to the same cset (and
consequently there can be many members in a cset).

Another situation that can be handled using csets is that of grammatical number agreement. In such a
case, there are two possible corrections, but the items affected may be separated in the text, requiring two
separate edits to be made. Suppose, for example, we have the following text:

(14) The item that we stored in the hash table are now made available.

This can be corrected by either making the noun item plural, or the verb are singular. We indicate these two
possibilities by connecting the edits for each word via the cset attribute:10

(15) <edit type="AGN" cset="1">

<original>item</original>

<corrections>

<correction/>

<correction>items</correction>

</corrections>

</edit>

<edit type="AGV" cset="1">

<original>are</original>

<corrections>

<correction>is</correction>

<correction/>

</corrections>

</edit>

In such cases, the convention is that the list of corrections should be related pairwise across consistency set
elements: i.e., the first correction in the first edit corresponds to the first correction in the second edit, and
so on.11

There are other more subtle cases where ‘agreement’ between corrections is required. A good example
of this is the inverse of Example (9) given above. In that example, a semicolon was replaced by a full stop,

10This example demonstrates why it would be more sensible to have edit types associated with corrections rather than edits as a
whole: the AGN and AGV types really correspond to the specific corrections made.

11Providing corrections with indices would make this more explicit, and also allow more flexibility in defining correspondences.

9

with a consequent change to the casing of the word following the punctuation mark, so that one sentence
was broken into two. This was achieved via a single edit structure. But suppose instead that an annotator
decides that an existing sentence boundary should be removed so that two sentences become one: this needs
to be indicated via two edits that are connected via a cset, since an individual edit is not permitted to cross
a sentence boundary. The following example demonstrates:

(16) <edit type="RP" cset="1">

<original>.</original>

<corrections>

<correction>;</correction>

</corrections>

</edit>

<edit type="RP" cset="1">

<original>The</original>

<corrections>

<correction>the</correction>

</corrections>

</edit>

Note that this example retains whatever spacing was in the original text. In particular, if the original text
followed the ‘two spaces at the end of sentence’ rule, and we prefer only one space after a semi-colon, then
one or other of these edits would have to explicitly change the spacing.

3.2.7 Unspecified Corrections

There are cases where our annotators have determined that something is wrong, but are not able to determine
what the correction should be. There are two common circumstances where this occurs:

1. A word or fragment of text is missing, but is not clear what the missing text should be.

2. A fragment of text contains a complex error, but it is not obvious how to repair the error.

These two cases are represented by omitting the corrections element, as in the following examples:

(17) <edit type="MN">

<original><empty/></original>

</edit>

(18) <edit type="CE">

<original>colourless green ideas sleep furiously</original>

</edit>

This approach supports the evaluation of system edits where participants still manage to offer corrections in
such cases.

4 Evaluation

4.1 Why Evaluation is Hard

We need some form of evaluation to determine when the performance of a given system has improved, and
to compare competing approaches in the Shared Task. However, a number of characteristics of the present
task mean that it is not straighrforward to evaluate performance:

1. Reasonable people may disagree as to whether an edit indicated in the gold standard is necessary.

2. Reasonable people may disagree as to whether the gold standard contains all the edits that should be
made.

10

3. Even where there is an agreement that an edit should be made, reasonable people may disagree as
to what the correction should be, and participating systems may offer corrections other than those
provided in the gold standard.

4. A system’s view of the extent corresponding to an edit may not agree with the extent indicated in the
gold standard.

Because of the above, any numbers that are computed as a means of characterising a system’s performance
need to be interpreted cautiously.

In what follows, we approach evaluation much as if it was a named-entity-mention recognition task,
where the markables are the named-entity mentions to be detected in the source text. This allows us to
use fairly standard approaches to measuring success in recognizing the presence of markables in the source.
A little less convincingly, corrections might be thought as being analogous to the underlying semantics or
identifiers associated with named-entity mentions: just as a named-entity mention may be ambiguous, and
so have multiple possible referents, a markable may have multiple possible corrections. Of course, both
named entities and markables as used here have associated types; however, in the first HOO round, we will
not be evaluating the assignment of types to corrections.

Section 4.2 outlines the form of outputs that participating systems must produce for use as inputs to the
evaluation process; Section 4.3 explains the details of how we score system outputs; and Section 4.4 provides
a number of examples that demonstrate how scoring works, including some cases where it is clear that our
current approach to evaluation does not do what we would prefer.

4.2 The Inputs to Evaluation

Each team will be assigned a two-character identification code, which should be incorporated into system
output filenames to allow easy identification and tracking. Each team is also allowed to submit up to 10
distinct ‘runs’, so that they can provide alternative outputs. A single-digit number ranging from 0 to 9 will
be used to identify a run; this will also be incorporated into output filenames. The format of a filename for a
given fragment thus has the form shown in Example (19a), with an example shown in Example (19b):

(19) a. 〈FragmentID〉〈TeamID〉〈Run〉.〈FileType〉
b. 0067MQ5.txt

The two permissible filetypes correspond to the two formats in which a team may provide data:

• For each input fragment, a correspondingly-named corrected text file may be provided; so, for team
MQ, the first-run corrected output text for fragment 0001 would be named 0001MQ0.txt.

• Alternatively, a team may provide for each input fragment a file containing XML edit structures in the
same format as the gold-standard edits, with the restriction that only one correction per edit may be
provided in each file. The corresponding output file would then be named 0001MQ0.xml.

