When is a Developmental Model
not a Developmental Model?

Steve Cassidy
Published in: Cognitive Systems, 2-4, 1990

Abstract

A recent paper by Seidenberg and McClelland (1989) describes a computa-
tional model of word recognition and naming. The authors claim that it is a
developmental model; that is, it explains how word recognition skills are ac-
quired by children. The purpose of this paper is to challenge that claim and,
in doing so, to set out a number of criteria against which a model of reading
development can be assessed.

To summarize the criteria:

e The environment of learning should reflect that of the child.

e The representations used should be accurate and adequate for learning.

e The model’s performance should reproduce observations of children’s per-
formance.

e The model should be consistent with wider theories of cognition.

Some criticisms of the Seidenberg and McClelland model arise directly from
their choice of a connectionist architecture for implementing the model. We try
to identify those parts of the model that result from this choice and argue that
this type of connectionist model is an inappropriate way of describing learning.

We claim that this discussion of models of word recognition is also relevant
to other areas of cognitive development.

COGNITIVE DEVELOPMENTAL MODELS

The construction of computational models is an important adjunct to theory building
in cognitive science. Such an exercise leads to a better understanding of the detail of
the processes involved in cognition by forcing the theorist to consider the fine grain,
computational implications of the theory. Another reason for building an explicit
model is to find out the behavior predicted by complex theories in realistic situations;



it is often not possible to predict what will happen in response to complex stimuli
without running a computer simulation. This is particularly true of developmental
theories, where the learning environment provides a large and complex stimulus set.

The psychology of word recognition is rich in alternative theories; computational
modelling can help to evaluate the alternatives. For example, many theorists have
put forward the idea of using analogy to recognise words (Glushko, 1979). Analogy
is a very loose term that covers almost any means of accessing a lexical item from its
orthography. If such theories are to be developed, the means by which analogies are
made and used need to be further specified. In building a computational model we
are forced to define what we mean by analogy; the performance of the model then
serves as a basis for assessment of our definition.

When we look at theories of the development of reading skills, there is not as much
variety as for mature reading. However, an important part of any theory of mature
performance is how the mechanisms and structures it proposes develop; some do not
have any obvious developmental route, which seriously harms their credibility (for
example, the dual route theory (Humphreys & Evett, 1985)). A number of devel-
opmental theories (Frith, 1985; Marsh, Morton, Welch, & Desberg, 1980; Seymour,
1984) suggest that there are stages in the development of reading skills where dif-
ferent methods are used to decode words. These theories seems to account for a
number of observations, but it is not clear that it is feasible for children to learn in
this way, given the orthographic environment that they are exposed to. Building a
computational model would serve to further specify the processes involved and, if
successful, show that learning is possible in this way.

Seidenberg and McClelland (1989) present a “distributed, developmental model of
word recognition and naming”. Their model learns to associate the spelling of 2897
monosyllabic words with their pronunciations, using a connectionist learning algo-
rithm. Once it has learned these associations, the model reproduces a number of
observations of reading performance. They also observe the behavior of the model as
it learns the associations, and draw conclusions about the nature of reading develop-
ment.

This paper is an attempt at establishing some ground rules for the construction of a
developmental model of word recognition. In order to do this we critique the model of
Seidenberg and McClelland from the point of view of development, and set out some
criteria that should be met by a developmental model. Although we will be dealing
exclusively with word recognition in this paper, much of the discussion is relevant to
other aspects of cognition.



EVALUATING A DEVELOPMENTAL MODEL

A developmental model is a model of a cognitive task that claims to give an account
of how the task is learned. The particular model under consideration here is not pri-
marily a developmental model, rather it claims to model mature reading performance.
However, Seidenberg and McClelland do make some claims about development in the
model and it is this aspect of their work that we examine here.

We will not discuss the particular findings that a developmental theory of reading
should account for, except where they illustrate a particular point; instead we will
consider methodological issues in the construction of a theory/model of the devel-
opment of word recognition. The criteria we develop can be summarised under four
headings:

e The environment of learning.
e The adequacy and accuracy of the representations used.
e The performance of the model, compared with empirical results.

e The relationship of the model to wider theories of cognition.