Teams thus have the choice of either creating a corrected version of the input texts, or of directly constructing
a set of edit structures that correspond to their corrections.

• For the former case, we provide a tool that takes an original file and a corrected version of that file, and
identifies the differences between these to produce a set of edit structures for use in evaluation.

• If a team decides to construct its own edit annotations, it is essential that these annotations be in exactly
the same form as would be produced by our edit extraction tool.

As noted earlier, directly producing edit structures provides higher fidelity, which may in some situations
provide better scores; instances of where this can happen are discussed below in Section 4.4. However, the
need to track character offsets accurately makes the construction of edit structures more onerous than it
might otherwise be. In the following, we will assume that the system output is in the form of a corrected
text.

Suppose the original text is as shown in Example (20), and the corresponding gold-standard edit is as
shown in Example (21):

11

(20) The cat sit on the mat.

(21) <edit type="TV" start="8" end="11">

<original>sit</original>

<corrections>

<correction>sat</correction>

</corrections>

</edit>

In order to match the gold standard, a participating system’s output text would need to look as is shown in
Example (22):

(22) The cat sat on the mat.

Note that the system’s output does not contain any annotations.12 This has the consequence that the cor-
rected texts cannot contain any indications of the hypothesized types of errors, and cannot indicate multiple
alternative corrections. Although both of these are things we would eventually like to incorporate in our
evaluations, for the pilot run our current intention is to keep things simple.

Given an original text file (containing text like that in Example (20)) and a corrected version of that file as
provided by a participating system (containing text like that in Example (22)), our edit extraction utility will
output an XML file that contains, in stand-off form, a collection of edit structures that capture the relevant
information for each change found in the text. To enable evaluation, these stand-off annotations will include
character offset information to enable identification of the specific text spans in the original file that they
refer to. For the example above, the corresponding extracted edit will look like the following:13

(23) <edit index="0067BT1-0001" start="8" end="11">

<original>sit</original>

<corrections>

<correction>sat</correction>

</corrections>

</edit>

Note that while the structure produced can accommodate multiple corrections, our desire to be able to accept
system output consisting of plain unannotated text means that we impose a limit of one system-provided
correction per edit. This restriction may be removed in subsequent rounds.

This example serves to demonstrate the format of edit structures that participating systems should adhere
to if they construct these directly:

1. Every edit structure should have an index formed as shown in the example above.

2. Every edit structure should have start and end attributes that indicate the location of the markable in
the original text.

3. The error type attribute does not need to be provided, since these are not evaluated in this round.

4. There should be at most one correction.

5. Care should be taken to ensure that spacing is properly incorporated when deleting or inserting mate-
rial; see Section 3.2.5.

Evaluation then proceeds by comparing the set of gold-standard edit structures for a fragment with the set of
edit structures corresponding to the participating team’s output for that fragment.

12The text may contain sentence and paragraph tags as in the sentence-segmented source texts, but these will be ignored by the
evaluation tools.

13The index value here is constructed by the extractor.

12

4.3 Scoring

There are a number of aspects of system performance for which we can derive scores:

• Detection: does the system determine that an edit is required at some point in the text?

• Recognition: does the system correctly determine the extent of the source text that requires editing?

• Correction: does the system offer a correction that is amongst the corrections provided in the gold
standard?

For each of these, we can score a participating system on a fragment-by-fragment basis, or on a data set as a
whole. We will also shortly release a version of the evaluation tools that assesses performance on individual
error types across the data set as a whole.

In what follows, we will make use of the following terminology and notation:

• As noted above, each edit structure, whether in the gold standard or derived from a system output,
indicates an extent by means of start and end offsets into the original text file. The edits for a given
file are collected together into what we will call an edit set. We will indicate the set of gold-standard
edits for a given input file as G = {g1, . . . , gn}, and the set of system-produced edits for that file as
S = {s1, . . . , sm}. Note that the two edit sets to be compared may have different cardinality, since a
system may not find all the spans to be corrected, or may identify spurious corrections.14

• Each edit structure has values for start and end offsets in the original text file. For some edit gi, these
are notated gi.start and gi.end respectively. For implementational efficiency, we will also assume that
the elements of the sets are ordered in terms of increasing start values; this is a restriction that we may
remove in later HOO rounds to enable more flexibility in evaluation.15

Given the above, we can define the notions of strict alignment and lenient alignment. Two edits gi and sj
are said to be strictly-aligned if their start and end offsets are the same:

(si.start = gj .start ∧ si.end = gj .end)(24)

The symbol ‘≈’ will be used to indicate strict alignment: for example, (si ≈ gj).
Two edits gi and sj are said to be leniently-aligned if there is at least one character overlap:

(si.start ≤ gj .start ∧ si.end > gj .start) ∨ (si.start < gj .end ∧ si.end ≥ gj .end)(25)

The symbol ‘∼’ will be used to indicate lenient alignment: for example, (si ∼ gj). In an ideal case, of course,
edits in the two edit sets will correspond one-to-one, but this may not always be the case.

For any given pair of edit sets 〈G,S〉, an alignment set is a structure that indicates the correspondences
between the edits in the two edit sets. We have two alignment sets for any pair of edit sets: a strict alignment
set, containing just the strict alignments, and a lenient alignment set, containing the lenient alignments.
Every strict alignment will also be represented in the lenient alignment set, but not vice versa.

We also have what we call unaligned edits. These are edits which do not appear in the lenient alignment
set. An unaligned system edit corresponds to a spurious edit; an unaligned gold-standard edit corresponds
to a missing edit. It is important to note that missing edits are of two types, depending on whether the
gold-standard edit corresponds to an optional edit or a mandatory edit (see Section 3.2.4). A system should
not be penalised for failing to provide a correction for a markable where the gold standard considers the edit
to be optional. To manage the impact of this on scoring, we need to keep track of the number of missing
optional edits.

In what follows, we will use the situation shown schematically in Figure 6 to demonstrate these concepts.
The various sets of edits shown here are as follows (assuming for present purposes that all of the gold-
standard edits shown are mandatory):

• The gold-standard edit set G = {g1, g2, g3, g4, g5}
14At least, spurious from the point of view of the gold standard. Of course, there may be quite appropriate edits that are missing from

the gold standard.
15Note that in the current setup, no two edits in an edit set can have the same start value.

13

Case 7: Cross-Alignment

s1

g1 Gold Standard

System Result

g2

s2

g3

s3 s4

g4 g5

Figure 6: Example Alignments

• The system-produced edit set S = {s1, s2, s3, s4}

• The strict alignment set = {(s2 ≈ g2)}

• The lenient alignment set = {(s1 ∼ g1), (s2 ∼ g2), (s4 ∼ g4), (s4 ∼ g5)}

• Missing mandatory edits = {g3}

• Missing optional edits = {}

• Spurious edits = {s3}
We will use this example in what follows to show how scoring works.

4.3.1 Detection

For a given 〈G,S〉 pair, a gold standard edit gi is considered detected if there is at least one alignment in the
lenient alignment set that contains gi. We then calculate Precision and Recall as follows:16

Precision =
of detected edits

of spurious edits + # of detected edits
(26)

Recall =
of detected edits

of gold-standard edits−# of missing optional edits
(27)

Note that the number of detected edits is not necessarily the size of the lenient alignment set. If there are
multiple lenient alignments that contain gi, then these count fractionally towards the score: so, if there
are n lenient alignments containing gi then each counts as 1

n detections; alternatively, only the first lenient
alignment containing gi needs to be counted.

The detection score for a given 〈G,S〉 pair is then the harmonic mean (F-score):

DetectionScore = 2× Precision× Recall
Precision + Recall

(28)

This score is calculated for each document; for a system’s performance across all documents in a data set, we
compute the average of the scores across all the documents. We thus have per-document detection scores
and dataset detection scores.

In the example in Figure 6, we have four detected edits (g1, g2, g3, and g4) and one spurious edit (s3), so
the Precision is 0.8 and the Recall is also 0.8, for a DetectionScore of 0.8. If g3 was an optional edit, then the
Recall would instead be 1, for a DetectionScore of 0.88̇.

A trickier case, which we refer to as staggered alignment, is shown schematically in Figure 7. Here, the
following alignments hold:

(29) {(s1 ∼ g1), (s2 ∼ g1), (s2 ∼ g2)}
In this case, we have two detected edits (g1 and g2); although there are three alignments in the lenient
alignment set, two of these correspond to the same gi and thus only count for a half each. There are no
spurious edits, so the Precision is 1, and the Recall is also 1, for a DetectionScore of 1.

16Note that in all computations of Precision and Recall we take the result of dividing zero by zero to equal 1, but for the computation
of F-scores we take the result of dividing zero by zero to be zero.

14

Case 7: Cross-Alignment

g1Gold Standard g2

s1System Result s2

Figure 7: Staggered Alignment

4.3.2 Recognition

The detection score described above can be considered a form of ‘lenient’ recognition. We also want to
measure ‘strict’ recognition, i.e. the degree to which a participating system is able to determine the correct
start and end locations of text to be corrected. We consider a gold-standard edit gj to be recognized if it
appears in the strict alignment set. RecognitionScore is defined to be 0 if there are no recognized edits for a
given document; otherwise, we have:

Precision =
of recognized edits

of system edits
(30)

Recall =
of recognized edits

of gold-standard edits−# of missing optional edits
(31)

The recognition score for a given 〈G,S〉 pair is then the harmonic mean (F-score):

RecognitionScore = 2× Precision× Recall
Precision + Recall

(32)

Again, the recognition score can be calculated for each document, and for the set of documents in the data
set.

In the example in Figure 6, we have one recognized edit (g2), four system edits, and five gold-standard
edits, so the Precision is 0.25 and the Recall is 0.2, for a RecognitionScore of 0.22̇. If g3 was an optional edit,
then the Recall would instead be 0.25, for a RecognitionScore of 0.25.

This case demonstrates a deficiency in the scoring scheme: note that one system edit (s4) corresponds to
the same extent as two gold-standard edits (g4 and g5), so it is quite possible that the system has decomposed
what the gold-standard sees as a single edit into two constituent edits. Both analyses may be plausible;
however, the scoring scheme gives no recognition credit in this case.

In the staggered alignment example of Figure 7, we have no recognized edits, so the RecognitionScore is
0.

4.3.3 Correction

Recall that for any given gold-standard edit gj , there may be multiple possible corrections. A system edit si
is considered a valid correction if it is strictly aligned, and the correction string that it contains is identical
to one of the corrections provided in the gold standard edit. CorrectionScore is defined to be 0 if there are no
recognized edits for a given document; otherwise, we have:

Precision =
of valid corrections

of system edits
(33)

Recall =
of valid corrections

of gold-standard edits−# of missing optional edits
(34)

15

The correction score for a given 〈G,S〉 pair is then the harmonic mean (F-score):

CorrectionScore = 2× Precision× Recall
Precision + Recall

(35)

Again, the correction score can be calculated for each document, and for the set of documents in the data
set.