The following sections discuss the model of Seidenberg and McClelland in terms of
these categories.

An Outline of the Model

SaMc! is implemented in a connectionist network with a set of 400 orthographic units,
200 hidden units and 460 phonological units (Figure 1). Both the orthographic and
phonological units use an encoding system similar to that used in Rumelhart and
McClelland’s (1987) model of the acquisition of verb endings: a word is represented
by the set of letter triples it contains. The representation is distributed in that each
orthographic unit represents a number of letter triples, and each triple is represented
in a number of units. When a word is presented to the model, the units corresponding
to the letter triples in that word are activated. For example, the word CART would
be represented by turning on the units corresponding to the triples [ ART, CAR,
RT#, #CA ] (where # is a word boundary), and turning all other orthographic
units off. Phonology is represented in a similar way, each unit corresponds to a triple
of phonetic features — for example, the triple [vowel, fricative, stop] which is present
in words like SOFT and POST.

Tt is often necessary to refer to “Seidenberg and McClelland’s model” in this discussion, rather
than use that clumsy and long-winded noun phrase we have given the model a name: . We hope
that this does not offend ’s authors, or our readers.




400 Orthographic Units

A

100/200 Hidden Units

Y

460 Phonological Units

Figure 1. The organisation of SaMc

The orthographic and phonological units are connected to 200 ‘hidden’ units. The
weights on the links between the units are altered according to the back-propagation
learning algorithm (Hinton, 1987) so that the network learns to associate the ortho-
graphic and phonological representations of the words in the training vocabulary.

Environment

Nothing is learned in isolation — there is always an environment that influences and
aids learning. It follows then, that an important part of modelling the development
of any cognitive skill is to map out the experiences which form the environment for
learning. In reading, these experiences are the stories and books that the child reads,
and any coaching given for particular skills, such as decoding novel words.

In a study of the vocabulary of first year reading books in New Zealand, Thompson
(1982) identified 142 types® occurring more than 10 times in a 10,903 token sample?.
In the books used for the first two years the vocabulary is extended to 848 types*.
In the latter case, type frequencies range from 1 to 5470 (for the) with many words
having a frequency of around 1000. Approximately 30% of the Thompson vocabulary
are multisyllabic words.

SaMc is trained with 2897 monosyllabic words, taken from the Kucera and Francis

2Here we distinguish between types, distinct words, and tokens, instances of words in a text.
Elsewhere we will use word to refer to both of these.

3These 142 types account for 80% of the tokens, the total number of types was 563.

“These 848 types account for 85% of the 88386 tokens, there were a total 3964 types.



(1967) corpus of American English. The model is trained to associate orthography-
phonology pairs for 250 epochs. An epoch consists of a set of presentations of the
words in the vocabulary; each word has a chance of being presented that is propor-
tional to its frequency in the corpus. In the course of the training regime, each word
is presented between about 12 and 230 times, depending on its frequency. Seidenberg
and McClelland comment:

“The sampling method is not intended to be faithful to the experience of
children learning to read in American culture. In the model, all words are
available for sampling throughout training, with frequency modeled by
the probability of being selected on a given learning trial. In actual ex-
perience, however, frequency derives in part from age of exposure; words
that are higher frequency for adults tend to be introduced earlier than
lower frequency words. In learning to read then, words are introduced
sequentially and often in groups to emphasize salient aspects of the or-
thography”

and later:

“The model works as well as it does because it is trained on a significant
fragment of written English, which contains complex latent structure.”