In Figure 6, if s2 is a valid correction for g2 (the only candidate since this is the only strict alignment), then
the CorrectionScore is 0.22̇. If every recognition corresponds to a valid correction, then the CorrectionScore will
be the same as the RecognitionScore. If only a proportion of the recognitions correspond to valid corrections,
then the CorrectionScore will be proportionately reduced. The CorrectionScore can never be greater than the
RecognitionScore.

4.4 Examples and Test Cases

In this section we iterate through a number of examples to how scoring works in each case. To simplify the
presentation, we introduce a shorthand notation for showing the content of the gold-standard edits inline: the
markable and its corrections are bounded by braces, with the markable and the set of corrections separated
by a ‘→’ character, and each pair of possible corrections separated by a ‘∧’ character. A leading ‘∧’ in the set
of corrections indicates that the correction is optional (i.e., the first alternative correction is null), so that it
is valid to leave the text as it is. Changes present in the system output will be underlined.

In most cases we will assume that the gold standard only contains one possible correction for each mark-
able.

4.4.1 Perfect Match

Here there is a strong alignment that provides a valid correction.

(36) Original Text: The cat sit on the mat.
Gold Standard: The cat {sit→sat} on the mat.
System Output: The cat sat on the mat.

If the text shown was the complete fragment, then:

• DetectionScore = 1

• RecognitionScore = 1

• CorrectionScore = 1

4.4.2 Failure to Detect

In this case, we have a missing mandatory edit.

(37) Original Text: The cat sit on the mat.
Gold Standard: The cat {sit→sat} on the mat.
System Output: The cat sit on the mat.

If the text shown was the complete fragment, then:

• DetectionScore = 0

• RecognitionScore = 0

• CorrectionScore = 0

16

4.4.3 Spurious Correction

In this case, the system proposes an edit (here, on → at) which does not have a corresponding edit in the
gold standard.

(38) Original Text: The cat sit on the mat.
Gold Standard: The cat {sit→sat} on the mat.
System Output: The cat sit at the mat.

Once again, if the text shown was the complete fragment, then:

• DetectionScore = 0

• RecognitionScore = 0

• CorrectionScore = 0

This means there is no penalty assigned for spurious corrections, which might be considered a weakness
in the current scoring scheme. We could address this simply by keeping count of the number of spurious
corrections a system makes.

4.4.4 Invalid Correction

Here the system proposes a correction which is not amongst those offered in the gold standard, although the
need for a correction is correctly recognised.

(39) Original Text: The cat sit on the mat.
Gold Standard: The cat {sit→sat} on the mat.
System Output: The cat sits on the mat.

If the text shown was the complete fragment, then:

• DetectionScore = 1

• RecognitionScore = 1

• CorrectionScore = 0

As already noted, it’s possible that a system might propose a correction that is quite acceptable, but was
simply not foreseen by the annotators, so the system will be unfairly penalised.

4.4.5 Multiple Possible Corrections

In this example, the gold standard proposes multiple possible corrections. Provided the system offers one of
the proposed corrections, this is no different from the Perfect Match case described above.

(40) Original Text: The cat sit on the mat.
Gold Standard: The cat {sit→sat∧sits} on the mat.
System Output: The cat sits on the mat.

If the text shown was the complete fragment, then:

• DetectionScore = 1

• RecognitionScore = 1

• CorrectionScore = 1

17

4.4.6 Optional Correction

In this situation, the gold standard offers a correction, but also allows the possibility that the text may be left
as it is in the original. First suppose the system does not propose a correction, so no edits are detected.

(41) Original Text: The cat sat on the mat.
Gold Standard: The cat sat {on→ ∧at} the mat.
System Output: The cat sat on the mat.

If the text shown was the complete fragment, then:

• DetectionScore = 1

• RecognitionScore = 1

• CorrectionScore = 1

On the other hand, suppose the system does offer a correction in such a case, but it is not one of the
corrections offered by the system:

(42) Original Text: The cat sat at the mat.
Gold Standard: The cat sat {on→ ∧at} the mat.
System Output: The cat sat in the mat.

Then we have:

• DetectionScore = 1

• RecognitionScore = 1

• CorrectionScore = 0

Again, it is entirely possible that the system correction is in fact a plausible correction that was not captured
in the gold standard.

4.4.7 Extent Generalisation

We indicated in Section 3.2.2 that the extent of a markable in the original text is determined by the longest
correction provided in the gold standard. This has an impact on scoring. To repeat the example from earlier,
suppose we have the following possible corrections for the original text shown:

(43) Original Text: . . . the ambiguity of the person name . . .
Correction #1: . . . the ambiguity of the personal name . . .
Correction #2: . . . the ambiguity of the person’s name . . .
Correction #3: . . . the ambiguity of personal names . . .

The gold standard edit representing these corrections looks like the following:

(44) <edit type="R" start="17" end="34">

<original>the person name</original>

<corrections>

<correction>the personal name</correction>

<correction>the person’s name</correction>

<correction>personal names</correction>

</corrections>

</edit>

Suppose a participating system proposes the following edit, which is equivalent to the first alternative in the
gold standard in terms of its actual effect on the text:

18

(45) <edit type="R" start="21" end="29">

<original>person</original>

<corrections>

<correction>personal</correction>

</corrections>

</edit>

Then the scores would be as follows

• DetectionScore = 1

• RecognitionScore = 0

• CorrectionScore = 0

Thus, the system has produced a correction whose net effect is the same as one of the alternatives in the gold
standard, but it receives no recognition or correction credit for this because the extent does not match that
in the gold standard.

4.4.8 Edit Aggregation

Another problematic situation arises when a participating system identifies one markable that is co-extensive
with a series of markables in the gold standard. Consider the following fragment and its possible correction:

(46) Original Text: The cat sit at the mat.
Corrected Text: The cat sat on the mat.

The problem here is that the correction can be seen as consisting of either one edit or two edits. Suppose the
gold standard annotates this as two distinct edits:

(47) <edit type="FV" start="8" end="11">

<original>sit</original>

<corrections>

<correction>sat</correction>

</corrections>

</edit>

<edit type="RT" start="12" end="14">

<original>at</original>

<corrections>

<correction>on</correction>

</corrections>

</edit>

Now suppose a participating system combines these into a single edit:

(48) <edits>

<edit start="8" end="14">

<original>sit at</original>

<correction>sat on</correction>

</edit>

</edits>

Consequently, although the system has properly corrected the text, it will only receive credit via lenient extent
recognition, and will receive no credit for recognition or correction:

• DetectionScore = 1

• RecognitionScore = 0

19

• CorrectionScore = 0

Note that this problem can arise artificially as a result of using our edit extraction tool even if the participating
system had actually detected the two edits separately: if the edits are adjacent in the text, then they will be
extracted as a single edit. This is one reason for constructing the edit set directly, rather than relying on our
tool.

4.4.9 Edit Decomposition

Another problematic case is the opposite of that just described. Suppose, for the same text in Example 46,
we now have one edit in the gold standard, but the participating system proposes two edits that are together
co-extensive with the gold standard edit. Then:

• DetectionScore = 1

• RecognitionScore = 0

• CorrectionScore = 0

Again, the system produces the right result, but is not given credit for either recognition or the content of the
correction.

4.5 Summary

In this section, we’ve described the approach we’re taking to evaluation in HOO. Although, as we have noted,
there are some the potential weaknesses in the current scoring regime, we believe it provides a good starting
point which can be refined on the basis of experience. The evaluation scripts we provide are described in
Appendix D.

5 Conclusions and Outstanding Issues

This report has described the nature of the annotations used in the initial HOO data set, and explained the
reasoning behind a number of design decisions that have been taken. We’ve also explained the approach we
will be taking to evaluation.

Appendix F provides a list of known issues and possible improvements to the framework described here.
However, as noted at the start of this document, we see the pilot round of HOO as one where we learn from
mistakes, and determine better answers to some of the tricky questions. Accordingly, we welcome community
input on any aspect of the exercise, and in particular on the three following topics:

The Annotation Scheme: We believe our existing approach to annotation covers all the necessary cases,
but we welcome feedback on any aspect of the design of the annotation; we expect that a number
of revisions will be made for subsequent HOO rounds, some of which are foreshadowed in comments
throughout this document.

The Annotated Data: The data set for the pilot HOO round has now been finalised, with a number of minor
revisions and corrections having been integrated based on feedback from the community in response
to the preliminary release. We do not expect to make any more changes to the data for this round,
but we would still like to be informed of any errors that are found, so that these can be corrected for
subsequent use.

Evaluation Methodology: We would appreciate any input on the approach we are taking to evaluation, and
any views on the unresolved issues that remain.

We invite feedback via the HOO Google Group at http://groups.google.com/group/hoo-nlp. Up-to-date
information about the Shared Task can always be found at www.clt.mq.edu.au/research/projects/hoo.

20

6 Acknowledgements

Diane Nicholls and Kate Wild diligently annotated the data for the pilot phase. Guy Lapalme provided useful
input on XML, XSLT and CSS; Daniel Dahlmeier identified some tricky cases for evaluation; and Joel Tetrault
provided useful feedback on a draft of the evaluation plan.

References

Dale, R. and A. Kilgarriff. 2010. Helping Our Own: Text massaging for computational linguistics as a new
shared task. In Proceedings of the 6th International Natural Language Generation Conference, pages 261–
266, 7th-9th July 2010.

Nicholls, D. 2003. The Cambridge Learner Corpus—error coding and analysis for lexicography and ELT.
In D. Archer, P. Rayson, A. Wilson, and T. McEnery, editors, Proceedings of the Corpus Linguistics 2003
Conference, pages 572–581, 29th March–2nd April 2001.

21

A The Cambridge Learner Corpus Error Tags

The table below shows the error codes used in the manual annotation. This error coding system has been
developed by Cambridge University Press, with the exception of one code, CC (for Compound Change; see
Example (8) in Section 3.2.4), which has been added for the present project. Some of the tags listed below
are not currently used in HOO; in particular, instances of US spelling (type SA) are not considered errors.
Note that the error tags used have a different syntax when used by Cambridge University Press to that used
here.

The Cambridge University Press Error Coding System is copyright to Cambridge University Press and may
only be used with their written permission. The coding is used to annotate the Cambridge Learner Corpus,
which informs English Language Teaching materials published by Cambridge University Press. The scheme
is discussed in detail in (Nicholls, 2003).