Two points can be made about the training environment of SaMc. Firstly, consider
the way in which the vocabulary is presented to the learner. In SaMc, all of the
words are presented at once so that the ‘statistical properties’ of the vocabulary can
be learned. On the other hand, a child’s vocabulary grows slowly as new stories
are read and new words encountered. There is no point in the training of SaMc
where it can read, say, 50 words well, and 50 more with some other (contextual)
clues: it always reads 2897 words with varying accuracy. Seidenberg and McClel-
land’s assumption that learning to read is equivalent to learning about the statistical
properties of the written language may be incompatible with a gradually expanding
the reading vocabulary. It is not until the child can read a substantial number of
words (say, 500) that statistical properties will be evident; this leaves at least a year
of reading development unaccounted for. Van Lehn (1985) argues for felicity condi-
tions for human learning — that the way in which material is presented can enhance
its learnability. If this is the case for reading, it may be necessary for the vocabu-
lary to grow slowly; Seidenberg and McClelland’s model cannot address this issue.
Current connectionist learning algorithms (Hinton, 1987) require that the patterns
to be learned are presented as one set of stimuli; any regularities in this set will be
utilized in learning associations. The use of such an algorithm forces Seidenberg and
McClelland to present a large vocabulary as an homogeneous set of words rather than
in a more realistic manner.



Secondly, the training vocabulary used for SaMc differs from that of a child in two
important ways. The vocabulary is significantly smaller and contains no multisyllabic
words. The ability of SaMc to learn depends on the presence of statistically significant
regularities in the training samples; generalisations that can be made from the Kucera
and Francis corpus may not be possible in a smaller vocabulary, such as that collected
by Thompson (1982). By excluding multi-syllabic words from the vocabulary, the
task of learning orthography/phonology association is greatly simplified; all letter
clusters that occur frequently will correspond to a phoneme or phoneme cluster.
Multi-syllabic words introduce ambiguity: letter clusters that occur frequently on
syllabic boundaries (for example nd in boundaries) do not map onto phonemes.

Both of the above criticisms of SaMc relate to assumptions made about the training
environment that may be too strong; assumptions which, we think, are in part forced
by the connectionist implementation. Another observation concerns the nature of the
stimulus that is available to the model, and how such stimulus is used by the model
for learning.

Seidenberg and McClelland assume that there is a source of phonological input that
enables SaMc to learn the association between orthography and phonology:

“...we assume that the phonological pattern may be supplied as explicit
external teaching input — as in the case where the child sees a letter string
and hears the teacher say its correct pronunciation — or self-generated on
the basis of the child’s prior knowledge of the pronunciation of words.”

If input from the teacher can only provide part of the required input then the rest must

come from a source outside the model. We can identify a number of types of stimulus
that might be available to the child learning to read (Table 1). SaMc will only learn

Table 1. Types of reading experience.

Sees Reads Hears Comment
bat /baet/ Child is read to by teacher
bat /baed/ Child mis-hears

bat  /baet/  ‘correct’ || Feedback on child’s reading
bat  /baed/ ‘wrong’
bt /baet/ Child reads her own incorrect spelling
bat Word seen with no other stimulus

in the first two cases listed here, where orthographic and phonological stimuli are
presented simultaneously. The case where the child’s own reading is being corrected
seems to involve a more complex process than the positive reenforcement of correct
answers implied by SaMc. An interesting case is the interaction between spelling



and reading — if children read their own spellings then they are likely to experience
many invalid letter strings. Depending on the view taken of the relationship between
reading and spelling, this may serve to either reinforce or correct an incorrectly
learned orthographic representation.

The observations that Seidenberg and McClelland make of their model as it learns,
and as a mature model, suggest that the mechanisms they use may be similar to
those used in word recognition. However, the model is unconvincing because of
the lack of attention paid to the environment in which it learns, and the degree to
which its environment is shaped by the requirements of the back-propagation learning
algorithm.

Representation

A cognitive model makes use of a representation of the world. The representation
characterises those aspects of the world that are important to the task in a way that
facilitates the task. In a model of reading, the aspects that must be represented are
the orthographic and phonological forms of the words in the vocabulary, along with
any semantic or other information used in recognising words. Obviously, there are
many choices for this representation; the particular choice has an enormous effect on
the shape of the resulting model.