Tag Meaning Tag Meaning
AG agreement error MA missing anaphor
AGA anaphor agreement error MC missing link word
AGD determiner agreement error MD missing determiner
AGN noun agreement error MJ missing adjective
AGV verb agreement error MN missing noun
AS argument structure error MP missing punctuation
C countability error MQ missing quantifier
CD wrong determiner because of noun countability MT missing preposition
CE complex error MV missing verb
CL collocation or tautology error MY missing adverb
CN countability of noun error NE no error
CQ wrong quantifier because of noun countability R replace error
DA derivation of anaphor error RA replace anaphor
DC derivation of link word error RC replace link word
DD derivation of determiner error RD replace determiner
DI incorrect determiner inflection RJ replace adjective
DJ derivation of adjective error RN replace noun
DN derivation of noun error RP replace punctuation
DQ derivation of quantifier error RQ replace quantifier
DT derivation of preposition error RT replace preposition
DV derivation of verb error RV replace verb
DY derivation of adverb error RY replace adverb
FA wrong anaphor form S spelling error
FC wrong link word form SA spelling American
FD incorrect determiner form SX spelling confusion
FJ wrong adjective form TV incorrect tense of verb
FN wrong noun form U unnecessary error
FQ wrong quantifier form UA unnecessary anaphor
FT wrong preposition form UC unnecessary link word
FV wrong verb form UD unnecessary determiner
FY wrong adverb form UJ unnecessary adjective
IA incorrect anaphor inflection UN unnecessary noun
ID idiom wrong UP unnecessary punctuation
IJ incorrect adjective inflection UQ unnecessary quantifier
IN incorrect noun inflection UT unnecessary preposition
IV incorrect verb inflection UV unnecessary verb
IY incorrect adverb inflection UY unnecessary adverb
L inappropriate register W word order error
M missing error X incorrect negative formation

22

B Error Codes by Group with Examples

The examples shown here have been invented solely to illustrate clearly the error codes, and are reproduced
with the kind permission of Cambridge University Press. They are not taken from actual learner writing.

Verb errors

Error Code Description Example
RV Replace verb I existed last weekend in London
TV Wrong tense of verb I spend last weekend in London
FV Wrong verb form I to spend last weekend in London
MV Missing verb I last weekend in London
UV Unnecessary verb I spent to be last weekend in London
IV Incorrect inflection of verb I spended last weekend in London
DV Derivation of verb error I spendified last weekend in London
AGV Verb agreement error The three birds is singing

Noun errors

Error Code Description Example
RN Replace noun Have a good travel!
FN Wrong noun form I met the ladies
IN Wrong noun inflection I met two ladys
MN Missing noun It was an interesting
UN Unnecessary noun He has a huge office room
CN Countability error I dont have any monies
DN Derivation of noun error There are changements to the schedule
AGN Noun agreement error One of my friend

Adjective errors

Error Code Description Example
RJ Replace adjective The afternoon was very bored
FJ Form of adjective The situation got worst
MJ Missing adjective Kindly reply as soon as
IJ Wrong adjective inflection My news shoes
DJ Derivation of adjective error An interessant story
UJ Unnecessary adjective It was 3 o’clock in the early morning

Adverb errors

Error Code Description Example
RY Replace adverb He stared at her intensively
FY Form of adverb As I said early, . . .
MY Missing adverb He pointed my mistake
UY Unnecessary adverb I went together with him
DY Derivation of adverb error It happened fastly
IY Inflection of adverb error Please drive slowlier

Preposition errors

Error Code Description Example
RT Replace preposition When I arrived at London
MT Missing preposition I gave it John
UT Unnecessary preposition I told to John that . . .
DT Derivation of preposition He looks alike his father

23

Conjunction errors

Error Code Description Example
RC Replace Conjunction I wonder and he will come
UC Unnecessary conjunction But although I dont know.
MC Missing conjunction The stripes were red green

Quantifier errors

Error Code Description Example
FQ Form of quantifier It is one of the fewer things I like
RQ Replace quantifier There were people of any age there
MQ Missing quantifier Ill call in the next days
UQ Unnecessary quantifier A little bit quite common
CQ Quantifier countability error It cost him many money
AGQ Quantifier agreement error In another circumstances
DQ Derivation of quantifier I earn lesser money in this job
IQ Inflection or quantifier error I enjoy chess and others games

Anaphor/pronoun errors

Error Code Description Example
FA Form of anaphor To who it may concern
RA Replace anaphor I have a car. She is blue
MA Missing anaphor I have a car. Is blue
UA Unnecessary anaphor My car it is blue
DA Derivation of anaphor Yous sincerely
AGA Anaphor agreement error It were difficult questions
IA Inflection of anaphor Thank you for everythings

Determiner errors

Error Code Description Example
FD Form or determiner I have an car
RD Replace determiner Have the nice day
MD Missing determiner I have car
UD Unnecessary determiner There was a lot of the traffic
DD Derivation of determiner Shes name was Anna
AGD Determiner agreement error I enjoy these job
CD Countability of determiner I hope these news reaches you
DI Inflection of determiner Thank you for yours letter

Punctuation errors

Error Code Description Example
RP Replace punctuation The womans handbag
MP Missing punctuation The womans handbag
UP Unnecessary punctuation The womans hand-bag

Spelling errors

Error Code Description Example
S Wrong spelling accomodation
SX Spelling confusion I’ll see you their
SA US spelling color

24

Collocation errors

Error Code Description Example
CL Collocation error She beat me blue and black
CL Tautology error Im pleased and happy to be here

Register errors

Error Code Description Example
L Register error (Label) A chum of mine informed me

Negative formation errors

Error Code Description Example
X Negative formation error Love dont live here no more

Complex errors

Error Code Description Example
CE Complex error He didnt never should be having

Idiom errors

Error Code Description Example
ID Idiom error In one hand . . . In another hand

Argument structure errors

Error Code Description Example
AS Argument structure error It gives great pleasure to me

Word order errors

Error Code Description Example
W Word order I have also two cats
W Word order (possessive) The hat of the man

25

C Statistics

The initial data set consists of 19 fragments selected from papers previously published in ACL conferences
and workshops, and used with the kind permission of the original authors. Each fragment is approximately
1000 words long; the precise word counts for each fragment are as shown in Table 1.