Seidenberg and McClelland’s choice of a connectionist architecture for the implemen-
tation of SaMc restricts the types of representations that are available to them. The
model uses a representation which has been criticised elsewhere (Pinker & Prince,
1988) as being inadequate for language learning. The triple representation is unable
to distinguish some possible letter strings (such as the words algal and algalgal of the
Australian language Oykangand) and does not provide a natural base from which
to learn about word recognition. For instance, suffixes and affixes seem to be useful
‘units’ that should be recognised in an input word. The triple representation makes
it difficult to describe these morphemes (meaning carrying units) in a way that would
facilitate the appropriate generalisations. Seidenberg and McClelland would counter
this argument by claiming that the morphemes exist only as a convenient abstrac-
tion of the real representation: they are emergent from the behavior of the underlying
network. It is difficult to judge the validity of such a claim, as the current model
only deals with monosyllabic words which do not show a rich morphemic structure.

The problems facing SaMc are due to the difficulty of representing a sequence of
entities in a connectionist model. Such a model can naturally represent the pres-
ence or absence of a particular feature in the input, but has difficulty representing
relationships between input features — such as the spatial relationships between let-
ters in a word. There are various ways of getting around this problem: the triple
representation is one example, another is to have 26 units for each letter position
in a seven-letter window (this method is used in the NETtalk text-to-speech system



(Sejnowski & Rosenberg, 1986)). Recent work is investigating the use of time delay
networks for representing sequences (Elman, 1988); this is a new approach to rep-
resentation in neural networks and may provide an answer to these problems. The
representation of sequence in SaMc and similar networks is not adequate for modeling
the development of cognitive processes in language.

Studies of the reading performance of young children have shown that, at least in
the early stages, the initial and final letters are used to identify a word (Campbell,
1987). It is clear why this might be the case: the boundary letters of a word are
more easily picked out visually than internal letters. In SaMc, initial and final letters
have no special significance; they are just as easily perceived as the internal letters
(this is also true of the NETtalk representation) due to the lack of an explicit rep-
resentation of ordering. The model is unlikely to learn to use these salient letters as
clues to word identification, unless they happen to be statistically useful in making
the discrimination.

Consider also the observations made by Seymour and Elder in their longitudinal
study of beginning readers (Seymour & Elder, 1986):

“It appeared that at a certain point in development the position of salient
letters was not used as a discriminatory feature. For example the letter
“k” was a salient feature for identification of the word “black”. In the 16th
week of schooling, LBH responded “black” to likes, think and thank, and
also to the non-word targets bkacl, eadhk, pjoek and htoek.” (Seymour &
Elder, 1986)

It would certainly be possible for a connectionist model to to learn k& — /blaek/;
it would need to ignore the position of letters in the input word and just fix on a
useful feature (letter or letter group) to identify the word. However, a child will later
make the representation more precise, by making use of positional information. Our
connectionist model, on the other hand, would not then be able to later take note of
the position of letters, this would require it to undo a generalisation it had already
made and make a different one; connectionist models are not (yet) capable of such
behavior. For SaMc to learn that £ — /blaek/ it would have to see a number of
examples where the orthographic units corresponding to £ (in a number of contexts)
are active at the same time as the phonological units representing /bleek/. There is
no realistic way that SaMc will learn this association.

Many authors have noted stages in the development of reading skills. Frith (1985)
outlines three stages: an early ‘logographic’ stage where words are recognised on a
visual basis, an ‘alphabetic’ stage where recognition is mediated by phonology and
an ‘orthographic’ stage where morphemic analysis is developed. If these stages are
real then they imply that different strategies are being used at different times for
word recognition, which in turn implies changing requirements on the representation
language. The representation language must cope with both the initial and mature



versions of the representation of the lexicon and all the stages in between. Here the
connectionist network is interesting in that at an early stage it will learn associations
by rote, and then, when generalisations have been made, progress to a stage that
resembles the use of letter to sound rules. Thus a connectionist model is able to sim-
ulate two distinct ‘strategies’ for recognition using a single underlying representation
and recognition procedure.

The issue of representation becomes important when a computational account of a
cognitive task is developed. Clues as to the nature of the representation can come
from two sources: psychological insight into the nature of the cognitive process, and
knowledge of the properties of various data representations for computer programs.
Cognitive science brings these two sources together in the hope that a better model
will come from consideration of both. In the past, psychologists have been guilty of
ignoring arguments from computer science, and Al researchers have likewise ignored
psychological results. SaMc is the product of a line of research that is centered
around a particular, restricted form of computation — connectionist networks. The
goal of this research is to provide connectionist accounts of a wide range of cognitive
phenomena. Unfortunately, the desire to stay within the connectionist framework
leads to models that are shaped more by the connectionist ideal than the phenomena
they aim to model. Connectionism is a mechanism; when building a cognitive model
we should be driven by our observations towards an appropriate mechanism, rather
than trying to fit what we see into the mechanism we have chosen.

Performance

It is clear that a cognitive theory should be founded on empirical evidence, and any
model based on such a theory should reproduce empirical observations. The tradition
of Artificial Intelligence, however, relies much less on detailed observations of human
performance than on ‘intuitions’ about how a problem is solved, or on some ‘neat’
algorithm developed for a task. In a sense, the AI model provides an ‘existence
proof’ that there is an algorithm for the task being modeled, without making strong
claims about the relationship between the real and artificial systems. A cognitive
model should be more concerned with established observations of performance. The
issues are what sorts of behaviour should be taken into account, and how a model’s
performance can be compared with that of humans.

Two experimental tasks are often used to measure reading performance. Lexical de-
cision tasks involve showing the subjects letter strings and asking them to decide
whether the letters make up a word. Naming tasks require the subject to pronounce
a letter string, which again may or may not be a word. In both cases measurements
of reaction times and accuracy can be made. Experimenters look at the relation-
ship between performance on different classes of words (high/low frequency, regu-
lar /irregular letter-sound correspondence etc.) and, in developmental studies, at the



change in performance over time.

Outside the psychologist’s laboratory, the main measures of reading performance are
the number of words that can be named correctly, and the level of understanding
gained from the text. We are not concerned with understanding here (although it
may play an important role in word recognition); however, naming competence can
be used to evaluate a model of word recognition. We can observe two aspects of
naming performance: the number, and types of words that are named consistently
and the error responses made when reading. By examining these qualitative mea-
sures of performance in addition to the quantitative measures, such as reaction time
experiments, we obtain a broader picture of the process of learning to read than if
we limit the types of observations we consider.

Seidenberg and McClelland measure the ‘reaction time’ of their model by making an
assumption about the process of naming a word:

“We assume that overt naming involves three cascaded processes (see
also Balota and Chumbley (1985)): (a) the input’s phonological code is
computed; (b) the computed phonological code is compiled into a set
of articulatory-motor commands; (c¢) the articulatory-motor code is exe-
cuted, resulting in the overt response. Only the first of these processes
is implemented in the model. In practice, however, [the quality of] the
phonological output computed by the model is closely related to observed
naming latencies”

They assume that the reaction time in a naming task is related to the degree of ambi-
guity in the output phonological representation. This can be measured by comparing
the actual output (states of the phonological units) with the desired output. Any
unit that has a different activation (too high or too low) level to the desired output
contributes to an error score. This error score is assumed to be proportional to the
naming latency, as a highly ambiguous output will cause a delay in the construction
of an articulatory-motor program.

Using the reaction time measure, Seidenberg and McClelland are able to reproduce
some of the classic experiments comparing reaction times for different classes of words.
Of particular interest here is the behavior of the model at different stages of develop-
ment. A common observation is that the difference in processing speed for regular and
irregular words changes over time. In the early stages of development irregular words
take longer to pronounce than regular ones, regardless of their frequency. Later,
high frequency words of all kinds have about the same naming latencies, however
the regularity effect is retained for low frequency words. The performance of SaMc,
measured at various times during the training regime, reproduces this observation.

In SaMc, quantitative performance is more easily observed than qualitative perfor-
mance — given the timing assumptions discussed above. Determining whether an
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error response was made, and which word was used, is difficult due to the inherent
ambiguity of the triple representation (Pinker & Prince, 1988). The phonological
output produced for a given input consists of a pattern of activation over the phono-
logical units. Each of these units represents a triple of phonetic features (Section )
and can have an activation level ranging from zero to one. For a well-learned word
it is likely that phonetic features not contained in the word will receive some small
activation. For an unknown word, the correct phonological units may be activated,
but so will many other units — perhaps less strongly. In addition to this, there is
no guarantee that the phonetic triples activated can be strung together to form a
pronounceable phonetic string, or that they represent one unique string (Prince &
Pinker, 1988). Thus, given the representation chosen by Seidenberg and McClelland,
it is difficult to examine the performance of the model in qualitative terms.