Table 2 shows the number of errors of each type contained in the initial data set as a whole. Within the
19 files, 888 edits offer one possible correction; 320 offer two corrections; 27 offer three corrections; and
two offer four corrections. In 76 cases, correction is optional.

File Word Count File Word Count
0001.txt 1005 0044.txt 1141
0004.txt 1004 0046.txt 1009
0005.txt 1013 0048.txt 1026
0015.txt 1022 0049.txt 1033
0019.txt 1061 0054.txt 1033
0020.txt 1048 0055.txt 1013
0021.txt 1100 0061.txt 1009
0031.txt 996 0062.txt 1064
0038.txt 1063 0066.txt 953
0041.txt 1008

Table 1: Word Counts in the Initial Data Set

Type Count Type Count Type Count
AGD 4 AGN 17 AGV 14
AS 2 CC 93 CE 2
CN 1 CQ 2 DJ 5
DN 9 DQ 1 DY 6
FD 3 FJ 2 FN 46
FV 4 ID 1 IJ 2
IN 2 L 5 M 14
MA 2 MC 5 MD 161
MN 9 MP 210 MT 5
MV 11 MY 4 R 84
RA 3 RC 4 RD 22
RJ 36 RN 67 RP 67
RQ 3 RT 110 RV 64
RY 19 S 11 TV 22
U 3 UA 1 UC 3
UD 33 UJ 1 UN 2
UP 17 UT 15 UV 3
UY 4 W 29

Table 2: Errors by Type

26

D Using the Evaluation Tools

D.1 Scores To Be Reported

Given a collection of test data set consisting of fragments T1 . . . Tn, we compute the following:

1. Per-fragment scores:

(a) DetectionScore for each Ti

(b) RecognitionScore for each Ti

(c) CorrectionScore for each Ti

2. Average scores across the data set as a whole:

(a) DetectionScore averaged across all Ti

(b) RecognitionScore averaged across all Ti

(c) CorrectionScore averaged across all Ti

D.2 Tools Provided

To support evaluation, we provide two Python scripts:

batch evaluate.py: Computes DetectionScore, RecognitionScore and CorrectionScore for all fragments in a
directory, and reports result for each fragment as well as the averages over all fragments; the output is
in .csv format.

evaluate.py: Computes DetectionScore, RecognitionScore and CorrectionScore for a single fragment.

These operate on files that contain edit structures, and can be used directly by teams who create their own
edit structures as output.

For those who create corrected text files as output, we also provide software for extracting edit structures
from these corrected text files:

batch extract.py: given a directory containing a set of original text files and a second directory containing a
set of corrected files, produces in a third specified directory a set of files containing the edit structures
that correspond to the changes in the set of corrected files.

batch extract.py uses diffextract.py, which is included in the package, and Gnu wdiff, which you will need
to install separately.17

D.3 Running the Tools

Evaluation is carried out by comparing a set of system edits against a set of gold standard edits. If your system
outputs corrected texts, start at Section D.3.1; if you directly construct edit structures, jump to Section D.3.2.

D.3.1 Extracting Edits from Corrected Text

If your system outputs corrected text files, you need to generate a set of system edits from the corrected text
files. This is done using the batch extract.py script. Here we assume three directories:

Orig: A directory containing a set of original text fragments.

System: A directory containing a set of system outputs, these being corrected versions of the original text
fragments.

17This can be found at http://www.gnu.org/software/wdiff. If you are a Windows user, wdiff is also available as a package for
cygwin: see http://cygwin.com. Note that wdiff is not part of the base cygwin installation, and therefore has to be installed separately.

27

File detectionprecision detectionrecall detectionscore recognitionprecision recognitionrecall recognitionscore correctionprecision correctionrecall correctionscore

0441MQ1 1 1 1 1 1 1 1 1 1

0442MQ1 0 0 0 0 0 0 0 0 0

0443MQ1 0 0 0 0 0 0 0 0 0

0444MQ1 1 1 1 1 1 1 0 0 0

0445MQ1 1 1 1 1 1 1 1 1 1

0446MQ1 1 1 1 1 1 1 0 0 0

0447MQ1 1 1 1 0 0 0 0 0 0

0448MQ1 1 1 1 0 0 0 0 0 0

Average 0.75 0.75 0.75 0.5 0.5 0.5 0.25 0.25 0.25

Figure 8: Evaluation results

SysXML: A directory that will be used to contain the output of edit structure extraction from the system
output texts.

To extract the edits, proceed as follows:

> python batch_extract.py Orig System SysXML

Compiling files...

2 original files found in Orig

2 system files found in System

Matching system files to original files...

2 pairs found

Extract diffs...

Finished.

>

D.3.2 Evaluating Edit Sets

Here we assume two directories:

GoldXML: A directory containing the gold-standard edit structures corresponding to the corrected versions
of the original text fragments.