The performance of SaMc on quantitative measures is impressive. It suggests that
some of the mechanisms being put forward are appropriate for reading development.
However, because we are unable to examine its qualitative performance, the model
cannot be fully evaluated. The reason for the lack of qualitative data is the use
of a connectionist architecture and the choice of phonological representation. One
interesting observation is that, when learning to read, children tend to make errors
within their reading vocabulary; that is if they make an incorrect response to a word
the error will be another word they can read, as opposed to a non-reading word or a
random string of phonemes. This is just one observation that is difficult to account
for in a connectionist model like SaMc which learns associations between orthography
and phonology. If SaMc makes an error it is likely to consist of some of the correct
phonemes and other spurious or wrong ones; it is highly unlikely that the response
would be another complete word from the reading lexicon. As in Section , it would
be possible to build a connectionist model that showed some of this behaviour. It
would, however, be difficult for such a model to progress to a stage where it makes
responses from outsides its reading vocabulary, as happens with most children.

Credibility

The development of word recognition skills is only a small part of the cognitive
development of a child. We choose to model it separately because to model the
whole would be too complex, and we assume that human cognition is separable into
functional units with limited, definable interactions. This assumption may not be
valid; we may be forced to consider the relationship between, say, word recognition
and access to meaning. A single piece of work may not be able to address the wider
context, but it should be consistent with models and theories of related tasks.

A credible computational model will reproduce the relevant behavior by using a
mechanism that has support from other areas of research, or that is supported by
substantive justification. For example, the ACT* architecture (Anderson, 1983) pro-
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poses spreading activation in a semantic network as a primary cognitive process; a
number of models have been built using this architecture. Each new model not only
adds to the credibility of ACT* as an architecture for cognition, but gains support
for itself by using mechanisms shown to be general in their utility. Of course there
are a number of competing mechanisms — ACT* and connectionism are examples —
so there is no one correct choice.

New mechanisms and structures must be proposed if research in cognitive modelling
is to progress beyond its current state. Every mechanism hides a number of as-
sumptions about its implementation and the nature of the task being modeled. To
enable evaluation of the model, these assumptions need to be made explicit; to en-
sure that the model is credible they need to be rigorously justified. Van Lehn (1985)
puts forward competitive argumentation as a means of establishing the appropriate
assumptions to be made in a model, and of providing justification for them. Compet-
itive argumentation considers all the choices (hypotheses) available — for instance, all
the ways of organising the lexicon — and selects one as the best or most general. The
selection process produces a number of arguments for the chosen hypothesis which
make up its justification. In this way the basic hypotheses of a theory/model are
made explicit and the reasons for them are clear.

SaMc is one of a number of cognitive models implemented as connectionist networks.
Other connectionist models have been constructed for learning the past tenses of
English verbs (Rumelhart & McClelland, 1987), parsing natural language (Waltz &
Pollack, 1985) and modelling the effects of context on letter perception (McClelland
& Rumelhart, 1981). One of the goals of this research seems to be to show the
general utility of connectionism as a mechanism for cognition. As such, connectionism
performs creditably well on the first criteria above; the suggested relationship of
SaMc to the rest of cognition is clear: it is a connectionist architecture, using similar
mechanisms to connectionist models of other skills. Seidenberg and McClelland fail
to explicate and provide justification for the assumptions upon which their model is
based; assumptions about the interfaces to the model and about how learning takes
place in the environment in which the model exists.

SaMc requires a particular form of input and produces a particular output, it is not
clear how or where these could be generated. Implicit in the need for letter triple
inputs is an assumption that word recognition is letter mediated — there is a process
(part of visual perception?) that constructs a letter based description from a pattern
of visual stimuli. The letter based representation is also required to be complete
(contains all and only the letters seen) and positionally stable (the same word will
always produce the same representation on different presentations)®. Each of these
characteristics of the input representation can be argued for and against; Seidenberg

5In fact there is some noise in the input representation — it is not always complete and positionally
stable — the motivation for this noise is to enable the learning algorithm to make the appropriate
generalisations. The characteristics of the noise are not based on any psychological considerations.
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and McClelland may claim that they are all clearly acceptable assumptions. Our
criticism is that the important assumptions about the characteristics of the input
representation are not made explicit and are given no justification.

Claiming that the credibility of a model (as defined here) is important makes a
methodological point about how to do research in cognitive science. In order for the
details of the hypotheses on which a model is based to be made clear, care must be
taken when formulating the model. We believe that by doing this, better models will
result and more will be learned from individual pieces of research.

CONCLUSION

Computational models of learning provide a valuable contribution to cognitive sci-
ence: they require that most of the assumptions of a theory be made explicit. A
computer model can be used to predict the behavior of a complex system operating
in a complex environment. There is a tradition of building computational models of
cognitive tasks in the field of Artificial Intelligence; it is tempting to think that, once
built, such a program constitutes a theory of the cognitive task. If we are to use
computational models in cognitive science we must be aware of the role they play,
and how they can be used to further a theory of cognition.

Seidenberg and McClelland present a model of word recognition that learns to asso-
ciate orthographic and phonological representations of words. The model is imple-
mented as a connectionist network. The results of experiments carried out using the
model suggest that it has captured some important aspects of the word recognition
task; its behavior is very close to that of a human reader on a number of experimental
tasks. We have used this model as a starting point in developing a set of criteria by
which a cognitive developmental model can be evaluated. These criteria, and our
evaluation of SaMc, are summarised here.

Firstly, the environment in which the model learns should approximate that of a
child. Seidenberg and McClelland do not attempt to capture some important features
of a child’s reading vocabulary; the words used to train the model are chosen to
restrict the complexity of the spelling to sound correspondences which the model
has to learn. Also, children’s environments change as they develop, this change is
not accounted for or taken advantage of in SaMc. It appears that the shape of the
environment presented to the model was determined more by constraints imposed
by the connectionist implementation, than by the real environment in which a child
learns.

The representation of the lexicon used in the model needs to be sufficiently rich to
capture all the stages of learning; from the early ‘whole word’ recognition stage to
the mature stage, recognising words by analogy. SaMc uses a connectionist network
which is able to adapt as it learns to capture generalities in the patterns it is exposed
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to. However, there are milestones on the road to mature word recognition that SaMc
does not, and cannot, pass because of the nature of learning in current connectionist
networks.

When evaluating a cognitive model, it is important to compare its performance with
that of the cognitive systems it claims to model. Too often researchers concentrate on
reproducing quantitative behaviour — timing measurements for various experimental
tasks — and ignore the equally important qualitative data. In fact, qualitative data is
arguably more important — the right timings for the wrong (qualitative) answers is no
validation at all. Seidenberg and McClelland take great pains to reproduce a number
of important findings and also make predictions which are backed up by subsequent
experimental work. Their model is incapable of making statements about qualitative
performance — such as what types of errors are made in response to unknown words.
The model is designed to reproduce timing data, and does so admirably, but we are
missing an important part of the evaluation by not being able to examine qualitative
performance.

Finally, we must be able to believe in a model. There should be no hidden assump-
tions waiting to demolish its credibility. Assumptions need to be made when building
a computational model. It is important to realise that some of these assumptions are
properly part of the theory, others are merely conveniences. The latter should not be
such that changing them produces drastic changes in the behaviour and predictions
of the model. SaMc¢ embodies many assumptions which are not properly justified;
this does not mean that they could not be justified. In the case of Seidenberg and
McClelland, it is hard to determine which assumptions are theoretical claims and
which arise from the implementation requirements of SaMc.

In summary, SaMc is a successful model in many respects, but the ideas expressed
within it are held back by the connectionist implementation. This introduces con-
straints where none belong: the constraints on the implementation should come from
the world being modeled rather than the mechanism chosen for implementation.
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