SysXML: A directory containing the corresponding edit structures produced by the participating system.

Run batch evaluate.py to produce the evaluation results:

> python batch_evaluate.py GoldXML SysXML Results.csv

Compiling files...

8 gold files found in GoldXML

8 system files found in SysXML

Matching system files to gold files...

8 pairs found

Evaluating system output...

Opening Results.csv for score output

Scores successfully written to Results.csv

>

The results of a sample evaluation run are shown in Figure 8.18

More detailed results can be obtained by running evaluate.py on a single pair of files:
18This uses a set of sample files provided with the code, which correspond to the test cases discussed in Section 4.4.

28

> python evaluate.py 0446G.xml 0446MQ1.xml

Parsing edits in 0446G.xml...

Found 1 edits

Parsing edits in 0446MQ1.xml...

Found 1 edits

Scoring detection...

Detected edits: 1

Missed optional edits: 0

Spurious edits: 0

Gold edits: 1

- Precision: 1 / (0 + 1) = 1.00

- Recall: 1 / (1 - 0) = 1.00

- Score: 1.00

Scoring recognition...

Recognised edits: 1

Missed optional edits: 0

Gold edits: 1

System edits: 1

- Precision: 1 / 1 = 1.00

- Recall: 1 / (1 - 0) = 1.00

- Score: 1.00

Scoring corrections...

Aligned system edits: 1

Valid corrections: 0

Gold edits: 1

System edit: 1

- Precision: 0 / 1 = 0.00

- Recall: 0 / 1 = 0.00

- Score: 0.00

detection

recall: 1.00

score: 1.00

precision: 1.00

recognition

recall: 1.00

score: 1.00

precision: 1.00

correction

recall: 0.00

score: 0.00

precision: 0.00

End.

>

29

E Glossary

This appendix provides a list of the terms used in this document, along with their definitions.

consistency set: a set of edits which are interdependent.

correction: text that is offered as a replacement for a markable in a fragment.

data set: a collection of fragments corresponding to a training or testing set.

detection: determining that an edit is required at some point in a text.

edit: an indication of a change to a markable in a fragment, typically specified as one or more possible
corrections for that markable.

edit, gold-standard: an edit whose contents define the ‘correct answer’ for a given markable.

edit, mandatory: a gold-standard edit which is required; i.e., one of the provided corrections should be
applied.

edit, missing: an edit in the gold standard for which a participating system does not propose an aligned
edit.

edit, optional: a gold-standard edit which is not a mandatory edit; i.e., the text can be left as is (one of the
corrections is a null correction).

edit, spurious: an edit proposed by a participating system for which there is no aligned edit in the gold
standard.

edit structure: an XML object that contains the information defining the possible corrections for a given
markable.

edit set: a collection of edits corresponding to a fragment.

extent: a span of text defined by start and end character positions in a fragment.

fragment: an excerpt of a text, corresponding to one file in a data set; identified by a four-digit number,
and typically containing around 1000 words of text.

lenient alignment: the situation that obtains when the extent of an edit proposed by a system overlaps by
at least one character the extent of an edit contained in the gold standard.

markable: a span of text that is considered correctable.

recognition: determining the extent of an edit.

run: a set of output files generated by a participating team for a given data set under some software config-
uration.

source document: the original document from which a fragment has been drawn.

strict alignment: the situation that obtains when an edit proposed by a system refers to the same extent as
an edit contained in the gold standard.

team ID: a two-character code used in filenames and edit indices to identify a participating team.

unaligned edit: when comparing two set of edits, any edit which is not aligned with an edit in the other set.

30

F Known Issues and Possible Improvements

Here’s a list of things we know could do with fixing, or at least are worth thinking more about. If you want
to report a problem or possible issue, please first check that it isn’t already in this list.

F.1 Source Text Annotation

1. The sentence-segmented version of the data contains only <p> and <s> tags. A consequence of this is
that some text categories which are not sentences, such as items in lists, are tagged as sentences. In
future versions, it may be useful to use other tags to indicate headings, list items and other distinct
elements of logical structure.

2. It may be useful to add index attributes to <p> and <s> elements so that they can be uniquely identified.

3. Our use of plain text as the standard format for data means that we are not able to correct typographic
problems such as incorrect or dispreferred use of italics and boldface; also, we can’t handle text that
contains mathematical symbols.

F.2 Gold Standard Data Issues

1. Data may contain corrections to spellings where the form corrected could be considered valid. So,
for example, file 0055G.xml identifies modelling and modelled as misspelled words, but they may be
considered acceptable variants.

F.3 Edit Structure Format

1. Currently, error types are attributes of edit elements. However, error types should probably be associ-
ated with corrections rather than edits as a whole, since it is conceivable that different corrections may
correspond to different perceptions of what the nature of the error is.

2. Each correction within an edit could usefully have an identifying index.

F.4 Supporting Tools and Documentation

1. Modify the XSLT and CSS support to enable browsing of inline annotated data in Internet Explorer.

2. At least one valid error tag, AGQ (quantifier agreement), is missing from the table in Appendix A.

F.5 Evaluation

1. Modify scoring regime to give partial marks depending on the degree of overlap, rather than the current
binary correct vs incorrect.

2. Keep track of and report on the number of spurious edits that systems propose.

3. Other forms of evaluation: classify a sentence as containing an error or not; use BLEU or edit distance
to compare original and corrected texts.

31

